Topics for today: Pseudo-Random Number Generators (PRNGs), Extractors

Pseudo-Random Number Generators

(PRNG/PNRG/CS-PRNG)

\[y = \text{PRG}(x) \text{ where } y \text{ is the (arbitrarily long) output} \]
\[\text{x is a d-bit long input/seed} \]

A PRG maps a fixed input to an arbitrarily long output: \(\{0, 1\}^d \rightarrow \{0, 1\}^*\)
PRGs are deterministic - given the same \(x\), they will output the same \(y\)

Security Defn: A PRG is secure (CS-PRG) if it is infeasible to distinguish the output \(y\) from a truly random bitstring of the same length, assuming that the seed is unknown.

In order to meet this definition today, the input size \(|x| > 112\) bits (NIST standard)
To see why, imagine the following PRG with \(|x| = 2\):
\[
\begin{align*}
\text{PRG}(x) &= \begin{cases}
\text{PRG}(1) = 01110101 \\
\text{PRG}(2) = 11000010
\end{cases}
\end{align*}
\]
We can distinguish this PRG from a random process because we will only ever see these two inputs.

The above security definition implies two other properties:
1. It is infeasible to predict the next bit if you don’t know \(x\).
 Alice: \(\text{PRG}(\text{seed}) \xrightarrow{b_1} | Bob = b_1 b_2 \ldots b_n \xrightarrow{b_2} | \rightarrow \text{infeasible for Bob to predict } b_3\)
2. It is infeasible to recover the seed given the output.

Examples of PRGs:

- Linear Feedback Shift Register
- Cellular Automata
- AS/1 AS/2 (insecure)
- RC4 (secure)
- “Counter Mode”

\{ Secure \}
\{ Insecure \}

For security to hold, the seed must be unpredictable.

- This is often a problem in practice
- Early 90s: netscape broke SSL (used predictable OS values)
- Late 2000s: Debian breaks SSL/SSH (new patch reduced seeds entropy)
- last year constrained devices/embedded systems break SSL
Extractors

Primitive used to help seed PRGs

\[y = \text{Ext}_i(x) \] where \(y \) is the (fixed length) output

- \(\text{Ext} \) is a function
- \(x \) is variable length input
- \(i \) is a nonsecret key (that we don’t care about)

An Extractor maps a variable length input to a fixed length output: \(\{0, 1\}^* \rightarrow \{0, 1\}^d \)

If \(x \) has min-entropy greater than \(d \) (typically \(H_0 > 2d \)), then it is infeasible to distinguish \(y \) from a \(d \)-bit truly random string.

How they are used with PRGs:

\[y = \text{PRG}(\text{Ext}(x)) \]

Used when we know that data has some randomness, but we’re not sure how exactly to pull it out.

Unix: /dev/random Windows: CryptGenRandom

Process: at the end we want something really large and random, but we have some really large and semi-random

\[\rightarrow \] so we collapse it down (Ext) then build it back up (PRG)

Proof of concept Extractor:

Biased Coin

\[
\begin{align*}
\text{Heads } p_h &= 0.6 \\
\text{Tails } p_t &= 0.4
\end{align*}
\]

more predictable than a truly random coin, so less random

Entropy is a measure of “unpredictableness”

\[\rightarrow \] it is in units of bits

\[\rightarrow \] Entropy of \(m \) bits has the same “randomness” as flipping a coin \(m \) times

Average Entropy (Shannon Entropy):

\[
H(p_1, p_2, \ldots, p_n) \leftarrow \text{Set of probabilities of all events that can occur} \nonumber \\
= - \Sigma p_i \log_2(p_i)
\]

For our biased coin:

\[
= - [0.6 \log_2(0.6) + 0.4 \log_2(0.4)]
\]

\[= 0.736 \]

Entropy of 20 biased coin flips:

\[= 20 \times 0.736 \]

\[= 14.6 \]

Von-Neumann Extractor:

\[\rightarrow \] not ideal, gives a lower entropy

Note: \(\perp \) means there is no output

Given \(b_1 b_2 \), output \(y_k = \begin{cases}
\text{HH} & \downarrow \text{pr} = 0.6 \cdot 0.6 \\
\text{HT} & \text{H} \quad \text{pr} = 0.6 \cdot 0.4 \\
\text{TH} & \text{T} \quad \text{pr} = 0.4 \cdot 0.6 \\
\text{TT} & \downarrow \text{pr} = 0.4 \cdot 0.4
\end{cases} \]

Essentially we extract events which happen with the same probability (in this case the sequence going from \(H \) to \(T \) or from \(T \) to \(H \) both have probability 0.6*0.4 = 0.24)
Von-Neumann Problems:
→ exploits knowledge of x (or its distribution). i.e knows that it’s a biased coin
→ has a non-deterministic output size

Instead we use:
→ Any x (where $H_0(x) > 2d$)
→ always returns d-bits

H_0 is the min-entropy. This is the entropy in the worst case.
$H_0 = -\Sigma 1^1 \log_2(p_{\text{max}})$ because we only consider one event, its probability is 1
$= -\log_2(p_{\text{max}})$

Summary

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash</td>
<td>${0, 1}^*$</td>
<td>${0, 1}^d$ PR, CR, (RO)</td>
</tr>
<tr>
<td>PRG</td>
<td>${0, 1}^d$</td>
<td>${0, 1}^*$ Pseudo-Random Output</td>
</tr>
<tr>
<td>Ext</td>
<td>${0, 1}^*$</td>
<td>${0, 1}^d$ Pseudo-Random Output</td>
</tr>
</tbody>
</table>