Comp 4104 RSA Encryption, Signatures

RSA

\[n = n = pq \quad p, q = \text{safe primes} \]
\[= (2p + 1)(2q + 1) \]

Choose element \(a \in \mathbb{Z}_n \) [0, n-1]

\(a \) is invertible if \(g \text{cd}(a, n) = 1 \)

Set of invertible elements is \(\mathbb{Z}_n^* \)

\[\text{Ord}(a) | (p-1)(q-1) = \text{Ord}(a) | 4p'q' \]

In general, \(\text{Ord}(a) \mod b = \text{ord}(a) | \Phi(b) \)

\(\Phi(b) \) is the number of integers less than \(b \)
and co-prime to \(b \)

Find \(x \) given \(y \) & \(y \)

\[y = xy \mod n \] easy to find if \(y \) is invertible
\[x = yx \mod n \] \(y \in \mathbb{Z}_n^* \)

\[y = y^x \mod n \rightarrow \text{Discrete Log} \rightarrow \text{still hard} \]
\[x = y^x \mod n \rightarrow \text{Discrete roots} \rightarrow \text{hard} \]

Given \(n \), find \(p \) and \(q \) \rightarrow \text{Factoring} \rightarrow \text{hard}

\[n \rightarrow \text{large } n \rightarrow |n| \geq 2048 \]
\(p \) and \(q \) are same length

\(b \leq (2^{128}) \) (NIST)

"Textbook" RSA Encryption

Key generation:

1) Pick two large safe primes \(p \) and \(q \)
2) Compute \(n = p \cdot q \)
3) pick integer e (from \mathbb{Z}_n^*) → public → relatively prime to $(p-1)(q-1)$
4) compute $d=e^{-1} \mod (p-1)(q-1)$ → private → $ed \equiv 1 \mod (p-1)(q-1)$
5) Public key: n, e (Private: d) by NIST

Encryption:
\[c = \text{Enc}_{pk}(m) = m^e \mod n \]

Decryption:
\[m = c^d \mod n = (m^e)^d \mod n \]

Textbook RSA:
1) Not randomized → encrypt same message, get same ciphertext
 → Not CPA-secure (nor CCA-secure)
2) Multiplicatively Homomorphic
 \[\text{Enc}(m_1) \cdot \text{Enc}(m_2) = \text{Enc}(m_1 m_2) \]
 \[= m_1^e m_2^e \mod n \]
 \[= (m_1 m_2)^e \mod n \]

Signatures:
Recall 2 methods:
1) ZKP that you know secret key
 bound to a message
2) Sign by encrypting
 → doesn’t work for Elgamal because of randomization
 → works with "textbook" RSA
RSA Signature

\[S = \text{Sign}_{sk}(m) = \text{Dec}_{sk}(m) \]
\[\text{output } <m_S> = m^d \mod N \]

\[\text{Verify}_{pk}(m_S) : S^e \mod n = m \]
\[= m^e \mod n \]
\[= m' \mod n \mod n \]
\[= m \]

Union valid sig <m_S>

compute forgery as

\[m' = m \cdot 2^e \mod n \]
\[s' = 2s \mod n \]

Verify \(s', m' \):
\[(s')^e \mod n = m' \mod n \]
\[(2s)^e \mod n = m^2 \mod n \]
\[2^e (m')^e = m^2 \]
\[2^e m = 2^e m \]

Strengthening RSA Encryption/Signatures

- use padding scheme
- padding scheme is randomized
- padding scheme uses hash functions (assumed random oracle)
- \(\text{Enc}(m || \text{pad}(r)) \rightarrow \text{OAEP} \rightarrow \text{optimal asymmetric encryption padding} \)
- \(\text{Sig}(m || \text{pad}(r)) \rightarrow \text{DSA} \rightarrow \text{Probabilistic Signature Scheme} \)
- As secure as Schnorr or DSA
Encryption: | Security: | Signature: | Security:
---|---|---|---
Textbook RSA | OSS | "Textbook" RSA | Not secure
El Gamal | CPA | (D)DSA-DSS | secure
Twisted El Gamal | CPA | (D)DSA (DSS) | secure
(RSA-DAEP) | PKCS variant | Schnorr | secure

Key establishment:
1) Diffie-Hellman (textbook)
 not secure, MITM
2) SSH w/ signatures
 secure + never-given-read
3) Encryption-based (key transport)
 secure

S/LS (sketch):

\[A \leftarrow c^k \rightarrow B \]
\[a \rightarrow y^a \rightarrow b \]
\[K = g^{ab} \]
\[g^b, \text{sig}(g^a, g^b) \]

Key transport:

\[A \leftarrow pk_B \rightarrow B \]
\[K \leftarrow \text{Enc}_{pk_B}(k) \rightarrow K \]

Full encrypted protocol:

1) Get Google's public key = pk
2) K = Key establishment (pk)
 \[\text{Shared secret key} \]
3) k_enc, k_mac = PRG(K)
4) Enc_{k_E} (m || MAC_{k_M} || Pad)

Google

\[\rightarrow \text{you want to connect to Google securely} \]

Primitives used:

| R8A, S8A | MDS |
| SHA256 |

Enc: RC4, AES-CTR
MAC: HMAC

\[\rightarrow \text{MDS, SHA} \]