
Resolving the Multiple Withdrawal Attack on ERC20 Tokens

Reza Rahimian, Shayan Eskandari, Jeremy Clark
Concordia University

Abstract—Custom tokens are an integral component of
decentralized applications (dapps) deployed on Ethereum
and other blockchain platforms. For Ethereum, the ERC20
standard is a widely used token interface and is interoperable
with many existing dapps, user interface platforms, and pop-
ular web applications (e.g., exchange services). An ERC20
security issue, known as the multiple withdrawal attack, was
raised on GitHub and has been open since October 2017.
The issue concerns ERC20’s defined method approve()
which was envisioned as a way for token holders to give
permission for other users and dapps to withdraw a capped
number of tokens. The security issue arises when a token
holder wants to adjust the amount of approved tokens from
N to M (this could be an increase or decrease). If malicious,
a user or dapp who is approved for N tokens can front-
run the adjustment transaction to first withdraw N tokens,
then allow the approval to be confirmed, and withdraw an
additional M tokens. In this paper, we evaluate 10 proposed
mitigations for this issues and find that no solution is fully
satisfactory. We then propose 2 new solutions that mitigate
the attack, one of which fully fulfills constraints of the
standard, and the second one shows a general limitation
in addressing this issue from ERC20’s approve method.

Index Terms—Ethereum; ERC20 tokens; Blockchain;

1. Introduction

Ethereum is a public blockchain proposed in 2013, de-
ployed in 2015 [1], and has the second largest market cap
at the time of writing1. It has a large development commu-
nity which track enhancements and propose new ideas.2
Ethereum enables decentralized applications (dapps) to
be deployed and executed. dapps can accept and transfer
Ethereum’s built-in currency (ETH) or might issue their
own custom currency-like tokens for specific purposes.
Tokens might be currencies with different properties than
ETH. They may be required for access to a dapp’s func-
tionality or they might represent ownership of some off-
blockchain asset. It is beneficial to have interoperable
tokens with other dapps and off-blockchain webapps, such
as exchange services that allow tokens to be traded.

Toward this goal, the Ethereum project accepted a
proposed standard (called ERC20 [2]) for a set of methods
which ERC20-compliant tokens must implement. In terms
of object oriented programming, ERC20 is an interface
that defines abstract methods (name, parameters, return
types) and provides guidelines on how the methods should
be implemented, however it does not provide an actual
concrete implementation (see Figure 1).

1. [2019-02-11] https://coinmarketcap.com/currencies/ethereum/
2. [2019-02-11] https://www.coindesk.com/data

Figure 1. The ERC20 standard defines 6 methods and 2 events that must
be implemented. Using approve and transferFrom in the existence
of a race condition may lead to a “multiple withdrawal attack”. Note
that transferFrom augments the more basic transfer method.

Since the introduction of ERC20 in November 2015,
several vulnerabilities have been discovered. In October
2017, a security issue called “Multiple Withdrawal At-
tack” was opened on GitHub [3], [4]. The attack originates
from two methods in the ERC20 standard for approving
and transferring tokens. The use of these functions in an
adverse environment (e.g., front-running [5]) could result
in more tokens being spent than what was intended. This
issue is still open and several solutions have been made
to mitigate it. The authors of the ERC20 standard [2]
reference two sample implementations: OpenZeppelin [6]
and ConsenSys [7]. OpenZeppelin mitigates the attack by
introducing two additional methods to increase or decrease
approved tokens (see Section 3.3), and the ConsenSys
implementation does not attempt to resolve the attack.
Additional implementations have a variety of different
trade-offs in mitigating the issue (see Section 3).

Contributions. In this paper, we evaluate 10 proposed
mitigations for the “multiple withdrawal attack”. We de-
velop a set of criteria that encompass backwards compat-
ibility, interoperability, adherence to the ERC20 standard,
and attack mitigation. The summary is provided in Fig-
ure 2. Since no mitigation is fully satisfactory, we develop
two additional solutions based on the Compare and Set
(CAS3) pattern[8]. We study in detail possible imple-
mentations of ERC20’s approve and transferFrom
methods. We argue that a CAS-based approach can never
adequately deploy a secure approve method while ad-
hering to the ERC20 standard. We then propose a secure
implementation of the transferFrom method that mit-
igates the attack and fully satisfies the ERC20 standard.

3. A widely used lock-free synchronization strategy that allows com-
paring and setting values atomically.

320

2019 IEEE European Symposium on Security and Privacy Workshops

© 2019, Reza Rahimian. Under license to IEEE.
DOI 10.1109/EuroSPW.2019.00042

Figure 2. Comparison of 10 proposals and 2 contributed by this paper. In our first proposal, CAS is used to mitigate the attack by comparing
transferred tokens with new allowance. It is not fully ERC20-compliant since the allowance result does not always match what is requested. In our
second proposal, a new local variable is defined to keep track of transferred tokens and prevents transfers in the case of already transferred tokens.

2. Preliminaries

2.1. How the multiple withdrawal attack works

According to the ERC20 API definition, the approve
function4 allows a spender (e.g., user, wallet or other smart
contracts) to withdraw up to an allowed amount of tokens
from token pool of the approver. If this function is called
again, it overwrites the current allowance with the new
input value. On the other hand, the transferFrom
function allows the spender to actually transfer tokens
from the approver to anyone they choose (importantly:
not necessarily themselves). The contract updates balance
of transaction parties accordingly.

An adversary can exploit the gap between the confir-
mation of the approve and transferFrom functions
since the approve method replaces the current spender
allowance with the new amount, regardless of whether
the spender already transferred any tokens or not. This
functionality of the approve method is shaped by the

4. We use the term method and function interchangeably.

language of the standard and cannot be changed. Further-
more, while variables change and events are logged, this
information is ambiguous and cannot fully distinguish be-
tween possible traces. Consider the following illustration:

1) Alice allows Bob to transfer N tokens on her
behalf by broadcasting approve(_Bob, N).

2) Later, Alice decides to change Bob’s approval
from N to M by calling approve(_Bob, M).

3) Bob notices Alice’s second transaction after it is
broadcast to the Ethereum network but before it
is added to a block.

4) Bob front-runs (using an asymmetric insertion
attack [5]) the original transaction with a call
to transferFrom(_Alice, _Bob, N). If
a miner is incentivized (e.g., by Bob offering high
gas) to add this transaction before Alice’s, it will
transfer N of Alice’s tokens to Bob.

5) Alice’s transaction will then be executed which
changes Bob’s approval to M.

6) Bob can call transferFrom method again and
transfer M additional tokens.

321

Figure 3. Possible “multiple withdrawal attack” in ERC20 tokens when
Alice changes Bob’s allowance from N to M. By front-running, Bob
is able to move N+M tokens from token pool of Alice. Solutions
should consider Bob’s initial transfer of N tokens (step 3) as legitimate
transaction and prevent the second transfer of M tokens (step 4).

In summary, in attempting to change Bob’s allowance
from N to M, Alice makes it possible for Bob to transfer
N+M of her tokens. We operate on the assumption that
a secure implementation would prevent Bob from with-
drawing Alice’s tokens multiple times when the allowance
changes from N to M (see Figure 3).

2.2. Why mitigation is important

ERC20 tokens are important component of Ethereum’s
supplementary financial system that have many financial
(as well as non-financial) uses and could hold considerable
value (potentially exceeding the value of Ether itself).
There has been more than 64,000 functional ERC20 to-
kens as of early 2019 [9] that might be vulnerable to
this attack. Furthermore, ERC20 tokens that have already
been issued cannot easily migrate to a new secure im-
plementation and should these tokens appreciate in value
in the future. Resolving the attack also serves as basis
for other extended standards, such as ERC-223, ERC-
621, and even ERC-777 to be backward compatible with
ERC20 interface [10]. Finally, firms that hold ERC20
tokens require assurance of their security, particularly in
the case that they require their financial statements to be
audited—an issue like this could lead to further hesitation
by auditors.

2.3. Where to prevent this attack

There are a few logical places to address this at-
tack. Ideally the token author (instead of the token
holders) would mitigate the attack within the ERC20
smart contract. Since two methods are involved in the
attack, it could be addressed within the approve and/or
transferFrom method. By contrast, token owners have
no control over the implementation of the contract and are
relegated to mitigate the attack by carefully monitoring the
contract around the time allowance changes are made.

Prevention by token holder. Consider Alice, a token
holder using a web app (e.g., a user interface deployed
with web3) to adjust Bob’s allowance. If this user interface
(UI) is written to the ERC20 standard, Alice will only have
approve available to her. The ERC20 authors [2] advise

Alice against directly changing Bob’s allowance from N
to M. Instead, she should set the approval to 0 and then
it to M (N→0→M). Presumedly, Alice will not do the
second approval (setting it from 0 to M) if she sees that
Bob withdraws N tokens before her N to 0 adjustment is
confirmed.

How will Alice know whether Bob withdraws first?
The answer depends on how deeply her webapp can
monitor the blockchain. One option is to monitor the
variable that records Bob’s allowance (technically an on-
blockchain helper dapp could also do this). However if
she sees Bob’s allowance at 0 after initiating the first ad-
justment, it does not tell her that Bob did not withdraw N
tokens—both methods result in Bob having an allowance
of 0 so either (or both) could have been executed.

Next, she might rely on events passed from the con-
tract to her web3 app. Transfer events as specified in
ERC20 will log the transfer parameters (i.e., address
_from, address _to, uint256 _tokens). Al-
ice’s webapp could filter the events and only display
transfers matching her address in the _from field. The
displayed transfers will include any transfer Bob makes,
however Bob can provide any address in _to, not just
his own, and the event does not report who authorized the
transaction (i.e., msg.sender). If Alice has many autho-
rizations, she cannot determine if a transfer was initiated
by Bob or someone else she has authorized.5 Therefore
Alice cannot always unambiguously rely on events to
determine Bob did not transfer funds (See Section 3.1 for
more details). If Alice’s web app is beyond web3 and runs
a full node maintaining blockchain state, it could correctly
detect and attribute all transfers initiated by Bob. But this
rather time-consuming and thus probably not efficient.

The takeaway from all these options is that prevention
by token owners has some undesirable properties: (1) it
splits adjustments into two transactions, (2) because the
first transaction needs to be confirmed before the second
is initiated, it takes time to complete, and (3) to precisely
mitigate this attack, a heavyweight web app is needed
to inspect deeper than variable state changes and events.
For these reasons, we concentrate on mitigating the attack
in the contract itself. If mitigation at the contract level
works, allowances can be adjusted with a single function
call from any existing lightweight ERC20 user interface,
and no additional monitoring of the contract is necessary.

Prevention by token author in approve. The next
logical place to tackle multiple withdrawal is in the im-
plementation of the approve method. In particular, an
approve implementation might be engineered to fail
under the conditions of multiple withdrawal, to adjust the
approval amount, treat adjustments as relative offsets from
the current amount, or other techniques. As we review the
10 solutions, we will see different proposals along these
lines, as well as our own proposal in Section 4.1. For now,
we emphasize that adherence to the standard is a core
challenge as it unequivocally states that: “If this function
is called again, it overwrites the current allowance with
_value” [2]. So, any adjustment violates the standard.

5. Even if Bob is listed in _to, another authorized spender might
have transferred tokens to Bob to make Alice believe Bob attempted a
multiple withdrawal when he actually did not.

322

Figure 4. Recommendation of ERC20 standard to mitigate “multiple
withdrawal attack” by enforcement in UI.

Prevention by token author in transferFrom. Recall
from Figure 3 that step 4 is the offending function call
and it is to transferFrom. If we add new state to the
contract to track the number of tokens that have been
transferred, we can allow approval to work exactly as
specified while interpreting it as a “lifetime” allowance.
We will explain this in more detail in Section 4.2.

2.4. What an ideal solution looks like

We prioritize adherence to the ERC20 standard. While
deviating from the standard might become acceptable if
there is no possible way to conform with it and maintain
security, we consider that a last resort. Indeed, as we will
show, it is possible to secure an ERC20 contract within
the constraints of the standard [2], which we summarize
here:

1) The input to approve method is a new al-
lowance and not a relative adjustment.

2) The result of approve method will overwrite
the current allowance with the new allowance.

3) A call to transferFrom on an input of 0
tokens will execute as a normal transfer and emit
a Transfer event.

4) A spender can call transferFrom multiple
times up to the allowed amount.

5) Transferring up to any initial allowance is always
a legitimate transfer.

6) An ideal solution cannot rely on overloading ex-
isting methods or introducing new methods out-
side of ERC20, as existing ERC20 dapps and web
apps would have to be modified to interoperate.

7) A solution must eliminate all race conditions.

3. Evaluating Proposed Solutions

In this section, we evaluate 10 solutions that have
been proposed by Ethereum community6 to address the
multiple withdrawal attack. We examine each solution in
detail and evaluate them against the criteria established in
section 2.4. The summary is also presented in Figure 2.

3.1. Enforcement by User Interface (UI)

The first solution is enforcement at the user interface
level. We discussed this previously in section 2.3 but we
reiterate the main points here again. The exact recommen-
dation from the ERC20 standard is shown in Figure 4 and
is essentially to set an allowance to zero before any non-
zero values. Presumedly, it will also enforce that the new

6. Mostly from developers on GitHub

approval is not allowed if proceeded by a token transfer
by the approved spender. We consider the UI to be a
lightweight web app that can reference a contract’s state
variables and emit events but does not maintain a full copy
of the blockchain. Consider (again) the most basic attack
sequence:

1) Alice allows Bob to transfer N of her tokens.
2) Alice’s client broadcasts an allowance of 0.
3) Bob broadcasts a competing transaction to trans-

fer N of Alice’s tokens.
4) Bob’s transaction front-runs Alice’s, is confirmed,

and sets Bob’s allowance to 0 (from N).
5) Alice’s transaction is confirmed and sets Bob’s

allowance to 0 (from 0).
6) Alice’s client broadcasts an allowance of M.
7) Alice’s second transaction is confirmed and sets

Bob’s allowance to M.
8) Bob transfers M of Alice’s tokens for a total of

N+M tokens.

The key mitigation to this attack is for Alice’s client
to pause at step 6 and determine if a transaction sequence
like 3&4 has occurred or not. This cannot be determined
by monitoring the integer that records Bob’s allowance
because it will be 0 regardless of whether steps 3&4
occurred or not.

It also cannot always be determined by monitoring
the events emitted from the contract. Step 4 will log
a transfer from Alice’s address to Bob’s address of N
tokens. If no event is emitted, Alice can know for certain
no transfer was made. However if an event is emitted,
Alice must decide it was a transfer initiated by Bob or a
transfer by someone else she has authorized. If she has
not authorized anyone else, she can know for certain it
was Bob. However if she has a busy account with multiple
authorized spenders of her tokens, the event is not verbose
enough to determine what happened. Importantly, it does
not record who (msg.sender) initiated the transfer, only
who received the tokens, and these are not necessarily the
same entity. Bob can send Alice’s tokens to his accomplice
Carol, or some other authorized spender can send Alice’s
tokens to Bob (which looks like Bob is attacking when
he is not). Since a UI is automated and does not use hu-
man discretion, it cannot decide circumstantially whether
something looks like an attack or not—it must either
specify exact rules, which it cannot do here because of the
ambiguity of the events, or it can ask for Alice’s human
input which introduces usability issues. In conclusion, it
is better for enforcement to happen at the contract level
as implemented by the most of the solutions.

3.2. MiniMeToken

MiniMeToken [11] enforces the recommendation that
allowances are first set to zero before setting to a non-zero
value. The enforcement is done within the ERC20 imple-
mentation by adding require((_amount == 0) ||
(allowed[msg.sender][_spender] == 0)) to
the approve method. (_amount == 0) allows ap-
provals to be set to 0, and the second condition requires
the allowance of _spender to be 0 before it can be set to
a non-zero value. This solution fails to prevent Bob from
transferring N+M tokens, as the contract will be unable

323

Figure 5. Functionality of the approve method in MiniMeToken and
MonolithDAO tokens, which are implemented slightly differently but
effectively enforce setting spender’s allowance in two steps: first to zero
and then to any non-zero value (e.g., N→0→M).

to determine whether N tokens have been already drained
by Bob or not. Recall the attack sequence specified in
section 3.1. In step 5, Alice finds Bob’s allowance is
set to zero. However, she cannot distinguish whether it
was because of her transaction or token transfer by Bob7.
Furthermore, relying on events is not sufficient as we
explained log ambiguity issue in section 3.1.

3.3. MonolithDAO

MonolithDAO Token [12] (and its extension in Open-
Zeppelin [6]) implement two additional functions for ap-
proval increases and decreases: increaseApproval
and decreaseApproval. Both take two parameters:
the address of the approved spender and the amount to
be added/subtracted from the spender’s current approval.
Additionally, the approve method has additional logic
to enforce that owners set the allowance to zero before
non-zero values (see Figure 5). Forcing a set to zero is
enforced the same way as in MiniMeToken 3.2. After the
initial approval, owners use decreaseApproval and
increaseApproval instead of approve. Consider
the following transaction sequence:

1) Alice allows Bob to transfer N tokens by broad-
casting approve(_Bob, N)8.

2) Alice increases Bob’s allowance to M. Since
execution of approve(_Bob, M) will fail
(Bob’s allowance is non-zero), Alice broadcasts
increaseApproval(_Bob, M-N) instead.

3) Bob front-runs this transaction by broadcasting
transferFrom(_Alice, _Bob, N).

4) If Bob’s transaction is confirmed first, he will
transfer N tokens but this is legitimate as he was
approved for N, and his approval is set to 0.

5) Alice’s transaction will adjust Bob’s approval
from 0 to M-N. In total, Bob would be able to
spend N+M-N=M tokens as intended.

6) Remark: for decreases, decreaseApproval
will similarly prevent the attack by reducing
Bob’s allowance instead of setting it to a par-
ticular value.

Although these two new complementary functions do
prevent the attack, they have not been defined in the
initial specifications of ERC20 standard. Therefore, these

7. Both approve and transferFrom can set Bob’s allowance to
zero. In the first case, if Alice’s transaction executes before Bob’s and
in the second one due to token transfer by Bob.

8. Alice can use the default approve method since Bob’s allowance
was initially 0.

Figure 6. In “Detecting token transfers”, the approve
method needs to be modified by adding a line of code like
allowed[msg.sender][_spender].used = false;
between lines 16 and 17 to unlock spender flag for the next legitimate
change. However, this change makes attack mitigation ineffective.

safer functions will not be used by ERC20-compliant
web apps and smart contracts that are already deployed.
Such deployments will continue to use approve method
which suffers the same issue as MiniMeToken: set to zero
does not always mitigate the attack.

3.4. Detecting token transfers

The next approach [14] maintains a small state ma-
chine to enforce prevent approvals preceded by transfers.
We revisit and elaborate on this approach in our own
solution in Section 4.1. In this proposal, the implemen-
tation of approve is augmented with a flag (one flag
for each pair of owners and approved spenders) that can
be set in transferFrom function. transferFrom
sets the flag to true after any token transfer and the
approve method requires the flag to be false before
allowing new approvals. This approach requires a new
data structure, can prevent front-running, but also has a
deadlock scenario. Consider the following scenario:

1) Alice allows Bob to transfer N tokens by broad-
casting approve(_Bob, N). This succeeds
because Bob’s allowance was initially 0 and his
corresponding flag=false (line 15 in Figure 6).

2) Bob legitimately withdraws N tokens by calling
transferFrom(_Alice, _Bob, N).

3) Alice decides to increase Bob’s allowance to M
by broadcasting approve(_Bob, 0).

4) Since Bob’s transaction is confirmed first,
transferFrom turns his flag to true.

5) Alice’s transaction is confirmed, passes the check
because input value is 0 (line 15), and Bob’s
allowance is set to 0 while his flag remains true.
Critically, the approve method does not flip the
spender’s flag.

6) Alice wants to change Bob’s allowance to M and
broadcasts approve(_Bob, M).

7) Since Bob already transferred N tokens (or it
could be just 1 token) and his flag=true, the
transaction fails.

8) Remark: Bob’s allowance is 0 and it cannot not
change, so he is locked out of further approvals.

Although this approach mitigates the attack, it prevents
any further legitimate approvals. As discussed, in case of
any legitimate token transfer by Bob, Alice would not be
able to change his approval. Because Bob’s flag is set to
true and line 15 in Figure 6 does not allow changing the
allowance (an exception is thrown). A potential bypass
is to set the allowance to 0 and then to M. However
this transaction sequence never flips the flag to false

324

Figure 7. Keeping track of remaining tokens by introducing a new data
structure.

(there is no code for it in the approve method). So it
keeps Bob locked out of any further legitimate allowances.
A quick fix might be having approve set the flag to
false (i.e., between lines 16 and 17). But this will cause
another problem: after setting the allowance to 0, the
spender flag becomes false, and allows non-zero values
even if tokens have been already transferred. This will no
longer prevent multiple withdrawals as demonstrated in
the following transaction sequence:

1) Alice changes Bob’s allowance from N to 0.
2) Bob transfers N tokens before the allowance

change and his used flag turns to true.
3) Alice’s transaction is successful since input

_value is 0. The second condition is not eval-
uated although used flag is true.

4) Alice’s transaction turns used flag to false
and sets Bob’s allowance to 0.

5) Now Alice wants to set Bob’s allowance from 0
to M, his flag is false and allowance is 0.

6) Remark: Alice cannot distinguish whether Bob
moved any token or not. Setting a new allowance
will allow Bob to transfer more tokens.

In fact, resetting the flag in approve method will
not fix the issue and makes attack mitigation ineffective.
In short, this approach can not satisfy both legitimate and
non-legitimate scenarios. Nevertheless, it is a step forward
by introducing the need for a new state to track transferred
tokens if a solution is to be found.

3.5. Keeping track of remaining tokens

This approach [15] is inspired by the previous solution
of detecting token transfers and introduces new state in the
contract. It keeps track of the remaining tokens, and an
ERC20-compliant approve method uses these variables
to set allowances accordingly (see Figure 7).

At a first glance, it seems to be a promising so-
lution by more effectively enforcing approvals to zero
before non-zero values. However, the highlighted code
in approve method (see Figure 7) resembles the situ-
ation that is explained in 3.1. In case of front-running,
both initial and residual variables will be zero
and it would not be possible for Alice to distinguish

Figure 8. An overloaded approve method adds a method with three
parameters to compare and set new allowance atomically.

if any token transfer have occurred due to her al-
lowance change or due to Bob transferring a token.
To illustrate this, considering the following transac-
tion sequence (For formatting reasons, we abbreviate
codes like allowances[_Alice][_Bob].initial
as AB.initial):

1) Bob’s allowance is initially zero
(AB.initial=0) and his residual is zero
as well (AB.residual=0).

2) Alice allows Bob to transfer N tokens and makes
AB.initial=N and AB.residual=N.

3) Alice decides to change Bob’s allowance to M
and has to set it to zero before M.

4) Bob notices Alice’s broadcast and front-runs it
with a transfer of N tokens.

5) Consequently, the transferFrom function sets
his residual to zero (AB.residual=0).

6) Alice’s transaction for setting Bob’s allowance
to 0 is confirmed and sets AB.initial=0 and
AB.residual=0.

7) Remark: at this stage, the state is indistin-
guishable from Step 1. Alice cannot distinguish
whether any token have been transferred or not
based on AB.initial and AB.residual.

8) Alice approves Bob for spending new M tokens
and Bob is able to transfer new M tokes in
addition to initial N tokens.

It is true that a Transfer event has been recorded as
a result of step 5. However transfer events are ambiguous
as described in Section 3.1. Thus it is not always possible
for the approver to detect legitimate from non-legitimate
tokens transfers. Overall, this approach cannot prevent the
attack in the case of front-running by Bob.

3.6. Overloading Approve method

As advised by [16], a secure approve method could
take one additional parameter: the expected allowance
of the spender when the adjustment to the approval is
made. Under this proposal, the adjustment succeeds only
if the passed expected allowance matches the spender’s
actual allowance, and fails otherwise. Consider a multiple
withdrawal attack where Bob is approved for N of Alice’s
tokens, Alice adjusts his approval from N to M tokens, and
Bob front-runs the approval with a transfer of N tokens.
Alice’s approval will specify N as the current expected

325

allowance when adjusting it to M. Because Bob’s transfer
of N tokens changes his approval to 0, Alice’s approval
will fail because it expects an allowance of N when the
allowance is 0. This allows atomic compare and set of the
spender’s allowance to make the attack impossible.

While this approach mitigates the attack, it requires a
new overloaded approve method with three parameters,
in addition to the standard ERC20 approve method with
two parameters (see Figure 8). Additionally it defines a
new event. Existing ERC20 web apps and smart contracts
will be unaware of the overloaded method and continue to
call the insecure two parameter method. Thus it does not
provide backward compatibility and interoperability with
already deployed smart contracts.

3.7. Alternate approval function

Another suggestion [13] is to move the security check
to a new function called safeApprove9 that compares
the current and new allowance values (like the overloaded
approve in Section 3.6). The adjustment is only allowed
if the allowance has not been changed by the time the
function is executed. In this case, Alice uses the standard
approve function to set Bob’s allowance to 0 and for
new approvals, she has to use safeApprove function.
As above, safeApprove takes the current expected
approval amount as input parameter and calls approve
method if previous allowance is equal to the current
expected approval. Although this approach mitigates the
attack by using the CAS pattern [8], it is not interoperable
with ERC20-compliant web apps and smart contracts that
will be unaware of safeApprove.

3.8. Minimum viable token

Rather than adding new methods to ERC20, meth-
ods can be also be taken away. As suggested by the
Ethereum Foundation[17], we can reduce the ERC20 stan-
dard to a set of core functionalities and implement only
the essential methods. The attack can be side-stepped if
methods like approve and transferFrom are simply
not implemented (recall that transferFrom is in ad-
dition to the more commonly used transfer) or are
implemented to always throw an exception and revert.
Golem Network Token (GNT10) is one of these examples
since it does not implement the approve, allowance
and transferFrom functions. According to the ERC20
specification [2], these methods are not OPTIONAL and
must be implemented. Moreover, ignoring them can cause
failed function calls from smart contracts or web apps
that expect these methods to work as specified. Therefore,
we categorize this approach as successfully mitigating the
attack but not offering interoperability.

3.9. New token standards

Minimum viable tokens could alternatively be con-
sidered a new non-ERC20 token (cf. ERC223). In fact,

9. Syntax: safeApprove(address _spender, uint256
_currentValue, uint256 _value

10. https://etherscan.io/address/0xa74476443119A942dE498590Fe1f2454d7
D4aC0d#code

Figure 9. Modified version of transferFrom for keeping track of
transferred tokens per spender.

there are many ERC20 alternatives that extend or modify
ERC20 for a variety of purposes, mostly around function-
ality but some address multiple withdrawals. We summa-
rize the main proposals in Table 1.

Despite the enhancements of these new token stan-
dards for future deployments, ERC20 is ingrained in the
community and industry with 168,092 deployed tokens11,
many interoperable developer tools and libraries, and web
platforms built on trading these tokens. Ideally, and the
goal of this paper, a backward compatible solution could
be found that does not change the ERC20 API or require
token migration to a new standard (which is not neces-
sarily possible to do at the contract level). Like minimum
viable tokens, we categorize these approaches potentially
mitigating the attack (depending on which standard — see
Table 1) but not offering interoperability.

3.10. Approving trusted parties

A final solution is to limit token transfer approvals to
trusted entities. Such a solution is discretionary—it cannot
be automated within a contract—so it adds additional
burden for the user. At first glance, it seem that Alice
would never authorize Bob to spend her tokens if she
does not trust Bob. However approvals are constrained to
specific amounts specifically to enable some less trust-
worthy interactions. The “multiple withdrawal attack” is
damaging because Bob can circumvent the constraints. If
Bob is another smart contract, instead of a user, then Alice
could confirm it does not have the logic to conduct a
multiple withdrawal attack, cannot be updated (e.g., does
not delegate function calls to code at other addresses), and
thus it can be trusted with insecure ERC20 tokens. This
is a sensible approach but it is quite limited to specific
approval scenarios.

4. New mitigations

By this point, we have discussed 10 solutions to the
multiple withdrawal attack and we evaluated them in terms
of compatibility with the standard and attack mitigation
(recall the summary in Figure 2). Since none of them
precisely satisfy the constraints of ERC20 standard, we
now propose two new solutions to mitigate the attack.

4.1. Proposal 1: Securing approve method

By implementing the CAS pattern [8] in the approve
method, we set up a small state machine so that new

11. https://etherscan.io/tokens, Accessed 18-Feb-2019

326

Token
Standard A description of non-compliance with ERC20

ERC 223 [18] It does not implement ERC20 approve and transferFrom methods by assuming that they are potentially insecure and
inefficient.

ERC 667 [19] It solves the problem of the transfer function in ERC223 (i.e., the need to implement onTokenTransfer routing in the
receiving contract). It mitigates the attack using the same code as ERC223 with a supplementary function.

ERC 721 [20]
Unlike ERC20 tokens that share the same characteristics, ERC721 tokens are non-fungible tokens (NFT) where each token
is unique and not interchangeable. In addition to this functional difference, ERC721does not implement transferFrom
method of ERC20 standard and introduces a safe transfer function called safeTransferFrom.

ERC 777 [21]

It does not implement transfer or transferFrom methods and replaces them with safe send and operatorSend
methods. Moreover, It considers costly approve/transferFrom paradigm to be replaced by tokensReceived function.
Therefore, ERC777 would not be backward compatible by this replacement. A token might implement both ERC20 and ERC777
but the ERC20 methods would require attack mitigation.

ERC 827 [22]
It uses OpenZeppelin’s [6] ERC20 implementation and defines three new functions to allow users for transferring data in
addition to value in ERC20 transactions. This feature enables ERC20 tokens to have the same functionality as Ether (transferring
data and value). In fact, it extends functionality of ERC20 tokens and not addressing the attack.

ERC 1155 [23]
It is improved version of ERC721 by allowing each Token ID to represent a new configurable token type, which may have
its own metadata, supply and other attributes. ERC1155 aimed to remove the need to ”approve” individual token contracts
separately. Therefore, it does not implement any code to address this vulnerability.

ERC 1377 [24]
It implements approve method with three parameters in addition to the ERC20 default approve with two inputs.
Additionally, it uses OpenZeppelin [6] approach for increasing and decreasing approvals. We would consider it as mix of
MiniToken and OpenZeppelin proposals that we discussed before.

TABLE 1. EVALUATION OF STANDARD’S ADHERENCE TO ERC20 AND MITIGATION OF THE MULTIPLE WITHDRAWAL ATTACK.

Figure 10. Added code block to approve function to prevent the attack
by comparing and setting new allowance atomically.

allowances can be set atomically after a comparison
with transferred tokens. This tracking requires adding a
new variable to the transferFrom method (see Fig-
ure 9). Since this is an internal variable, it is not vis-
ible to already deployed smart contracts and keeps the
transferFrom function ERC20-compatible. Similarly,
a block of code is added to the approve function (see
Figure 10) to work in both cases with zero and non-
zero allowances. This new logic in the approve function
compares a new allowance—passed as _tokens argu-
ment to the function—with the current allowance of the
spender and the already transferred tokens. Allowance
are saved in allowed[msg.sender][_spender]
variable as in typical ERC20 implementation, and
transferred[msg.sender][_spender] is the
new state. The method decides to increase or decrease
the current allowance based on this comparison. If the
new allowance is less than initial allowance—sum of
allowance and transferred variables—it denotes
decreasing of allowance, otherwise increasing of al-
lowance is intended. Such a modified approve function
prevents the attack by either increasing or decreasing the
allowance instead of setting it to an explicit value.

Unlike other solutions, there is no need to set al-
lowance from N to 0 and then to M. The token holder
can directly change the allowance from N to M which

saves time waiting for the confirmation of a transaction
and any monitoring of the contract. Consider the following
transaction sequences to illustrate how the state changes:

Scenario A. Alice approves Bob for spending 100 tokens
and then decides to increase it to 120 tokens.

1) Alice approves Bob for transferring 100 tokens.
2) After a while, Alice decides to increase Bob’s

allowance from 100 to 120 tokens.
3) Bob noticed Alice’s new transaction and transfers

100 tokens by front-running.
4) Bob’s allowance is 0 and transferred=100.
5) Alice’s transaction is mined and checks initial

allowance (100) with new allowance (120).
6) As it is increasing, the new allowance (120) will

be subtracted from the transferred tokens (100).
7) 20 tokens will be set as Bob’s allowance.
8) Bob would be able to transfer 20 more tokens

(120 in total as Alice wanted).

Scenario B. Alice approves Bob for spending 100 tokens
and then decides to decrease it to 10 tokens.

1) Alice approves Bob for transferring 100 tokens.
2) After a while, Alice decides to reduce Bob’s

allowance from 100 to 10 tokens.
3) Bob noticed Alice’s new transaction and transfers

100 tokens by front-running.
4) Bob’s allowance is 0 and transferred=100

(set by transferFrom function).
5) Alice’s transaction is mined and checks initial

allowance (100) with new allowance (10).
6) As it is reducing, transferred tokens (100)

is compared with new allowance (10). Since Bob
already transferred more tokens, his allowance
will be set to 0.

7) Bob is not able to move more than initial 100
approved tokens.

327

Figure 11. Comparison of gas consumption between standard implemen-
tation of ERC20 token (TKNv1) and secured version of it (TKNv2).

Performance. In order to evaluate functionality of the new
approve and transferFrom functions, we have im-
plemented a standard ERC20 token (TKNv112) along side
the proposed ERC20 token (TKNv213) on the Rinkeby
test network. Our testing for different input values shows
that TKNv2 can address “multiple withdrawal attack”
by making front-running gains ineffective. Moreover, we
compared these two tokens in term of gas consumption.
TKNv2.approve function uses almost the same amount
of gas as TKNv1.approve, however, gas consumption
of TKNv2.transferFrom is around 47% more than
TKNv1.transferFrom (see Figure 11). This difference
in TKNv2 is because of maintaining a new mapping
variable for tracking transferred tokens. In term of com-
patibility, both are equivalent interoperable with standard
wallets (e.g., MetaMask) and have not raised any transfer
issues.

Discussion. In summary, we can use the CAS pattern to
implement a secure approve method that can mitigate
the attack effectively. However, it violates one of the
ERC20 specifications that says: “If approve function
is called again, it overwrites the current allowance with
_value” (item 2 in Section 2.4). Our solution does
not comply with this as the resulting allowance can be
different than what is passed by the approver (as shown
in the scenarios above).

Furthermore we argue that is in fact impossible to
secure the approve method without adjusting the al-
lowance. Considering the following transaction sequence:

1) Alice decides to change Bob’s allowance from N
to M (M ≤ N in this example).

2) Bob transfers N tokens by front-running and the
transferred variable sets to N.

3) Alice’s transaction is mined and the approve
method detects Bob’s token transfer.

4) If approve method does not adjust the al-
lowance based on transferred tokens, it has to set
it to M—to conform with the standard—which
is allowing Bob to transfer more M tokens, or
it could fail which deadlocks Bob from future
approvals14.

12. https://rinkeby.etherscan.io/address/0x8825bac68a3f6939c296a40f
c8078d18c2f66ac7

13. https://rinkeby.etherscan.io/address/0xf2b34125223ee54dff48f715
67d4b2a4a0c9858b

14. Consider Alice wants to allow Bob for transferring M more tokens
in addition to initial N tokens (N+M tokens in total). So, she passes
M+N to the Approve method. Even in case of front-running by Bob,
the Approve method should not throw an exception. Because this is a
legitimate withdraw and already approved by Alice. Additionally, there
would not be a way of detecting front-running in Approve method. It
sees only transferred token without knowledge of their previous value.

Figure 12. ERC20 transferFrom method definition that emphasizes
on throwing an exception when the spender is not authorized to move
tokens.

Figure 13. Securing transferFrom method instead of approve
method can mitigate the attack by preventing more token transfer than
allowed.

Therefore the approve method has to adjust the
allowance according to transferred tokens, not based on
passed input values to the approve method. Overall,
there seems to be no solution to secure the approve
method while adhering specification of ERC20 standard.

4.2. Proposal 2: Securing transferFrom

As an alternative to Proposal 1, we can also consider
securing the transferFrom method. As specified by
the ERC20 standard (see figure 12), the goal here is to
prevent the spender from transferring more tokens than
allowed. Based on this assumption, we should not rely
solely on the allowance value in deciding whether to
allow or prevent an approve and should also consider the
number of transferred tokens, which requires new state as
in Proposal 1.

Our solution, which is compliant with a careful read-
ing of ERC20, is to interpret allowance as a ‘global’ or
‘lifetime’ allowance value, instead of the amount allowed
at the specific time of invocation. For example, say Alice
approves Bob for 50 tokens, Bob transfers 50 tokens, Alice
approves Bob for 30 (more) tokens, and Bob transfers
30 tokens. In our implementation, Alice would approve
Bob for 50 tokens and he transfers 50 tokens. To approve
Bob for 30 more tokens, she approves Bob for 80 tokens.
He has already spent 50 of these 80 tokens so he will
only be allowed to transfer an addition 30. Thus 80 is
his lifetime allowance and 50 (kept internally) is the
amount he has transferred. In a bit more detail, consider
the following, which prevents multiple withdrawals by
modifying the implementation of transferFrom but
keeping approve untouched:

1) Alice approvals Bob to transferring 100 tokens
2) Alice broadcasts an approval of 70, decreasing

Bob’s allowance.
3) Bob front-runs Alice’s transaction and transfers

100 tokens (remark: a legitimate transfer).
4) Alice’s transaction is confirmed and sets Bob

allowance to 70 by the default approve method.

328

5) Bob’s noticed the new allowance and tries
to move 70 additional tokens by broadcasting
transferFrom(_Bob,70).

6) Since Bob has already transferred more than 70
tokens, his transaction fails and prevents multiple
withdrawal.

7) In the end, Bob’s allowance is set at 70 and his
transferred tokens are set at 100.

Performance & Discussion. Interpreting allowance
as a lifetime allowance is completely in accordance
with the ERC20 standard (see figure 12). In our
solution, there is no relation between allowance
(allowed[_from][msg.sender]) and transferred
tokens (transferred[_from][msg.sender]).
The first variable shows lifetime transferable tokens by
a spender and can be changed independently of the
transferred tokens (i.e., approve method does not check
transferred tokens). If Bob has not already transferred that
many tokens, he would be able to transfer the difference
of it.

Our token is implemented as TKNv315 on Rinkeby test
network and it passes compatibility checks by transferring
tokens between standard wallets. In terms of gas consump-
tion, its transferFrom function needs at about 37%
more gas than standard transferFrom implementation.
We believe this is acceptable for having a secure ERC20
token.

5. Conclusion

While this paper is a deep dive into a specific is-
sue with ERC20, it also illustrates a number of higher
level lessons for blockchain developers. When ERC20
standard was first implemented, it changed how people
used Ethereum, giving rise to an ICO craze with its ease
of use [25]. This led to the deployment of thousands of
early implementation ERC20 tokens which has resulted
in numerous attacks on different implementations. Now
we see decentralize exchanges relying on existing ERC20
tokens and the multiple withdrawal attack seems too im-
portant to ignore. Fixing existing ERC20 code will help
future deployments but cannot fix the already deployed
tokens. In addition to deploying secure contracts, we
suggest blockchain developers conduct external audits and
consider security-by-design practices when dealing with
other smart contract implementations.

References

[1] Ethereum. Ethereum project repository. https://github.com/
ethereum, May 2014. [Online; accessed 10-Nov-2018].

[2] Fabian Vogelsteller and Vitalik Buterin. ERC-20 Token Stan-
dard. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.
md, November 2015. [Online; accessed 2-Dec-2018].

[3] Mikhail Vladimirov. Attack vector on ERC20 API
(approve/transferFrom methods) and suggested improvements.
https://github.com/ethereum/EIPs/issues/20#issuecomment-
263524729, November 2016. [Online; accessed 18-Dec-2018].

[4] Tom Hale. Resolution on the EIP20 API Approve / TransferFrom
multiple withdrawal attack #738. https://github.com/ethereum/
EIPs/issues/738, October 2017. [Online; accessed 5-Dec-2018].

15. https://rinkeby.etherscan.io/address/0x5d148c948c01e1a61e280c8
b2ac39fd49ee6d9c6

[5] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark.
Sok: Transparent dishonesty: front-running attacks on blockchain.
International Conference on Financial Cryptography and Data
Security, 2019.

[6] OpenZeppelin. openzeppelin-solidity. https://github.com/
OpenZeppelin/openzeppelin-solidity/blob/master/contracts/
token/ERC20/ERC20.sol, December 2018. [Online; accessed
23-Dec-2018].

[7] ConsenSys. ConsenSys/Tokens. https://github.com/ConsenSys/
Tokens/blob/fdf687c69d998266a95f15216b1955a4965a0a6d/
contracts/eip20/EIP20.sol, April 2018. [Online; accessed
24-Dec-2018].

[8] Wikipedia. Compare-and-swap. https://en.wikipedia.org/wiki/
Compare-and-swap, July 2018. [Online; accessed 10-Dec-2018].

[9] Friedhelm Victor and Bianca Katharina Lüders. Measuring
ethereum-based erc20 token networks. In International Confer-
ence on Financial Cryptography and Data Security, 2019.

[10] Michael Fröwis, Andreas Fuchs, and Rainer Böhme. Detecting
token systems on ethereum. arXiv preprint arXiv:1811.11645,
2018.

[11] Jordi Baylina, Danil Nemirovsky, and sophiii. minime/con-
tracts/MiniMeToken.sol. https://github.com/Giveth/minime/blob/
master/contracts/MiniMeToken.sol#L225, December 2017. [On-
line; accessed 23-Dec-2018].

[12] Peter Vessenes. MonolithDAO/token. https://github.com/
MonolithDAO/token/blob/master/src/Token.sol, April 2017. [On-
line; accessed 23-Dec-2018].

[13] Enrique Chavez. StandardToken.sol.
https://github.com/kindads/erc20-token/blob/
40d796627a2edd6387bdeb9df71a8209367a7ee9/contracts/
zeppelin-solidity/contracts/token/StandardToken.sol, March 2018.
[Online; accessed 23-Dec-2018].

[14] Nate Welch. flygoing/BackwardsCompatibleApprove.sol. https:
//gist.github.com/flygoing/2956f0d3b5e662a44b83b8e4bec6cca6,
February 2018. [Online; accessed 23-Dec-2018].

[15] outofgas. outofgas comment. https://github.com/ethereum/EIPs/
issues/738#issuecomment-373935913, March 2018. [Online; ac-
cessed 25-Dec-2018].

[16] M. Vladimirov and D. Khovratovich. ERC20
API: An Attack Vector on Approve/TransferFrom
Methods. https://docs.google.com/document/d/
1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA jp-
RLM/edit#heading=h.m9fhqynw2xvt, November 2016. [Online;
accessed 25-Nov-2018].

[17] Ethereum Project. Create your own crypto-currency). https://
www.ethereum.org/token, December 2017. [Online; accessed 01-
Dec-2018].

[18] Dexaran. ERC223 token standard. https://github.com/ethereum/
EIPs/issues/223, March 2017. [Online; accessed 12-Jan-2019].

[19] Steve Ellis. transferAndCall Token Standard. https://github.com/
ethereum/EIPs/issues/677, July 2017. [Online; accessed 12-Jan-
2019].

[20] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia
Sachs. ERC-721 Non-Fungible Token Standard. https://github.
com/ethereum/EIPs/blob/master/EIPS/eip-721.md, January 2018.
[Online; accessed 12-Jan-2019].

[21] Jacques Dafflon, Jordi Baylina, and Thomas Shababi. EIP 777: A
New Advanced Token Standard. https://eips.ethereum.org/EIPS/
eip-777, November 2017. [Online; accessed 12-Jan-2019].

[22] Augusto Lemble. ERC827 Token Standard (ERC20 Extension).
https://github.com/ethereum/eips/issues/827, January 2018. [On-
line; accessed 12-Jan-2019].

[23] Witek Radomski, Cooke Andrew, Philippe Castonguay, James
Therien, and Eric Binet. ERC-1155 Multi Token Standard. https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-1155.md, June
2018. [Online; accessed 12-Jan-2019].

[24] Atkins Chang, Noel Bao, Jack Chu, Leo Chou, and Darren Goh.
Service-Friendly Token Standard. https://github.com/fstnetwork/
EIPs/blob/master/EIPS/eip-1376.md, September 2018. [Online;
accessed 12-Jan-2019].

[25] Gianni Fenu, Lodovica Marchesi, Michele Marchesi, and Roberto
Tonelli. The ico phenomenon and its relationships with ethereum
smart contract environment. In 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), pages 26–
32. IEEE, 2018.

329

