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Abstract—In this paper an improved adaptation law on the
upper bound of uncertainties is proposed to guarantee the
boundednenss of both states of the plant and the estimated
control gains when the boundary layer technique is employed.
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1. Introduction

Recently, sliding mode control (SMC) has been developed as
a useful strategy to be implemented with uncertain systems.
When the state is constrained to the sliding surface, sliding mode
control can completely reject uncertainties which satisfy the
matching condition (Utkin, 1978). In sliding mode control an
important assumption is that the uncertainties are bounded and
that their bounds are available to the designer. These bounds are
an important clue to the possibility of guaranteed stability of
a closed-loop system. Occasionally, due to the complexity of the
structure of uncertainties, their bounds may not be easily ob-
tained. Adaptive control is also known as an effective and robust
strategy with uncertain systems. Using online identification, one
can assure global stability for a class of systems whose structure
is known but whose parameters are unknown, however re-
searchers have noted poor performance with unmodeled uncer-
tainties. Studies have been done, and are currently being done to
discover ways to recover stability in these systems with un-
modeled uncertainties. The challenge addressed in this paper is
to combine the strengths of both these approaches and provide
adaptive sliding mode control.

Recently, many kinds of controllers which combine the struc-
ture of sliding mode control and adaptive control have been
presented. Therein Leung et al. {1991), Yoo and Chung (1992),
Su and Leung (1993), Chen and Mita (1993) and Parra-Vega et
al. (1994) proposed sliding mode controllers in which the control
gains switch with the estimated adapting upper bound of the
matching uncertainties. As is well known, a draw back of sliding
mode controllers is the discontinuity about the switching sur-
face. For practical implementations the controller must be
smoothed. One way to smooth the control law is to introduce
a boundary layer about the switching surface as in Stotine and
Sastry (1983). In this case, however, we believe the results of
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Chen and Mita (1993), Leung et al. (1991) and Yoo and Chung
(1992) may be questionable because if the boundary layer is used
with the proposed control law, the estimated switching gain can
grow unboundedly in the boundary layer since the restriction to
the sliding surface cannot always be achieved.

For completion of this method, in this paper, we propose an
improved adaptive law for the upper bound of the norm of the
uncertainties. Stability analysis shows that this method guaran-
tees the boundedness of both the state of the plant and the
adaptive gain, when boundary layer techniques are employed.
Simulation results are shown and the results verify our method.

2. System model description
Consider a dynamic system described by

X(1) = (A + SA(t, x))x(2) + (B + 3B(t, x)) u(t)

+ C(r, xye(t) + f{t, x}, (1)
where x(f) € R" is the state, u(t) € R™ is the control, v(t) € R' is an
extraneous disturbance, and A4, B, and C(t, x) are matrices of
appropriate dimensions with B of full rank. §A(z, x), f(t, x), and
oB(t, x) represent the uncertainty of the linear portion, the
nonlinearity of the system, and the input matrix uncertainty,
respectively.

To complete the description of the uncertain dynamical sys-
tem, the following standard assumptions are introduced.

Assumption 2.1:

(3) For existence purposes, dA(-,"), f(-,-), dB(-,"), C(-,*), and
v{-) are continuous on their arguments.

(i) Matching conditions: There exists functions D(-,-):
R % R" — Rmxn’ E(,)R 1% R" - Rm’ F(,) R x R" — Rmxm’
and G(-,"): R x R" -» ™! such that

JdA(t, x) = BD(t, x),

f(t, x) = BE(t, x),
SB(r, x) = BF(t, x),

C(t. x) = BG{t, x) for all (1, x) e Rx R"., (2)
(111) The pair (4, B) is completely controllable.

Assume that a sliding mode control is employed for control-
ling the system under consideration. From the structural as-
sumption, all uncertain elements can be lumped and the system
(1) can be written as

X(t) = Ax(t) + Bu(t) + e(t, x)), (3)

where e(t, x) is the lumped uncertainty. Based solely on the
knowledge of the bound on the uncertainty, we introduce the
following assumption.
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Assumption 2.2. There exists a conlinuous positive scalar valued
function p(-.-}: R x R" = R .. such that {e(r. x)|| < p(r. x) for all
r.x)eRxR"

SMC design is broken down into two phases (Utkin, 1978).
The first phase entails constructing a switching surface so that
the system restricted to the switching surface produces a desired
behavior (Utkin and Young, 1978). We define the n — m dimen-
sional subspace  (the switching space) as follows:

QLxia(0)2Sx =0,S, e R i= (1, ... .mxeR"}. (4

Let $=T[s],...sk1"eR™" and ao(x)= [0y, ....0,] € R™
Without loosing generality we assume that the matrix S is of full
rank and the matrix SB is nonsingular.

After selecting the switching surface, the next step is to choose
the control law such that the condition "¢ < 0 is satisfied. This
condition assures us that the switching surface will attract the
system trajectorics and that upon the intersection with the
switching surface the trajectories will remain there for all follow-
ing time. For convenience, throughout this paper, the arguments
1 and x are sometimes omitted when no confusion is likely to
arise.

3. Design of a sliding mode controller
We consider the following SMC law:
wu=—(SB) ‘Ko +u + ty. (5)

Cdnom

where K € R™*™ is a positive definite matrix, u,,,  is the equiva-
lent control for the nominal system of equation (3) by assuming
that the uncertainty ¢(z, ) is zero, which is obtained by solving
the following equation:

Guom = SAX + SBu,,, =0 (6)
The equivalent control is determined by
u = —(SB) 'SAx. (7)

Chnam

This cquivalent control determines the behavior of the nominal
system restricted to the switching surface. The term wuy repres-
ents the nonlinear feedback control for suppression of the effect
of the uncertainty and drives the system trajectories toward the
switching surface until intersection occurs
BS0 i it 020
— ———— O{f, X). L IN
[BsTa|

Uy = (8)

0 if o =0.

where p(t, x) is defined in Assumption 2.2.
With regard to the stability of the uncertain dynamical
system. we may state the following proposition.

Proposition 3.1. Given the system (3), if Assumptions 2.1 and 2.2
are valid. the condition ¢'¢ < 0 is satisfied by employing the
control law (5).

Proof. Refer to Walcott er al. (1989) as it is similar.

[n the design of this class of feedback controller, a continuous
positive scalar valued function p(-,-) satisfying Assumption 2.2 is
an important key used to guarantee the stability of uncertain
dynamical systems. But, sometimes it may not be easily obtained
due to the complexity of the structure of the uncertainty. Espe-
cially, the magnitude of the extraneous disturbance cannot be
simply estimated.

Our goal 1s to introduce an adaptive scheme which is capable of
performing an estimation of the upper bound of the norm
lle(t. x}|| and to design a variable structure controller using this
adaptive upper bound. For these purposes, we state the modifi-
cation of Assumption 2.2.

Assumption 3.1. There are positive constants {Yoo and Chung,
1992), ¢ and ¢, such that

le(t. X)) < ¢y + cqllxll = pir.x) forall (1. x)e Rx R (9)

Now, uy in the SMC control law (5} becomes

B'S'e 4
‘Wﬁ(l- x), il a#0,
uy=¢ " (10)

0 if o =0,

therein, p(t, x) is the adaptive upper bound of the norm |ie(t, x)|
and is synthesized by

At X) = Golt. X) + Eft, x) ]l (1n

where ¢o(t, x) and ¢,(s, x)} are the estimated parameters about
¢o and ¢y, respectively. An adaptation law for the upper bound
of the norm |e(r, x)} is defined as

éolt, x) 2 4ol B"S sl (12)
St XV 2 ¢, [ BTS ol X, (13)

where g, and ¢, are adaptation gains with positive values. By
choosing appropriate g, and ¢, the rate of parameter adaption
can be adjusted. In theory, as the adaptation gains are getting
larger, the rate of parameter adaptation is getting higher. In
practice, the adaptation gains are limited by the bound of
control input and other practical considerations.

Then, we may state the following proposition.

Proposition 3.2. Given system (1), if Assumptions 2.1 and 3.1 are
valid, ¢(x) = 0 is asymptotically stable by employing the control
(5) with uy given in equation (10) and the adaptation faws {12)
and (13).

Proof. See Yoo and Chung (1992).

Remark. By Proposition 3.2, once the system state reaches the
switching surface, it shdes along the switching surface and the
system response depends thereafter only on the gradient of
the switching surface. Thus, if the switching surface is chosen
such that the system restricted to the switching surface is asymp-
totically stable, then the proposed control (5) with uy in equation
(10) renders the system (1} asymptotically stable.

A drawback to the control law given in equation (10} is that it
is discontinuous about the switching surface o(x) = 0. This char-
acteristic induces an undesirable chattering problem. For practi-
cal implementations the controller must be smoothed. One way
to smooth the control is to introduce a boundary layer about the
switching surface, as suggested in Yoo and Chung {1992):

B'S'e
iB'S7q|
Uy = ) (14)
B'S'o _ . =
I X) if {B'S"s| <.

plt.x) il ||B"STal > .

plt, x) = Colt, X) + ¢yt X)) x], (15)
olt, x) = qollB'S"a |, (16}
énxy=q,1B'S"s x| (17)

where & is a small positive value. As ¢ approaches zero. the
performance of this boundary layer control law can be made
arbitrarily close to that of original control law. However, we
should point out that in this case the estimated gains ¢(f, x) and
¢y(1, x) may become unbounded in the boundary layer since the
restriction to the sliding surface can not always be achieved. This
argument has also been verified by the simulation results.

In order to address this problem. we propose a new smoothed
SMC control law taking account of the boundary layer effect, i.e.
uy in equation (5) is modified as

B'S'¢ o TOT
—mp(l..\') if 5|B'STa| > ¢,
Uy = (18)

B'S'¢ . o
————px)  if §|B'STe| <.,
B
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where
At x) = eolt, x) + &lt, x) xll, (19)
(1. X) = gol — Wolo + [ B"S"a]), (20)
& X) = qi(— ¥ & + 1B"S al| | ], (21

where ¢ is a small positive value, , and , are constants chosen
by the designer. The performance of this boundary layer control
law can be stated by the following proposition:

Proposition 3.3. Given system (1), if Assumptions 2.1 and 3.1 are
valid, then the control law (5) with uy in equation (18) is continu-
ous and in the closed-loop system o(x) and all signals are
uniformly ultimately bounded.

Proof. Consider the following Lyapunov function:
2V =aTo + g0 ' + g, '3, (22)
where &o(t, X) = Gylt, X) — ¢ and ¢(t, x) = ¢,{t, X) — ¢, are para-
meter adaptation errors. Differentiating V' with respect to time
yields
V=a"d + q4 '¢alo + g7 16 (23)
If |B"S"a| > ¢/p, then equation (23) can be written as

V =0c"[—~ Ko + SB(uy + )] + qg 6ol + g1 1616,

— 0'Ko — || B'S"6||(¢o + &, [ x]1) + 0TS Be

+ 45 "Colo + 47 16

< —a'Ka — |B'S"a|(@ + ¢, |x]) + [ B'S"a| |le]
+ qo 'Colo + q1 '¢(&

< —a'Ko + 8olqs '8 — I1B"S" o))

+0ilgr ey — I1B"S e [IxID

—o'Kag - $ololo — ¥1¢(&

= —6'Ka — yolicy — 6o — Wilde, — &)

i

+ iyl + 1y

— 0'Ko — Yrolheo — E0) — Yoy — &)? + 8, (24)

IA

where &; £ o3 + Ly i
If {B"S"s|| < &/p. then equation (23) can be written as

V =06"[— Ko + SB(uy + )] + qo '¢olo + q1 '16,

|B'S"g) 2

< —6'Ko P’ + IIB'STa| lel

—1x % 1y %
+ 4o CoCo + 41 10y

<—0'Ko— Mﬁz + [iB'STs|p + g4 136éo
+41 008
~0o'Ko — w P2 + |B'S"all — yroéoio
- WIEIEL (25)

When [|B'STofp=¢/2, the term [— |B"STo|%/e]p® +
IB'S"s|| 5] reaches the maximum value of &/2. Thus we may
write as follows:

V <~ 6"Ko + 36 — hofolo — W, 6,64
- _ €
= —0TKo — Yoldco — G0l — y(de, — &1)? +§ + &

< —0"Ko —Yolbeo — 60)? = (Bey — 62 +8, (26)

where ¢, £ 4¢ + ¢,.

Based on equations (24) and (26), the uniform ultimate
boundedness thus follows using the result and terminology in
Corless and Leitmann (1981).

Remarks. (1) Unlike uy in equation (14), uy in equation (18) uses
a new criterion [|B'S"s|| > ¢/p (or |B'STa) < &/p) instead of
I1B*S"ai > ¢ (or ||[B"S"a|| < «). Thus, the boundedness of the
system can be guaranteed.

(2) The adaptive laws (20) and (21) are similar to the so-called
ag-modification in Ioannou and K okotovic (1984), though differ-
ent purposes are pursued. Thus, we have developed an imple-
mentable controller which can be described as a combination of
SMC and s-modification adaptive control. As a matter of fact,
we can also choose ¥ and ¥, as switching-g functions loannou
and Tsakalis (1986)

0, Col < ¢,

Yo =< — . <ladl < 268, 27
WS 2e < ol
0, e < ¢

Yy = '1/(1)(%‘ =1, 0 <[6f < 2, (28)
Y. 28 < eyl

where % and /{ are positive constants; ¢§ and ¢{ satisfy ¢§ > ¢,
and ¢ > ¢,. In this case, we can still prove the boundedness of
the closed loop system. The benefit of using switching-o is that
less error bounds may be expected. It should be mentioned that
even with very conservative choices of ¢f and 9, they are only
related to the transition of ¥, and ¥, and not to the control
gains. This differs from the case where the upper bounds are
required to be known. We should note that our goal in this
paper is to develop an implementable adaptive SMC strategy in
a simpler setting that reveals its essential feature. This is the
motivation for simply using ¥, and y, as constants in the
theorem.

4. Simulation results

[n order to illustrate the proposed controller, we consider the
position control of the pendulum (Yoo and Chung, 1992) shown
in Fig. 1, which has the variable length [(#). Substituting suitable
parameter values, the equation of motion can be written as

# = 0.5sin 6(1 + 0.5cos H@*5(0) — 10sin (1 + cos 0)d(#)
+ T8(0) + v(t)cos O, (29)
where 3(#) = 0.25(cos 6 + 2) and the disturbance ¢(t) = 2cos(31).

Assuming xT = [x;, x,]=[0,0] and v = T, then equaiton
(29) can be written as f{ollows:

. 0 1 0
X = I:U O}x + [J(u + e(t, x)). (30)
r X

| I®)=l+1cos(B)

7

AN\

Y

Fig. 1. System model: /,/l; = 0.5, gilo = 10, and ml = 1.

| me
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Control Input (Case 1)
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15 N
9
g
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4
<
05 1
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[ 0.5 Al t.5 2 2.5 a
Time{a)
Fig. 2. Case 1: ¢ =05, g9 =5, and ¢, = 5.
Adaptive Gains CO and C1 (Case 1)
25 T T T T T
20| 4
151 F
2
i
=
10 H
e s
;
;
;
Kl 4
I3
I}
i
]
o . . . . .
o 0.5 1 15 2 2.6 3
Time (s}
Fig. 3. ¢y, and ¢, of case 1: ¢ = 0.5, g, = 5. and ¢, = 5.
Control Input (Case 2a)
200 Y T T T T T T T T
100 1
i o ——
-100 b
N . . . . . .
2000 0‘; 1 1.5 2 2.5 3 3.5 4 45 s
Time (s)
Position (Case 2a)
2 T T T T T T T T T
1.5 4
g T 4
)
p-] 0S5 B
oF _
o5 . . . \ . . A . .
o 05 1 1.5 2 25 3 35 4 4.5 5

Time(s)

Fig. 4. Case 2a: ¢ = 60e™ ' + 0.2, g4 = g, = 5. o, = 0.0l and
Wy = 0.005.

where
e(t, x) = [sinx,{ — 10(1 + cos x;) + (I — 3(x;) u
+0.5(1 + 0.5¢cos x,)- xHI/[8(x )] + v(cosx,.  (31)

Following [10] we choose the switching surface o(x) =
7xy + x5 = 0. Then, from equation (5), the VSC is determined as
u= — Ko(x) — Tx, + ux.

Now, for x(0) = [n/2, 0] T, let us set [éy, ¢,] = [0,0], K = 0.1,
[g0-4:11 =[5, 5]. and observe the system response.

Contral Input (Case 2b)
20 T u Y T T v T T T

. . L v .

[ 05 1 15 2 25 a as 4 45 5
Time (s)
Position (Case 2b)

2 T T T T T ¥ T T
15F p
2 ot 4
g 0.5 -4

o}

. n " L L " L " L

o5, 0.5 1 15 2 25 a 35 4 45 s

Time(s)

Fig. 5. Case 2b: ¢ = 60e™'* + 0.2, and g = ¢, = 5.

Adaplive Gains C0 and C1 (Case 2a & 2b)
45 T T T T T T T
cib

40t - B
ast : i

30 4

o 0.5 1 1.5 2 2.5 3 as 4 a5 5
Time (s)

Fig. 6. ¢, and ¢, of case 2a and b.

Control Input (Caas 3a)
T T v

00 v T T T T T
200}
o 100- 1
4
£
0 — ]
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_200 2 n " " " . " "
o 0.1 0.2 0.3 2.4 0.5 06 07 0.8 0.9 1
Tima ()
Poaition {Case 3a)
2 v v T v T T T T v
15F q
B O 4
£
£ ost B
ol \hv |
_os " L L s s L n L "
o 0.1 0.2 0.3 [ 0s 0.8 o7 0.8 o9 1

Tima(s)

Fig. 7. Case 3a: ¢ = 20e”™" + 0.02, g5 = ¢; = 5, ¥y = 0.01, and
¥, = 0.005.

Case 1. Using the controller (5) with uy in equation (14) where
¢=10.5, the results are shown in Figs. 2 and 3. From these
results, we see that ¢ and ¢; tend to grow unboundedly as
shown in the analysis, and also there is initial control chatter.

Case 2: Now the new controller (5) with uy in equation (18) is
used to see the performance of the system, where [, ¥,] are
chosen as [y, ;] = [0.01, 0.005]. To remove the chattering, in
this simulation we choose a time-varying boundary layer. ie.
&= 60e™ ¥ + 0.2. For comparison, the controller (5) with Uy in
equation (14) is also used with exactly the same parameters as
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CGontrol Input (Casa ab)
T — T T e

- Ll a B
0.8 1 1.2 1.4 16 18 2
Time (8)

Position (Case 3b)

T

A S S R, .
0.8 1 1.2 14 16 1.8 2
Time(s)

Fig. 8. Case 3b: & =50e™ "% + 002, go=¢; = 5. Yo =001,
and ¢, = 0.005.

Adaptive Gains CO and C1 (Case 3a)
- r . -

25 T v T T
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o 0.2 0.4 06 08 1 1.2 1.4 16 18 2
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.
) o A A A e A 1 - - _
° 0.2 0.4 0.6 08 1 1.2 1.4 16 18 2

Time (s)

Fig. 9. ¢, and ¢, of case 3a and b.

in equation (18). Results are shown in Figs. 4-6, where a stands
for results with uy in equation (18) and b for uy in equation (14).
From Fig. 6 we see that &o(b) and ¢,(b) tend to grow unbounded
while ég(a) and ¢,(a) are bounded and thus verify the proposed
method.

Cuse 3: Here we can see that the choice of ¢ influences the
performance of the system. Figures 7-9 show the system re-
sponses for different choices of ¢ while the other controller
parameters are kept the same. Therein, a stands for the case
¢=20e"' +0.02 and b for & = 50e %' + 0.02. From these re-
sults we see that we need to choose a suitable « and that the
choice of an optimal « is worthy of further research.

5. Conclusions

For SMC of uncertain dynamical systems, the bound on the
uncertainty is an important parameter and may not be easily
obtained due to several causes. Therefore, adaptive methods
were introduced to estimate such bounds. For practical imple-
mentations the controiler must be smoothed within a boundary
layer. In this case the estimated gain may become unbounded in
the boundary layer since the restriction to the sliding surface
cannot always be achieved. Focusing on this problem. an im-
proved adaptation law is proposed for the upper bound on the
uncertainty and a new controller is designed which can guaran-
tee the boundedness of the closed-loop system and can be
described as a combination of SMC law and ¢-modification
adaptive law. From the simulation results, we showed that the
proposed method removes the chatter {Chen and Mita, 1993)
and controls the uncertain dynamical systems using boundary
layer control.
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