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Adaptive Variable Structure Set-Point
Control of Underactuated Robots

Chun-Yi Su and Yury Stepanenko

Abstract—Control of underactuated mechanical systems (robots) rep-
resents an important class of control problem. In this correspondence,
a model-based adaptive variable structure control scheme is introduced,
where the uncertainty bounds only depend on the inertia parameters of
the system. Global asymptotic stability is established in the Lyapunov
sense. Numerical simulations are conducted to validate the theoretical
analysis.

Index Terms—Adaptive control, underactuated robots, variable struc-
ture control.

I. INTRODUCTION

In recent years, the control of underactuated mechanical systems
has attracted growing attention and is a topic of great interest
[1]–[8], [10]–[12], [16]. Examples of such systems are illustrated, for
example, in [10]. Interest in studying the underactuated mechanical
systems is motivated by their role as a class of strongly nonlinear
systems where complex internal dynamics, nonholonomic behavior,
and lack of feedback linearizability are often exhibited [11], [15], for
which traditional nonlinear control methods are insufficient and new
approaches must be developed.

Although dynamics of the underactuated mechanical systems is
well understood, the difficulty of the control problem for underactu-
ated mechanisms is obviously due to the reduced dimension of the
input space. The literature on the control of underactuated systems
is mainly recent [1]–[8], [10]–[12], [17], and the discussion mainly
focuses on two-degree-of-freedom examples [3], [4], [6], [11], [15].
Earlier work that deals with control of underactuated robotic systems
is described in [1]. Seto and Baillieul [10] developed a general
backstepping control method for the system with a chain structure.
Underactuated mechanical systems have also been investigated from
a nonholonomic constraint point of view [2], [8], [12], [15], [17],
where, for instance, Oriolo and Nakamura [8] and Wichlundet al.
[17] established the conditions for partial integrability of second-order
nonholonomic constraints and discussed control problems.

While some interesting techniques and results have been presented
in the above-mentioned publications, the control of such systems still
remains an open problem. For example, most of the control schemes
mentioned above either failed to provide a thorough analysis of the
overall system stability or assumed that gravitation forces do not
act on the passive joints. Furthermore, the precise knowledge of the
dynamic model is generally required except in [5] and [12]. However,
the schemes in [5] and [12] suffer their own drawbacks. For example,
the scheme in [5] needs inverse matrix calculations, and the scheme
in [12] can only stabilize the system to a manifold.
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In this correspondence, a robust nonlinear control law is derived
for underactuated robots based on the variable structure theory [16].
More specifically, the results given in [13] and [14] are extended to
the underactuated case. The proposed scheme keeps the advantages
of [12] and [13]: the uncertainty bounds, needed to design the control
law and to prove the global asymptotic stability, depend only on the
inertia parameters. As a result, precise bounds on the uncertainty
can easily be computed. Stability analysis shows that the closed-loop
system is global asymptotic stable.

II. UNDERACTUATED ROBOT DYNAMICS

The dynamic model of a mechanical system (robot) can be written
as

M(qqq)�qqq +B(qqq; _qqq)_qqq +G(qqq) = Tuuu (1)

where qqq 2 Rn is the generalized coordinates (joint positions);
D(qqq) 2 Rn�n is the inertia matrix; vectorB(qqq, _qqq)_qqq 2 Rn presents
the centripetal, Coriolis forces;G(qqq) represents the gravitational
forces; T is an input transformation matrix; anduuu 2 Rn is the
vector of applied joint torques. The dynamic equation has a structure
property: the matrix[ _M(qqq) � 2B(qqq; _qqq)] is skew symmetric with a
suitable definition ofB(qqq; _qqq).

If only m joints are equipped with actuators, vectorqqq can be
partitioned without loss of generality as(qqq

a
; qqq

u
), whereqqq

a
2 Rm

represents the actuated joints, whileqqq
u
2 R(n�m) represents the

unactuated ones. The dynamic model (1) is then written as

Maa(qqq) Mau(qqq)

Mua(qqq) Muu(qqq)

�qqq
a

�qqq
u

+
baa(qqq; _qqq) bau(qqq; _qqq)

bua(qqq; _qqq) buu(qqq; _qqq)

_qqq
a

_qqq
u

+
GGGa(qqq)

GGGu(qqq)
=

uuua
0

(2)

and, in particular, the dynamic equation relative to the unactuated
joints is

[Mua(qqq) Muu(qqq)]
�qqq
a

�qqq
u

+ [bua(qqq; _qqq) buu(qqq; _qqq)]
_qqq
a

_qqq
u

+GGGu(qqq) = 0: (3)

We note that the structure property still holds for (2).
From (2) we can see that the robot system hasn generalized

coordinates, but onlym control inputs. No input term explicitly
appears in (3), which may thus be interpreted as an(n � m)-
dimensional constraints involving generalized coordinates as well as
their first and second time derivatives.

III. CONTROLLER DESIGN

The control objective can be specified as: given desiredqqq
d
; _qqq

d
,

and �qqq
d
, which are assumed to be bounded and should satisfy the

constraint equation (3), determine a control law foruuua such thatqqq
asymptotically converge toqqq

d
. However, for givenqqq

d
, the constraint

equation (3) may not be verifiable since the parameters are unknown.
In this correspondence, we will only focus our attention on the
set-point control (global regulation) problem (i.e.,_qqq

d
= 0).

To achieve the above regulation objective, we denoteqqqT
d

=
[qqqT
ad

qqqT
ud

]T , and define

eee =
eeea
eeeu

=
qqq
a
� qqq

ad

qqq
u
� qqq

ud

(4)
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_qqqr =
_qqqar
_qqqur

=
��aeeea
��ueeeu

(5)

sss = _qqq � _qqqr =
_qqqa � _qqqar
_qqqu � _qqqur

=
sssa
sssu

(6)

where�a > 0 and�u > 0 are design parameters. Then, using (2),
the dynamics in terms of the newly defined signalssssa and sssu can
be derived as

Maa(qqq) Mau(qqq)

Mua(qqq) Muu(qqq)

_sssa
_sssu

+
baa(qqq; _qqq) bau(qqq; _qqq)

bua(qqq; _qqq) buu(qqq; _qqq)

sssa
sssu

=
uuua + uuur
uuuf

(7)

where

uuur =�Maa(qqq)�qqqar �Mua(qqq)�qqqur � baa(qqq; _qqq)_qqqar

� bau(qqq; _qqq)_qqqur �Ga(qqq)

uuuf = �Mua(qqq)�qqqar �Muu(qqq)�qqqur � bua(qqq; _qqq)_qqqar

� buu(qqq; _qqq)_qqqur �Gu(qqq):

Based on the well-known linear-in-parameter property, the nonlin-
ear terms, such asMaa(qqq); bau(qqq; _qqq), andGa(qqq), can be expressed
as a product of aknownmatrix and an unknown parameter vector.
Therefore, one has

uuur = �Maa(qqq)�qqqar �Mua(qqq)�qqqur � baa(qqq; _qqq)_qqqar

� bau(qqq; _qqq)_qqqur �Ga(qqq)

= �r(qqq; _qqq; �qqqar; �qqqur; _qqqar; _qqqur)�r (8)

uuuf = �Mua(qqq)�qqqar �Muu(qqq)�qqqur � bua(qqq; _qqq)_qqqar

� buu(qqq; _qqq)_qqqur �Gu(qqq)

= �f(qqq; _qqq; �qqqar; �qqqur; _qqqar; _qqqur)�f (9)

where �r 2 Rp1 and �f 2 Rp2 are constant vectors of inertia
parameters;�r 2 Rm�p1 and �f 2 R(n�m)�p2 are matrices of
known functions of the generalized coordinates and their velocities,
known as the regressors.

Then, (7) can be written as

M(qqq)_sss+B(qqq; _qqq)sss =
uuua +�r�r

�f�f
: (10)

We supposed only that the parameter vectors�r and �f are
uncertain, by which we mean that there exist�r 2 R+ and�f 2 R+,
both known, such that

k�rk � �r ; k�fk � �f (11)

where the norm of vectorx, throughout, is defined askxk =
n

i=1 jxij, and that of matrixA is defined as the corresponding
induced norm.

With the above in mind, a regressor based adaptive variable
structure set-point control law is defined as

uuua =�Kasssa � �r�r sgn sssTa�r

T

� uuuc (12)

uuuc =
(1 + k)sssa
ksssak2 + �

�f sssTu�f + sssTuKusssu (13)

_k =

�

k

kksssak
2 � �1

ksssak2 + �

�f sssTu�f + sssTuKusssu ; if k 6= 0

�; if k = 0

(14)

where
Ka 2 Rm�m and Ku 2 R(n�m)�(n�m) are positive definite

(diagonal) matrices;� > 0 and�1 > 0 are small constants, satisfying

� < �1; and � > 0 is a constant, determining the rate of the
adaptations.

The system formed by (2) and (12)–(14) is discontinuous. In such
a case, the solution concept for the closed-loop system is in the sense
of Filippov [18].

It is important to point out that the direct application of discon-
tinuous control in mechanical systems is almost always impractical
since the effects of switching forces on the actuators and gear trains
can be destructive. Thus, in real systems, the control discontinuity is
smoothed [19] so that the system trajectory moves to a neighborhood
of the approximate discontinuity. The study of the idealized discon-
tinuous control scheme, however, gives a clear picture of the salient
properties of the system dynamics.

The following theorem can then be stated.
Theorem 1: If the variable structure control law given by

(12)–(14) is applied to the underactuated robots (2), then in the
closed-loop system,limt!1 qqq(t) = qqqd.

Proof: By denotingKs = diag(Ka Ku), and adding a term
Kssss to both sides of (10), one has

M(qqq)_sss+B(qqq; _qqq)sss+Kssss =
uuua +�r�r +Kasssa

�f�f +Kusssu
: (15)

Let us consider the positive function

V = 1
2
sssTM(qqq)sss+ 1

2
k2=�: (16)

A simple calculation shows that along solutions of (15)

_V =sssT 1
2
_M �B sss

+ sssT �Kssss+
uuua + �r�r +Kasssa

�f�f +Kusssu
+ k _k=�

=�sssTKssss+ k _k=� + sssTa sssTu

�
�r�r � �r�r sgn sssTa�r

T
� uuuc

�f�f +Kusssu
+ k _k=�

� � sssTKssss+ k�rk sssTa�r � �r sssTa�r � sssTa uuuc

+ sssTu�f�f + sssTuKusssu + k _k=�

� � sssTKssss� sssTauuuc + k�fk sssTu�f + sssTuKusssu + k _k=� (17)

where the identitysssT ( 1
2

_M �B)sss = 0 has been used to derive (17).
Using (13) and (14) it can easily be verified that

�sssTa uuuc + sssTuKusssu + k _k=�

=
1

ksssak2 + �
�(1 + k)�fksssak

2 sssTu�f

+ (kksssak
2 � �1)�f sssTu�f + (� � �1)sss

T
uKusssu

�
1

ksssak2 + �
��fksssak

2 sssTu�f � �1�f sssTu�f : (18)

Substituting (18) into (17), one obtains

_V � � sssTKssss+
1

ksssak2 + �
��fksssak

2 sssTu�f � �1�f sssTu�f

+ k�fkksssak
2 sssTu�f + �k�fk sssTu�f

� �sssTKssss: (19)

This shows thatsss 2 Ln
2 \ Ln

1 and k 2 L1. Combining this
fact and the fact that_sss 2 Ln

1 from (15), we can directly infer
that limt!1 sss(t) = 0 via Barbalat’s Lemma, which implies that
limt!1 qqq(t) = qqqd(t) from the standard stable filter theory. This
concludes our proof.
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Remarks: 1) The control law is, in a simple fashion, only related
to the bounds of the inertia parameters�r and�f . So, the parameter
variations in the plant can be taken into account easily. Similar to
[13] and [14], we may assign different gains to the components ofuuua
to avoid using only�r and�f which may lead to overly conservative
design. Then, the gain condition (11) becomes

j�rij � �ri; j�fij � �fi (20)

and theith component of the control inputuuua becomes

uuuai =�[Kasssa]i � �ri

p1

j=1

[�r]ij sgn sssTa�r

T

j
� uuuci (21)

uuuci =
(1 + k)sssai
ksssak2 + �

p2

i=1

�fi

n�m

j=1

sssuj [�f ]ji + sssTuKusssu (22)

_k =

�

k

kksssak
2 � �1

ksssak2 + �

p2

i=1

�fi

n�m

j=1

sssuj [�f ]ji + sssTuKusssu ; if k 6= 0

�; if k = 0:

(23)

In this case, it can still be shown that_V � �sssTKssss; therefore,
limt!1 qqq(t) = qqqd(t).

2) The control law given above is discontinuous and needs to
be smoothed for implementation. As usual, we can replace signum
nonlinearity by a saturation nonlinearity, which is specified as

sat(s=�) =
sgn(s); if jsj > �
s=�; if jsj � �

where� is boundary layer thickness. With this boundary layer, the
adaptive variable structure control law given by (12)–(14) becomes

uuua = �Kasssa � �r�r sat sssTa�r=�
T

� uuuc (24)

uuuc =
(1 + k)sssa
ksssak2 + �

�f sssTu�f + sssTuKusssu (25)

_k =

�

k

kksssak
2 � �1

ksssak2 + �
�f sssTu�f + sssTuKusssu ; if k 6= 0

�; if k = 0:

(26)

Such a smooth method generally leads to the conclusion that the
regulation error is globally uniformly ultimately bounded. However,
for this proposed algorithm, the proof of the boundedness of the
regulation error seems not to be straightforward and still needs further
investigation. We have conducted extensive simulation studies using
two link underactuated manipulator as an example (see the next
section), and the simulation results indeed confirm the boundedness
of the smoothed algorithm.

IV. EXAMPLE: THE TWO-LINK MANIPULATOR

In this section, the developed method is applied to a two-link
manipulator with rotational joints in a horizontal plane. Suppose that
the first joint is actuated while the second is not. The equation of
motion for this system can be written in the following form:

maa(qqq) mau(qqq)

mua(qqq) muu(qqq)

�q1
�q2

+
h _q2 h( _q1 + _q2)

�h _q1 0
_q1
_q2

+
Ga

Gu
=

u1
0

(27)

with

maa = m2l
2

c2 + I2

mau = mua = m2(l
2

c2 + l1lc2 cos q2) + I2

muu = m1l
2

c1 +m2(l
2

1 + l2c2 + 2l1lc2 cos q2) + I1 + I2

h = �m2l1lc2 sin q2

Ga = (m1lc1 +m2l1)g cos q1 +m2lc2g cos(q1 + q2)

Gu = m2lc2 cos(q1 + q2): (28)

Denoteqa = q1 andqu = q2. If qad is the desired position forq1,
the choice of the desired positionqud for q2 is not independent. It
should satisfy the constrained equation

mau�q1 +muu�q2 � h _q1 +Gu = 0: (29)

In this example, as an illustration, we simply steer the robot from an
initial position qqqo = (qoa; q

o
u) to a given positionqqqd = (qad; qud),

with initial and final zero velocity. Then, (29) leads tocos(q1+q2) =
0, which implies that given a particularq1d, the correspondingq2d
can be calculated.

The unknown parameters�r and�f are chosen as

�r =

m1l
2

c1 +m2l
2

1 + I1
m2l

2

c2 + I2
m2l1lc2
m1lc1
m2l1
m2lc2

�f =
m2l

2

c2 + I2
m2l1lc2
m2lc2

(30)

which lead to regressor matrices

�T
r =

��qar
��qar � �qur

�2�qar cos q2 � �qur cos q2 + _q2 _qar sin q2 + ( _q1 + _q2) _qur sin q2
�g cos q1
�g cos q1

�g cos(q1 + q2)

(31)

�T
f =

��qar � �qur
��qar cos q2 � _q1 _qar sin q2

�g cos(q1 + q2)
: (32)

The true values for �r and �f are �Tr =
[8:33 1:67 2:5 5 5 2:5] and �Tf = [1:67 2:5 2:5].
Thus, we choose�r = 30 and �f = 8.

The desired(qad; qud) are chosen as(qad; qud) = (�90�; 0�),
and the initial positions and velocities of the robot are chosen as

_qa(0) = _qu(0) = 0

qa(0) = 70�

qu(0) = 20�:

Ignoring any friction and attenuation effects, the smoothed control
algorithm was tested using Simulink. Therein, the boundary layer�
is chosen as� = 0:1.

The task was to bring the manipulator to�90� position for
joint 1 and 0� for joint 2. The results for two controllers with
slightly different parameters are presented in Figs. 1 and 2. The
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Fig. 1. Joint errors with the control parametersqad = �90�; qud = 0�;
�a1 = 0:2; �u1 = 250; �a2 = 10; �u2 = 0:5Ka = 20I; Ku = 40I;

� = 0:00001; �1 = 0:75; � = 0:1; �r = 30; �f = 8.

Fig. 2. Joint errors with the control parametersqad = �90�; qud = 0�;

�a1 = 0:2; �u1 = 75; �a2 = 0:5; �u2 = 0:5Ka = 20I; Ku = 40I;
� = 0:00001; �1 = 0:75; � = 0:1; �r = 30; �f = 8.

figures show the versatility of the control algorithm. From Figs. 1
and 2, we see that selection of controller parameters can affect the
system performance. Unfortunately, there is no systematic approach
for the selection of these values. They must be chosen using iterative
simulations, and a tradeoff between system response and control gains
should be made.

V. CONCLUSION

A regressor-based adaptive variable structure control algorithm
has been proposed for unactuated mechanical systems, in the case
of arbitrary uncertain inertia parameters. The controller ensures
the global regulation and the switching gains depend only on the
inertia parameters of the mechanical system. Simulation results were
presented to demonstrate the regulation performance of the closed-
loop system.
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