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(6.4) is relatively easy and only lower dimensional matrix computa-
tions are involved.

2) Step 2 and Step 4 can be implemented simultaneously, which
makes the algorithm attractive for parallel implementation.

VII. CONCLUSION

The notion of partial eigenstructure assignment (PEA), which is a
natural extension of eigenstructure assignment and partial eigen-
value assignment, for linear multivariable systems has been intro-
duced. Theoretical basis for PEA has been presented. Algorithms
both for PEA and for eigenstructure assignment have been devel-
oped and analyzed. These algorithms have been shown to be espe-
cially effective for large scale system applications.

REFERENCES

[1] W. L. Brogan, Modern Control Theory. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

2] H. Kimura, ‘‘Pole assignment by gain output feedback,”” IEEE
Trans. Automat. Contr., vol. AC-20, pp. 509-516, Aug. 1975.

[3] B. C. Moore, ‘‘On the flexibility offered by state-feedback in multi-
variable systems beyond closed eigenvalue assignment,”’ IEEE Trans.
Automat. Contr', vol. AC-21, pp. 689-692, Oct. 1976.

[4] G. Klein and B. C. Moore, ‘‘Eigenvalue-generalized eigenvector
assignment with state feedback,”” IEEE Trans. Automat. Contr.,
vol. AC-22, pp. 140-141, Feb. 1977.

[5] V. Sinswat and F. Fallside, ‘‘Eigenvalue /eigenvector assignment by
state-feedback,”” Int. J. Contr., vol. 26, no. 3, pp. 369-403, 1977.

[6] B. Porter and J. J. D’Azzo, ‘‘Closed-loop eigenstructure assignment
by state feedback in multivariable linear systems,”” Int. J. Contr.,
vol. 27, no. 3, pp. 487-492, 1978.

{71 M. M. Fahmy and J. O’Reilly, “On ructure nt in
linear multivariable systems,’’ IEEE Trans. Automat. Contr., vol.
AC-27, pp. 690-693, June 1982.

[8] ——, ““Eigenstructure assignment in linear multivariable systems—A
parametric solution,”” IEEE Trans. Automat. Contr., vol. AC-28,
pp. 990-993, Oct. 1983.

[9] G. Roppeneck, ‘‘Minimum norm output feedback design under spe-
cific eigenvalue areas,”” Syst. Contr. Lett., vol. 3, pp. 101-103,

1983.

[10] ——, “‘On parametric state feedback design,”’ Int. J. Contr., vol.
43, no. 3, pp. 793-804, 1986.

[11] M. M. Hassan and M. H. Amin, ‘‘Recursive eigenvalue assignment

in linear system,”’ Int. J. Contr., vol. 45, no. 1, pp. 291-310,
1987.

M. A. Khan and N. Sreenivasulu, ‘‘A systematic method for eigen-
structure assignment and application to response shaping,”” Int. J.
Contr., vol. 43, no. 2, pp. 717-735, 1986.

J. W. Howze and' R. K. Cavin, III, ‘‘Regular design with modal
insensitivity,”” IEEE Trans. Automat. Contr., vol. AC-24, pp.
466-469, Oct. 1979.

M. M. Fahmy and J. O’Reilly, ‘“Use of the design freedom of
time-optimal control,”” Syst. Contr. Lett., vol. 3, pp. 23-30, 1983.
Y. Saad, “‘Projection and deflation methods for partial pole assign-
ment in linear state feedback,”’” IEEE Trans. Automat. Contr., vol.
33, pp. 290-296, Mar. 1988.

M. J. Balas, ‘“Trends in large structure control theory: Fondest
dreams, widest hopes,’’ IEEE Trans. Automat. Contr.,vol. AC-27,
pp. 522-535, Oct. 1982.

G. H. Golub and D. F. Vanloan, Matrix Computation.
MD: Johns Hopkins University Press, 1989.

Ami Arbel, ‘‘Controllability measures and actuator placement in
oscillatory systems,’” Int. J. Contr., vol. 33, no. 3, pp. 565-574,
1980.

R. Fletcher, Practical Method of Optimization, Vol. 2. New
York: Wiley, 1987.

J. E. Dennis, Jr., Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Englewood Cliffs, NJ: Pren-
tice-Hall, 1983.

J. J. More, B. S. Garbow, and K. E. Hillstorm, User Guide for
Minpack-1.

(12}

[13]

[14]

[15]

[16]

(17} Baltimore,

[18]

[19]
[201

[21]

347

An Adaptive Variable Structure Model
Following Control Design for Robot
Manipulators

Tin-Pui Leung, Qi-Jie Zhou, and Chun-Yi Su

Abstract—An adaptive variable structure model following control

ign is pr ted for the li robot manipulator system. The
controller does not require any knowledge of a nonlinear robotic system
and does not necessarily need the occurrence of a sliding mode at each
individually stable discontinuity surface. It thus greatly reduces the
complexity of design. In the closed loop, the joint angles asymptotically
converge to the reference trajectory with a prescribed transient response.
The problem of chattering is reduced by the introduction of a boundary
layer.

A

I. INTRODUCTION

Adaptive model following control (AMFC) methodologies have
recently received great attention in the robot manipulator control
design (see, e.g., [1] for a recent review). Among developed
AMFC algorithms, several approaches have been considered. Some
use the Lyapunov stability method [2], [3], others do use the
hyperstability theory [4], [5], and the deterministic approach [6],
[7]. But the strict positive realness is invariably required. Further-
more, some of them can only guarantee the error between the states
of the model and those of the controlled plant going to zero, the
transient behavior of this error is not prescribed. A variable struc-
ture model following control (VSMFC) was proposed in [8], [9] as
an alternative to adaptive model following control. The advantage of
the VSMFC design lies in its ability to prescribe transient response
requirements as well as providing a robust controller. But the
control law, resulting from the method of control hierarchy [11] in
order to force every trajectory to eventually come in contact with
and remain on the intersection of n surfaces in joint space, is
defined implicitly by a set of fairly complicated algebraic inequali-
ties. Moreover, the control law is based on the restrictive assump-
tion that the ranges of the variation of parameters are known and
that the resulting control torques are excessive.

In this note, an adaptive variable structure model following
control (AVSMFC) design is proposed for accomplishing trajectory
tracking in a nonlinear robot system which ensures the stability of
the intersection of the surfaces without necessarily stabilizing each
individual one. Moreover, unlike [8], [9], we assume here that the
system matrix is completely unknown and no information on its
possible size is given. This has important implications. The involved
computations of [8], [9] to obtain the feedback gains are not
required here, instead, the feedback elements are generated as a
function of state of the dynamics and the trajectory error. The
approach avoids the difficulties linked to the strict positive realness
requirement in traditional AMFC by taking advantage of the inher-
ent positive definiteness of manipulators inertia matrix, and is easily
extendable to a higher number of links. Chattering is eliminated by
restricting the state of the system to slide within a boundary layer
rather than along the intersection of the surfaces.

II. RoBoTIC SYSTEM
A. Manipulator Model

The dynamic equations of motion for a general rigid link manipu-
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lator having n degrees of freedom can be described as follows:
D(q)d + F(q,4)4 + G(q) = u(?) (1)

where geR” is joint displacement, # € R" is applied joint torque
(or forces), D(q) = D"(q) >0, D(q)eR"™ " is the inertia ma-
trix, F(q,d)geR" is the centripetal and Coriolis torques, and
G(q)eR" is the gravitational torque.

Defining x € R*” to be the state vector

y= q
al
Equation (1) can be written in a state variable form

. P o
T [D'l(q)(—F(q,d)q - G(q))] + [D*I(q)]“ (2a)

- [21 /‘{2]x+ [gl]u (2b)

= Ax + Bu. (2¢)

In AMFC design, the desired behavior of the plant is expressed
through the use of a reference model driven by a reference model of

the form
dlaa] _[ o I [am] |0 ]r
dt QM B Aml Am2 qm Bml

=A,x, +B,r

(32)
(3b)

where x, = (g7 ¢T)TeR?, A,eR**?", B, eR*"*" are
constant matrices, ¥ €[R” is an external input.

B. AVSMFC Law

The considered tracking problem is stated as follows.

Knowing a reference input r, determine a control law u and a
sliding surface such that sliding mode occurs on the sliding surface,
the tracking error e = x,, — x€R?" has a prescribed transient
response and it goes to zero asymptotically as ¢ — oo,

We define the sliding surface s € R" as a hyperplane

s=Ge=0

“)
where G €[R"*?" is a constant matrix and will be determined as
follows.

Let e= (7 €N, e=gq,,—q, é=4q,, — 4, then the sliding
hyperplane becomes

s(e,¢) = Ge= (G, G))e=G,e+G,é=0. (5)

Without losing generality, suppose G, €R”*" is nonsingular. If
the sliding mode exists on s = 0, then from the theory of variable
structure system [10], the sliding mode is governed by the following
linear differential equation whose behavior is dictated by the sliding
hyperplane design matrices G, and G,

-G5'Gye. (6)

Obviously, the tracking error transient response is then determined
entirely by the eigenvector structure of the matrix —Gj 'G,. The
approach of the determination of G,, G, that ¢ has desired property
is given in [11], [12]. Thus, if the control law is designed such that
the sliding mode exists on s = 0, the tracking error transient
response is completely governed by the linear dynamic equation (6).

In order to derive the AVSMFC law, we require the following
assumption.

Assumption Al: For all (x, t) e R?" x R}, satisfy

€ =

(I1-BB*)B, =0

(72)
(76)

(I-BB*)(4,-A4)=0
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(7c)

(I-BB*)(A,+A,) =0
where
0 -1

Ay = G;'G, (I+6G;'G))

(8)
and B* is pseudo inverse of B givenby B*=[0 B;'l
Remark: We refer to (7a)-(7¢) as matching conditions, which
can always be satisfied due to the special structures of B, B,,, A,
A, A,, and B*.
Define the AVSMFC law as the following:
u=Kx+K,r+Kse+ ¥ x+y,r+yse 9)

where k, eR"*2", K,eR"*", K,€R"*?" are constant matrices,

¥, R, ¥, eR™*", Y5 € R™*2" are discontinuous matrices.
Differentiating s with respect to time gives sliding mode equation

§= Ge
= G(A,x,, + B,r — Ax — Bu)

G(A(x—xp,) + (A, +A4,)x,

+B,r— (A+A,)x — Bu)

= -5+ GB[B* (A, - A) - K, - ¥\)x
+(B*B,, — K, — ¥,)r
+(B* (A, +A,) - Ky — ¥3)e]. (10)

Remark: The role of A, is twofold. First, it satisfies G = GA,,
which makes it possible to use the Lyapunov function. Second, the
matching condition (7c) can be satisfied.

We assume that the following condition is satisfied for all g, §.

Assumption A2:

It

(11a)

0<B8, =GB =B,<0

3
IB* (A, - A4) - Kl < ;af||81|i" (11b)

(11c)

| B*B,, — K[l <oy

”B+(Am+An) —K3I|<Ol5 (lld)

where «; > 0, B; > 0 are some positive numbers.

Remark: Due to the mechanical characteristics of robotic manip-
ulators and the boundness of the reference model, the assumption is
valid.

We also make the following assumption.

Assumption A3: The minimum eigenvalue of matrix G, B,GY
satisfies

(12)

Remark: Assumption A3 can always be held for suitable 5.
Now consider the control law (9), if we take ¥; as

Nnin(GzBlczT) = B

2 2 i-1 Gsz T
v = Z:lcilleﬂ Tsngn(x) sl #0 (13a)
0 sl =0
Gls
R |||l =0
e T M R )
0
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.85 ()" lsl=0
Y3 = sgnie 13c
5= | “Tsl Isll = 0 (13¢)
0
. . 2n
=gllel sl %], i=1,23 (i4a)
i=1
n
&= aulsl X 1l (14b)

2n

s = gsll sl Zl lel (14c)
i=

where g; >0, i = 1+ 5 are arbitrary constant numbers.

We have the following theorem.

Theorem: Consider robotic system (1) with sliding surface (4)
and control laws (9), (13), (14), satisfying Assumptions Al, A2,
and A3, then the tracking error e converges to the sliding surface
and is restricted to the surface for all subsequent times.

Proof: Consider the following Lyapunov function:

Vs) = 2o+ 2 {z(c—c)/g,}m (1)

where c; are numbers satisfying ¢; = «;8, /8, and & is its estima-
tion.
Differentiating V(s) with respect to time ¢ and using (10)-(14),
we can observe that
(3102316275) = Mn(GzBlcg) s

then yields
5 -
H0 =7+ | £ (- ) (-4)/a ),

—sTs + s7(G,B,)[(B* (A, - A) - K))x
+(B*B,, - K,)r + (B*(4, +A,,,) - K)e]

—_— sgn

—sT(GzBl){ Za:ej"e"i !
= || \l

(x)7x
— sgn

|Il| llll ()}

3 2n
- Zl(cj_ &)lel’~ sl E] | x| By
Jj= i=

+L‘5

+C4 sgn (7 )
n 2n
— (e - 6a)"s"‘Z |r:] 8, = (s = és)”‘"X:l le;l B
p iz
S—STS+||S||322 a,llel’~ 1lel
e
n 2n
+ "S||52°‘4X:l Iril + sl Bsees 2 | e
i= i=1
3 . 2n n
- lsle X "j"e“F1 POREARS sl Bies - |74
j=1 i=1 i=1
2n 3 ) 2n
- “s"ﬁlcszl‘eil + Zlej”eukl"s”ZJxAﬁl
i= j= i=

n 2n
+64"s"§:1"i131 +65"s”;|ei|31

= Muin(G2B1GY)
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ZCIIeI’ 1IISIIZ B

Jj=1
n 2n
+?4IIS!IZl|r.-I +65"s"zliei|
i= i=

= —-sTs<0.

Hence, the theorem is proved.

This, in turn, implies that ¢ = q,,, 4 = ¢, as ¢ = . Hence,
the AVSMFC defined by (9), (13), and (14) is globally asymptoti-
cally stable and guarantees zero tracking error.

Remark:

1) In the theorem, we avoid the difficulties linked to the strict
positive realness requirement in traditional AMFC by taking advan-
tage of the inherent positive definiteness of the manipulators’ inertia
matrix.

2) The matrices K; can be chosen in such a way so as to reduce
the lower bounds on «;,. This, in turn, reduces the magnitudes of c;.
Consequently, the energy required by the adaption mechanism in
generation ¥; is minimized.

C. Insertion of the Boundary Layer

While assuring the desired behavior, the control law (9) is
discontinuous across the sliding surface s, which leads to control
chattering. Chattering is, in general, highly undesirable in practice,
since it involves extremely high control activity and, further, may
excite high-frequency dynamics neglected during modeling [13]. We
can remedy this situation by smoothing out the control discontinu-
ities in a boundary layer neighboring the sliding surface.

Consider the vector 8 = (8, &8, &;) where 8,>0 for i=
1,2, 3. Let us replace y; in (13) by ,(5) where

T
21 el g e ()7 i lsl >,
i=
h=|" GTe (162)
i—1 U2 T .
Z e|"! sgn (x) if ||s)| <&
" || Sgn( )T it sl > 6,
¥y = e (16b)
g—sgn(r)" iflsl=s,
8,
78 T
Esn sgn (e) if ||s|| > 85
s
¥y = GTs (16c)
65—;—sgn(e)r if ||s]] < 85.
3

By applying the AVSMFC laws (9), (16), (14), we will guarantee
the attractiveness of the boundary layer. For the region inside the
boundaries, it can be proved that this will guarantee the ultimate
boundedness of the system to within any neighborhood of the
boundary layer [14].

III. SIMULATION EXAMPLE
Fig. 1 shows a 2-link robotic manipulator model used by [15].
The dynamic equation is given by
[D11(¢) Dy,(9) Fi3(9)¢* + 2F(9)06
Dy(¢) Dy(9) —Fyy(¢)67
u
+[ ] + [u;] (17)

[]-

a.(0,¢)g
a,(0,9)g
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y
9
m2
"2
o~
r
1 my
[ x
0
Fig. 1. Two-link robotic manipulator model.

where
Dy(8) = (my + my)r} + myr} + 2myr ry cos (6) + J,
Dy, (¢) = myr + myrirycos (¢)
Dy (¢) = myr3 + J,
F,(¢) = myr rysin(¢)
q,(6,9) = —((m, + my)r, cos (¢) + myr,cos (¢ + 9))
a,(8,0) = —myrycos (6 + ¢). (18)

The parameter values used are the same as those in [15].

ry=1m, r,=08m
Ji=5kg ' m, J,=5kg ' m
m, = 0.5kg, m, = 6.25kg.

A reference model is chosen such that the desired behavior of the
arm motion is expressed by two decoupled linear systems

8, = A6, +B,r, =12

ritis

0 1 0
A= [”1:’ azi]’ Bri= I:bi].

We select the following set of reference model parameters:

(19)

where

(20)

) =ap=dy =ay = -1
b,=b,=1.

The rise time and the settling time of the reference model are 1.9 s
and 8 s, respectively. We choose driving inputs to the reference
model to be constants.

The goal of the AVSMFC design is to force the tracking errors
e, =0, —0 and ¢, = 8,, — ¢ to slide along the sliding surfaces.
We choose these sliding surfaces:

S| = €€ + €
1 11%1 .l (21)
8§y = Cr1€5 + €,
where ¢;; = ¢, = 5.
The resulting sliding mode equations are two decoupled first-order

systems
(22)

Since we are interested in trajectory tracking, we consider a
situation characterized by the same initial condition on the reference
model state and on the plant state. For this example, we pick the
initial displacements and velocities to be

orl(to) = 0(’0) = -1.57, 6,2(t0) = ¢(t0) =0
0.1(0) = 6,2(t0) = 6(15) = (t5) = 0. (23)

The K; (i = 1,2,3) in (9) are chosen so as to reduce the lower
bounds of «; in (11). Here, due to the complexity of the matrix A,

€= —ci, i=1,2.

Position of joint one (rad)
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Fig. 2. Time response of joint one.
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Fig. 4. Tracking error of joint one.

we simply choose

_[675 17 75 20
K3‘[17 40 20 45} (24)

we took C,(#,) (i = 1 -+ 5) in control law (14) and reference inputs
as

(o) = &,(1)

&3(1,) = 25, 2,(to) = 10, &s(to) =30 (25)

rp=ry=1. (26)
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Fig. 5. Tracking error of joint two.
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Fig. 6. Sliding surface s;.

0,24
0412
0,
0,08
0,06
0,04
0,02
0,0
-0,02
~0,04
~0,06
-0,08
-0,1
-0,12

Time (sec)
Fig. 7. Sliding surface s,.
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Fig. 8. Torque developed at joint one.
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Fig. 9. Torque developed at joint two.
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Fig. 10. Tracking error of joint one with boundary layer.
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Fig. 11.  Tracking error of joint two with boundary layer.

Using control laws (9), (13), (14), Figs. 2 and 3 show the time
responses. Figs. 4 and 5 show the tracking errors. Figs. 6 and 7
show the sliding surface which imply the AVSMFC law achieves its
objective successfully. Figs. 8 and 9 show torques developed at
manipulator joints which result in undesirable robot chattering.

To reduce the chattering, we will implement the boundary layer
AVSMEFC scheme given in (9), (16), and (14). Here, we took
8, = 8, = 0.05. Figs. 10 and 11 show the tracking errors. Figs. 12
and 13 show sliding sectors. Figs. 14 and 15 show the torques
exerted at manipulator joints. As can be seen from these figures,
chattering is almost eliminated.
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Fig. 15. Torque developed at joint two with boundary layer.

IV. CONCLUSION

An adaptive variable structure model following control design
methodology is presented by using the theory of VSS. The major
contribution of this methodology lies in the introduction of a special
matrix, which makes it possible for using the Lyapunov function
such as V = s7s instead of the requirement s;$; <0, and the
derivation of the VSS controller does not require any knowledge of
nonlinear robotic systems by adaptation of scalar gain. Chattering
during the transient phase can be reduced by using the boundary
layer technique. Simulation results show the good performance of
the robot system.
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