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Finally, we have shown that the above developments can be easily
applied to discrete systems.
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Force /Motion Control of Constrained Robots
Using Sliding Mode

Chun-Yi Su, Tin-Pui Leung, and Qi-Jie Zhou

Abstract—A sliding mode control algorithm is presented for trajec-
tory tracking of an end-effector on a constrained surface with specified
constraint forces by using the theory of variable structure systems. The
development of the algorithm is based on a new formulation of the
dynamic model and the expansion of sliding surfaces to include the
constraint force error. The proposed sliding controller is explicit which
ensures the occurrence of the sliding mode on the intersection of the
surfaces. A detailed numerical example is presented to illustrate the
developed method.

I. INTRODUCTION

In many industrial applications of robots, the robot end-effector is
in contact with a constrained surface. A long list of such applica-
tions could be given, including contour following, deburring, grind-
ing, and assembling. In such cases, the constraint force due to the
contact with the constrained surface has to be taken into considera-
tion. Therein, when the constrained surface is described by a
holonomic smooth manifold, the constraint forces are implicitly
defined as the forces required to satisfy the constraints [1]-[3]. The
control of such systems, as opposed to pure motion control in free
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space, is called constrained robot control [1]. The objective of
constrained robot control is to determine the input torques to
achieve trajectory tracking on the constrained surface with specified
constraint forces.

A number of papers have been presented to address the issues of
the control constrained robot, for example, the nonlinear decoupling
control {4], adaptive control [3], [5], computed torque control [1],
and others [2]. Sliding mode control, as a robust control method,
has been successfully applied to the pure motion control of robot
manipulators [6]. The main feature of sliding mode control is to
allow the sliding mode to occur on a prescribed switching surface,
so that the system is only governed by the sliding equation and
remains insensitive to a class of disturbances and parameter varia-
tions [7]. However, due to the complexity of the control problem of
constrained robots, sliding mode control strategies have not been
adequately developed. Recently, Young [8] has proposed a sliding
mode control scheme for constrained robot motion, however, con-
trol of the constraint force is not included in his approach.

In this note, a sliding control algorithm to achieve trajectory
tracking of an end-effector on the constrained surface with specified
constraint forces is proposed for rigid, nonredundant constrained
robots. By assuming complete knowledge of the constrained sur-
faces, and recognizing that the degrees of freedom of robot manipu-
lators decrease while the end-effector is constrained, a new dynamic
model suitable for motion and constraint force control is derived.
Then by exploiting the particular structure of its dynamics, the
fundamental properties of the dynamics are obtained to facilitate
controller design. Finally, by expanding the dimensions of the
sliding surface to include the constraint force error, a joint space
sliding mode control algorithm is derived, using only the measure-
ments of joint position, velocity, and constraint force.

This note is organized as follows: a new dynamic model of the
constrained robot is derived in Section II; Section III presents the
proposed sliding control algorithm based on the dynamic model
derived. Section IV provides illustrative examples using the pro-
posed approach. In Section V, some conclusions are presented.

II. CONSTRAINED ROBOT DYNAMICS

Based on Euler-Lagrangian formulation, in the absence of fric-
tion, the motion equation of an n-link rigid constrained robot can be
expressed in joint space as [9]

D(q)i+B(q,4)¢+G(q) =u+f (1)

where g€ R" is the vector of joint displacements; #e€R” is the
vector of applied joint torques; feR" is the vector of constraint
forces in joint space. D(q) is the n X n inertia matrix, which is
symmetric and positive definite for each geR"; B(q, §)geR" is
the vector of Coriolis and centrifugal torques; G(g) €R” is the
vector of gravitational torques.

Two simplifying properties should be noted about this dynamic
structure.

Property 1 [10]: The individual terms on the left-hand side of
(10), and therefore the whole dynamics, are linear in terms of a
suitably selected set of equivalent manipulator and load parameters,
ie.,

D(q)d +B(g,4)d+G(a) = Y(q,¢.4)«  (2)
where Y(q, ¢, ¢) is an n X r matrix of known functions of ¢, ¢,
and §; and a € R” is equivalent parameters.

_ Property 2 [11]: Given a proper definition of the matrix B,
D(q) — 2B(q, q) is skew-symmetric.

0018-9286/92%03.00 © 1992 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 5, MAY 1992 669

Let peR" denote the generalized position vector of the end-ef-
fector in Cartesian space. If the constraints imposed are described
by a holonomic smooth manifold, then the algebraic equation for the
constraints can be written as

¢(p) =0 ®3)
where the mapping ¢: R” = R™ is twice continuously differen-

tiable.
Assuming that the vector p can be expressed in joint space by the

relation
p=H(q) 4

where the mapping H: R" — R” is invertible and twice continu-
ously differentiable, then the constrained equation in joint space can
be written as

¥(q) = #(H(q)) =

The Jacobian matrix of the constrained equation (5) is

W 3¢ dH(q)
_aq ap 9dq (6)

which is nonsingular due to the assumption that the robot is nonre-
dundant.

Since Y¥(g) = 0 is identically satisfied, it is evident that Jg = 0.
Thus, the effect of the constraints on the end-effector can be viewed
as restricting the robot dynamics to the manifold Q defined by

= {(g.49): ¥(q) = 0: J(q)¢ = 0}

rather than the space R2”.

When the end-effector is moving along the constrained surface,
the constraint force in joint space is then given by

=J7(g)\

where Ae R™ is the associated Lagrangian multiplier [1], [12].

Since the presence of m constraints causes the manipulator to
lose m degrees of freedom, the manipulator is left with only n — m
degrees of freedom. In this case, n — m lineary independent coor-
dinates are sufficient to characterize the constrained motion. Choos-
ing n — m out of n joint variables, denoted by

PSS LT . (8)

to be the generalized coordinates describes the constrained motion
of the manipulator. The remaining joint variables are denoted by

()

(7)

¢ =[ai

By the implicit function theorem, the constraint equation (5) can
always be expressed explicitly as [1]

7’ =o(q'). (10)
It is assumed that the elements of g' are chosen to be the first
n — m components of g. If this is not the case, (1) can always be

reordered so that the first # — m equation correspond to g' and the
last m equation to g2.

Defining
In—~m
L(q") = | 99(q') (11)
dq'
Then, from (10),
g=1L(q")q" (12)

(13)

G=1L(g")§" +L(q")d".

az]’. )

Therefore, the dynamic model (1) of robots, when restricting to the
constraint surface, can be expressed in a reduced form as

D(q")L(¢")d" + B,(q', ¢")d" + G(q') = u+ J"(g")\
(14)

where B, is defined as B,(q', ¢') = D(g")L(g") +

B(q", " L(g".

Remark: Equation (14) is suitable for control purposes which
forms the basis for the subsequent development. This is because the
equality constraint equations are embedded into the dynamic equa-
tion, resulting in an affine nonlinear system without constraints. '

By exploiting the structure of the equation (14), three properties
could be obtained.

Property 3: Motion equation (14) is still linear in terms of a
suitably selected set of parameters, i.e.,

D(q')L(q"')¢" + B\(d", ¢")d"' + G(q") = Yi(4". ¢", §")
This property can easily be proved from the derivation of Prop-
erty 1 given in [9], [10].
Property 4: Define the matnx A(g") = LT(g")D(q! )L(q ),

then A(q )y —2L7(q! VB, (g, ¢") is skew Symmetric.
Proof: A — 2L'B, = LTDL + L'DL + L'DL - 2L7B,

=I7(D - 2B)L.

From the knowledge of Property 2 that D - 2B is skew- -symmet-
tic, it is easy to know that A — 2L7B, is also skew-symmetric.
Property 5:

J(a')L(q') = L7(a") I 7(d") = 0.
This property can also be proved by premultiplying (12) by
J(g"), using Jg = 0, and noting that g" is linearly independent.
The above properties are fundamental for designing the force /mo-
tion sliding control laws.

II. SLIDING CONTROLLER FOR CONSTRAINED ROBOT

In this section, a general tracking problem for constrained robots
is considered. The objective of the control is that given a desired
joint trajectory g, and desired constraint force f,, or identically
desired multiplier A,, which satisfy the imposed constraints, i.e.,
¥(g,) = 0 and f, = JT(g )\, to determine a sliding control law
such that for all (g(0), ¢(0) €, that ¢ > g,, and f—f, as
t— o0,

It should be noted that, since g2 = o(g!), it is only required to
find a sliding control law to satisfy g' — g as ¢ = oo.

Defining

en=4q'(2) — ay(t)
o= [ (-t ar

(15)
(16)

‘ir‘ = qui —Ae, - Ase,

(17)
where e, is the tracking error; e, is the accumulated force error;
g! is the reference trajectory; A, and A, are tunable matrices.
Defining o« as a constant r-dimensional vector, containing the
unknown elements in the suitably selected set of equivalent dynamic
parameters, then the linear parametrizability of the dynamics (Prop-
erty 3) leads to
DLG; + Big; + G = Y,(q", 4", 4;, G})

(18)

- where Y,(g', ¢', 4}, 4!) is an n X r matrix of known functions of

q', ¢, 4;, and §}.
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The sliding surface is defined as
s;=4"' - gl =¢é,+ Aje, + Ase,. (19)
The sliding controller is defined as
u=Y(q".4" 4. 4)e - L(g")s, - J(a' )N, (20)

where Y; is defined in (18), L is defined in (11), and ¢ = {¢| ---
<p,]T is the switching function designed according to the variable
structure theory [7] as explained below.

Based on the sliding surface (19), using (14), (18), (19), (20), and
after some calculations, the following is obtained:

DLs, = Y,¢ — Yia — B;s; — Ls; - JT(A = \,).
According to Property 5, the above equation becomes
A$, = L'DL$, = L"Y,¢ — LTY,a — L"B;s, — L'Ls,. (21)

To derive the control algorithm, the generalized Lyapunov func-
tion is considered

(22)

Differentiating ¥ with respect to time and using Property 4 yields

V = 1s]As,.

V= L(5TAs, + s{As, + s{A$;)
= sTA$, + sTLTB,s,
=s{(L"Y,p — LTY,a — L"B;s, — L'Ls|) + s{L"B;s,
=sT(L"Y,0 ~ LTY,a = L'Ls,). (23)

Choosing
n—m
(P1=—&1sgn( lelj(LTYl)/,'); i=1,-,r (24)
j=

where &, > | &;], Vi, gives the result

n—m

> slj(LTYl)ji

r
V=—-sTLTLs, - > &,
i=1 Jj=1

n—m

> si;(L7Y)) 5

J

r
_Z“i
i=1

= sTL7Ls; < 0.

(25)
From (22) and (25), it is evident that | s,|| at least converges
exponentially to zero, i.e., e,, 20, and e,~ 0 as ¢ — . Also
g% = o(ql), which implies that ¢*> — g7 if ¢' — g}, therefore, we
propose the following theorem.

Theorem.: Consider the robot system described by (1), using
control law (20) and (24). The closed-loop system is globally
asymptotically stable in the sense that

474,
Nind P
for any (g(0), ¢(0)) e Q.

The following remarks should be noted.

In the theorem, the control law is related to the parameter bounds
in a simple fashion so that the parameter variations in the plant can
be taken into account easily.

Since the control law is discontinuous across the sliding surface,
such a control law leads to control chattering. Chattering is undesir-
able in practice because it involves high control activity and further
may excite high frequency dynamics which was neglected in the

as t— o

as { — @

course of modeling. This can be remedied by approximating these
discontinuous control laws by continuous ones inside the boundary
layer [13]. To do this, the sgn(*) in (24) is replaced by sat(-/e),
where ¢ is the boundary layer thickness. This leads to tracking to
within a guaranteed precision.

IV. SIMULATED EXAMPLE

A two-link robotic manipulator with a circular path constraint, as
given in [8], is used to verify the validity of the control approach
outlined in this note. The matrices of the original model, in the form
of (1), can be written as

a+fB+2ncosqg, B+ncosqg
D(q) — 2 2
B + ncos g, 8
. —ng,sing, —n(qg; +g,)sing
B(q,q) - ' 2‘ 2 ( 1 2) 2
n4g, sin g, 0

ae, cos g, + ne; cos (g, + q,)
ney cos (g + ;)

G(q) = [

where e, = g/l,, g is acceleration of gravity; and the three
unknown parameters «, (3, and 5 are functions of the unknown
physical parameters

a=(m +m)l
B =myl;
1 =m,ll,.

The constraint is a circle in the work space (the x-y plane) whose
center coincides with the axis of rotation of the first link. Fig. 1
depicts the two-link manipulator and the constraint. The constraint
surface is expressed mathematically as

o(p)=x2+y*-r?=0, P=[xy]"

The transformation from work space to joint space is given by

(26)

Iy cos (1) + 1y cos (q; + a,)
I sin(gq,) + Lsin(q, + ¢,)

The constraint, when expressed in terms of joint space, is

@)

H(q) =[

Y(q) =+ 5 +2hl,cosq, —r* =0

(28)
which has an unique constant solution for g,
rr-(F+15)

= qF. 29
20,1, 4> ( )

g, =cos™! (

The Jacobian matrix of (28) is

0 T
I(a) = [-2/112 sinqz]

therefore the matrix defined in (11) is

T

L(q') =[1 0]". (31)
The constrained robot motion equation (14), when restricted to the
circle, can be expressed as

a+ B+ 2ncos g5
o + 1cos g5

(30)

.. 0 .
+ L.
o {nql sin g3 ]q‘

e, cos g + e, cos (g, + qF)

ne, cos (g, + ¢3)

u; 0
= [“2] + [—21112 sin q;])" (32)
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Fig. 1. A two-link manipulator and the circle constraint.
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Fig. 3. Actual trajectory.

The constraint forces are
f 1= 0
Jfoy = —=20L,(sin gF)\ (33)

The control objective is to determine a feedback control so that
the joint g, tracks the desired trajectory g, and maintains the
constraint force f, to the desired f,, where g,, and f, are
assumed to be consistent with the imposed constraint.

Since A = A, means f, — f,;, hence in this simulation, g, and
A, are chosen as

- 2.5(1 — 1.2
- 90 + 5 (15 cos (1.26¢)) (34)

Ay = 10. (35)

The true values of «, B8, and 5 are o = 0.8, 8 = 0.32, and

n = 04. Thus, a; = 1, @, = 0.5, &3 = 0.5, and the two tunable
parameters A, and A, are chosen as A; = 30, A, = 1.

Since trajectory tracking on the constrained surface with specified

constraint force is of interest, the initial position and the velocity of
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Fig. 4. Actual contact force.
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Fig. 5. Sliding surface.
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Fig. 6. Torque exerted at joint one.
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Fig. 7. Torque exerted at joint two.

manipulator is chosen on the desired trajectory.
7,(0) = -90; ¢,(0) = 80; 4:(0) = ¢,(0) = 0.
The initial constraint force is assumed as f, = 0, i.e., A= 0. In
order to reduce the control chattering, the boundary layer is chosen
as ¢ = €, = €5 = 0.05.
The results of the simulation are shown in Figs. 2-7. Fig. 2
shows the desired joint trajectory, Fig. 3 shows the actual trajectory

of joint 1 with maximum tracking error 0.06 rad, and Fig. 4 shows
contact force A. The final maximum error with A, is 0.1. The
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sliding surface s, is shown in Fig. 5, and Figs. 6 and 7 show the
torques exerted at manipulator joints. These results show that the
control objective is achieved successfully.

V. CONCLUSION

A sliding mode control algorithm to achieve trajectory tracking of
end effector on a constrained holonomic smooth surface with speci-
fied constraint force is presented by using the theory of variable
structure system. The major contributions of this note lie in the
establishment of a new dynamic model to describe the constrained
robot motion, which makes it possible to seek a sliding mode
control law. By expanding the dimension of the sliding surface to
include the constraint force, an explicit sliding mode control formu-
lation is obtained which ensures the occurrence of the sliding mode
on the intersection of the surfaces without necessarily stabilizing
each individual one. A simple two link manipulator and a circle
constraint has been used to illustrate the methodology developed in
this note, and the simulation results are quite satisfactory.
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Feedbacks for Descriptor Systems
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Abstract—Construction for proportional-plus-derivative (PD) feed-
backs for descriptor (or singular) systems is given. It is shown that,
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under the assumption of controllability of the open-loop finite and
(dynamic) infinite modes, feedbacks employing states and state deriva-
tives may be constructed to accomplish shifting all open-loop modes
(finite as well as infinite) to desired finite points while ensuring regularity
of the closed-loop pencils. Further, the construction reveals that the
required state-derivative feedbacks are specified completely by the open-
loop dynamic infinite-mode structures of the descriptor systems. This
class of PD feedbacks circumvents certain difficulties associated with the
construction for constant state-feedbacks as given by Armentano, by
Lewis, and by Fletcher and co-workers.

I. INTRODUCTION

Since the pioneering works of Rosenbrock [1] and of Luenberger
[2], which introduced descriptor-system concepts into control the-
ory, interest in developing solution techniques for descriptor-system
problems has continued to grow. The topic of stabilization or
pole-placement for descriptor systems—aided by the work of
Verghese et al. [3] which refines certain key structural results of
Rosenbrock [1]—has been much studied in recent years. Cobb [4],
who probably was the first to investigate the problem, gives a
construction for state feedbacks from a geometric viewpoint. How-
ever, in [4] the requirement for regularity of closed-loop pencils
under state feedbacks is assumed to hold and is not investigated
further. In Armentano [5], in deriving certain results that strengthen
those of [4], the author gives also a geometric procedure for the
construction for state feedbacks which place open-loop poles at
desired finite points in the complex plane while ensuring regularity
of the closed-loop pencils. Later, Lewis [6], Fletcher ef al. [7], and
Kautsky and Nichols [8] derive nongeometric algorithms for con-
structing state feedbacks that satisfy both the pole-shifting and the
closed-loop pencil regularity requirements.

Although the results of [5]-[8] provide algorithms for the con-
struction of state feedbacks for descriptor systems, a close scrutiny
of these techniques reveals certain nontrivial difficulties, which
motivate the writing of this note. In brief, the chief cause of the
difficulties, which we will examine in detail in the next section, is
due to the constraint of constant state feedbacks. The main objective
of this note is to present a construction for an alternative, less
restrictive class of feedbacks for descriptor systems, i.e., propor-
tional-plus-derivative (PD) feedbacks employing both states and
state derivatives, which circumvents nicely the aforementioned dif-
ficulties.

We note that the use of PD controllers has had a long history in
industrial practice where derivative controls are employed to pro-
vide anticipatory action for overshoot reduction in the responses;
see, e.g., [9, p. 509]. Likewise, the use of PD feedbacks in
descriptor systems has been reported previously in the literature,
e.g., in [10]-[12]. In [10] and [12] (we defer until Remark 3.4 a
comparison of the approach and results of [11] to those of this note),
PD feedbacks are used to accomplish the objective of shifting all
controllable open-loop finite and dynamic infinite modes of descrip-
tor systems to desired finite points. However, in these works, an
explicit construction for such a PD feedback is not given and, more
important, the satisfaction of the requirement for closed-loop pencil
regularity, as in Cobb [1], has been hypothesized. For the main
result of this note (Section III), we describe an explicit construction
for a class of PD feedbacks which shift all open-loop poles (finite as
well as infinite) to desired finite points while ensuring the require-
ment for regularity of the closed-loop pencils.

The organization for the paper is as follows. In Section II, we
examine in detail the difficulties associated with existing construc-
tive techniques for constant state feedbacks. In Section IIl we give
the main result of the note. The conclusions follow in Section IV.
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