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Abstract. Existing localization algorithms, such as centroid or finger-
printing, compute the location of a mobile device based on measurements
of signal strengths from radio base stations. Unfortunately, these algo-
rithms require tedious and expensive off-line calibration in the target
deployment area before they can be used for localization. In this paper,
we present Calibree, a novel localization algorithm that does not require
off-line calibration. The algorithm starts by computing relative distances
between pairs of mobile phones based on signatures of their radio envi-
ronment. It then combines these distances with the known locations of a
small number of GPS-equipped phones to estimate absolute locations of
all phones, effectively spreading location measurements from phones with
GPS to those without. Our evaluation results show that Calibree per-
forms better than the conventional centroid algorithm and only slightly
worse than fingerprinting, without requiring off-line calibration. More-
over, when no phones report their absolute locations, Calibree can be
used to estimate relative distances between phones.

1 Introduction

The most widespread localization technology available today is the Global Po-
sitioning System (GPS) [7, 17]. Although accurate in open environments, GPS
does not work well indoors, in urban canyons, or in similar areas with a limited
view of the sky. In addition, GPS is installed in only a small portion of the
mobile phones in use today. ABI research reported that the number of mobile
phone subscribers with GPS equipped devices constituted only 0.5% of the total
number of subscribers in 2006, but it estimates that this number will grow to 9%
by 2011 [19]. As a result, several alternative localization algorithms have been
proposed, including centroid and fingerprinting [18, 3]. The main drawback of
these algorithms is that they require off-line calibration in the target deployment
area before they can be used for localization.

Calibrating a fingerprinting system is tedious and expensive, involving phys-
ically sampling signal strengths at many locations. For instance, a recent effort
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by Intel Research Seattle to sample the GSM radio environment in the Seattle
metropolitan area took 3 months to complete, costing about US$ 30,000 [3]. If
the locations of cell towers are not readily available, centroid methods need the
same type of calibration to compute the unknown locations of the cell towers.
Another disadvantage of relying on physical sampling is that it gives only a snap-
shot of signal strengths at a particular time. Cell towers can be added, removed,
blocked, renamed, or moved, partially invalidating an expensive calibration run.

In this paper, we present a novel localization technique, called Calibree, that
requires no such calibration or maintenance. Calibree takes advantage of a small
number of phones with known locations to determine locations of a larger set of
phones. Calibree has two stages. In the first stage, Calibree computes relative
distances between mobile phones that detect at least one GSM cell tower in
common by comparing their GSM signatures. We define a GSM signature as a
set of GSM cell towers that a phone detects and the signal strengths at which
the phone hears these towers. To estimate relative distances, Calibree computes
a regression formula in real time, based on a snapshot of GSM signatures and
absolute locations from a small number of phones. In the case when no phones
report their absolute locations, Calibree reverts back to using the last computed
regression formula.

In the second stage, Calibree combines the pairwise distance estimations into
a graph, in which nodes represent mobile phones and weighted edges represent
likely distances between the phones. If a small number of mobile phones are
able to report their absolute positions (e.g., through GPS), these phones are
anchored at their known locations. Calibree then computes likely locations for
all other phones by modelling the graph as a constraint problem and estimating
mobile phone positions in order to minimize overall constraint violations using
a mass-spring minimization method [4]. If no phones report their absolute loca-
tions, Calibree cannot compute absolute locations, but it can estimate relative
distances between pairs of mobile phones. This is useful for gaming and social-
mobile applications [16], where knowing a relative distance to another mobile
phone is sufficient.

When computing relative distances between phones, Calibree takes into ac-
count only the ranked list of cell towers that phones hear sorted by the signal
strength. Not using the actual signal strength as part of the relative distance
estimation makes Calibree independent of the particular phone model it is run-
ning on, as the relative ranking of cell towers has been shown to be independent
of the specific phone used [8].

We evaluated Calibree in the University of Toronto campus, located in down-
town Toronto, Canada and a quiet residential neighborhood, located on the out-
skirts of Toronto. The results show that with only a small number of phones
having GPS, Calibree outperforms the centroid algorithm and is comparable to
the fingerprinting algorithm, achieving up to 147m median error. This result is
very promising because Calibree achieves similar accuracy to existing localization
algorithms, without requiring off-line calibration. Moreover, Calibree continues
to work well and outperforms both the centroid and fingerprinting algorithms
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Fig. 1. Absolute positioning of mobile phones using Calibree.

when tested on measurements collected inside 20 buildings scattered around the
University of Toronto campus. This result shows that Calibree is effective at
propagating the absolute location information from phones located outdoors to
the phones located indoors. Finally, even when no absolute locations are known,
Calibree estimates relative distances between phones more accurately than the
centroid algorithm and only slightly worse than the fingerprinting algorithm.

The rest of this paper is organized as follows. We describe Calibree, centroid
and fingerprinting algorithms in detail in Section 2 and present our evaluation
results in Section 3. Section 4 discusses the differences between Calibree and
related research efforts. Finally, we present our conclusions in Section 5.

2 Localization Algorithms

In this section, we describe Calibree, the fingerprinting and the centroid algo-
rithms. We compare performance of these algorithms in Section 3.2.

2.1 Calibree

Calibree is a localization algorithm that estimates locations of GSM phones
based on a snapshot of all phones’ GSM signatures and absolute locations of a
small number of these phones. If no absolute locations are known, Calibree can
be used to estimate relative distances between any two mobile phones.

Figure 1 demonstrates how Calibree solves the problem of estimating absolute
phone locations. The anchored mobile phones obtain their locations through
GPS and feed these locations to Calibree, which uses them to estimate locations
of phones without GPS. Calibree has two stages. In the first stage, Calibree
computes a regression formula based on GSM signatures and known locations of
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GPS-equipped phones, and then uses this formula to estimate relative distances
between phones without GPS that overhear at least one common cell tower. In
the second stage, Calibree uses a graph-based algorithm to estimate locations of
phones without GPS. We next describe these two stages in detail.

Estimating Relative Distances In the first stage, Calibree computes relative
distances between pairs of mobile phones based on their GSM signatures. Recall
that a GSM signature consists of a set of GSM cell towers that a phone detects
and the signal strengths at which it hears these towers. Computing distances
based on pairs of GSM signatures involves extracting features from the signatures
and feeding the extracted values into a pre-generated formula.

We explored several possible features, including: number of common cells,
number of cells not in common, Spearman coefficient, Euclidean distance in
signal space, ratio of the number of cells in common to the total number of cells
and a boolean variable indicating whether the phones hear the same serving cell.

To identify which features to use, we experimented with a number of differ-
ent combinations of features, each time recording the median error of relative
distance predictions using a given set of features. We found three features that
both achieve good accuracy and that are insensitive to a particular phone model.
The features are:

Common cells: The number of cell towers that are common to the two GSM
signatures.

Uncommon cells: The number of cell towers that are not common to the two
GSM signatures.

Spearman coefficient: The Spearman coefficient [12] between rankings of com-
mon cell towers by signal strengths.

These features use information about cell towers and relative signal strengths
only. Previous studies have shown [8] that these parameters are cell phone model
agnostic.

Given GPS coordinates and GSM signatures from a number of phones, Cal-
ibree generates a formula for predicting pairwise distances between phones by
applying the multiple regression method to the features extracted from the GSM
signatures and the distances computed from the GPS coordinates. We experi-
mented with polynomials of different degrees. The evaluation procedure was the
same as for selecting the features. We observed that while polynomials of high
degrees often suffer from overfitting, a degree two polynomial gives consistently
good performance and results in more accurate predictions than a linear func-
tion.

Figure 2 shows the general form of the formula that Calibree uses for relative
pairwise distance estimations. In this formula, xi stands for the value of the
ith feature. The constants aij , bi, and d are fitted from the GPS coordinates
and GSM signatures of phones with GPS. These constants are recomputed each
time the graph is built, which makes Calibree implicitly adaptive to changes
in cell tower configurations. Once Calibree computes the constants aij , bi and
d, it is ready to estimate relative distances between pairs of mobile phones.
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Fig. 2. The general form of the regression formula for relative pairwise distance esti-
mates.

Note that when two mobile phones overhear no common cells, the Spearman
coefficient is not defined and the Common cells feature always evaluates to 0.
Therefore, Calibree does not estimate relative distance between phones that
detect no common cells, but rather assumes that these phones are located far
away and lets the graph-based algorithm deal with these cases.

Estimating Absolute Locations To compute absolute positions of mobile
phones, Calibree uses the relative distance estimates obtained from the previous
step as well as the absolute positions of a small number of mobile phones with
GPS. With this data, Calibree builds a graph, in which nodes represent mobile
phones and weighted edges represent estimated distances between mobile phones.

The graph models a geographic coordinate system: each node has a corre-
sponding latitude/longitude coordinate and the distance between nodes is cal-
culated using the Haversine formula [15]. Calibree initializes the coordinates
with the actual mobile phone positions for the GPS-equipped phones and with
random values for other phones. This initial placement of nodes results in a
discrepancy between the weights on the edges and the distances between nodes
in the graph. The goal of Calibree is to find a placement of nodes such that
the overall discrepancy is minimized. Calibree doesn’t change the coordinates of
mobile phones with GPS during its runtime since these are known to be very
close to correct.

To better understand the problem, imagine that every pair of nodes with
an edge between them is connected using a spring with a relaxed length equal
to the estimated relative distance between the corresponding mobile phones. As
Calibree adjusts the locations of the nodes, it recomputes the lengths of the
springs based on the Haversine formula, which calculates the distance between
two latitude/longitude coordinates. Calibree’s goal is then to find a placement of
nodes such that the lengths of the springs are as close as possible to the relaxed
lengths of the springs. More formally, if we denote two nodes as x and y, the
relaxed spring length as rxy and the current spring length as cxy, Calibree needs
to find a node placement that minimizes the error function:

Err =
∑

x

∑

y

|rxy − cxy| (1)

Calibree minimizes this function by iteratively refining node coordinates.
Each spring exerts a force on the pair of the nodes that it connects. The mag-
nitude of the force is taken to be the difference between the current and the
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relaxed lengths of the spring. We denote the direction of the force from node y
to node x by a unit vector unit(x, y). The force on node x from node y is then:

Fxy = |rxy − cxy| × unit(x, y)

The net force on node x from all other connected nodes is just the sum of all
individual forces:

Fx =
∑

y 6=x

Fxy

Once Calibree calculates the net force, it is then ready to move the node in
the direction of that force. However, applying the full force on the node would re-
sult in oscillations in node positions because many of the current node positions
are incorrect. Therefore, Calibree applies only a portion of the original force on
the node. The portion of the applied force is controlled by a parameter δ. Finding
the right value for δ is important, because large values will result in large oscil-
lations of node positions and consequently Calibree may not reach equilibrium
altogether, while small values will result in slow convergence. We experimented
with different values of δ and found that a value of 1.0 × 10−8 provides a good
compromise between the speed of convergence and no oscillations.

Formally, if we let coorx be the vector coordinate of node x, the new coordi-
nate after applying the force is:

coorx = coorx + δ × Fx

Calibree stops minimizing the error function when the refinement of node
coordinates results in a negligible change in the total error Err, controlled by
another parameter tolerance. For smaller values of δ, Calibree needs to use
smaller tolerance values, or otherwise Calibree might terminate prematurely.

A special case occurs when a pair of nodes has no relative distance predic-
tion. This is a result of two mobile phones detecting no common cell towers.
In this situation Calibree assumes that the two phones are more than a certain
threshold distance away. To compute this threshold we looked at the cumulative
distribution function of distances between mobile phones that detect no cells in
common and picked the 25th percentile, which turned out to be about 500m.
Pairs of nodes that correspond to mobile phones that detect no common cells
therefore have a special spring connecting them that exerts force only if the ac-
tual distance between nodes is smaller than 500m. This is because Calibree does
not know how far the two nodes are, but it does know that the nodes are likely
to be at least 500m apart. Formally, the force between nodes x and y that detect
no common cells is calculated as:

Fxy =

{

|500 − cxy| × unit(x, y) if cxy < 500
0 otherwise

It is possible for Calibree to end up in a local minimum equilibrium, in which
node position refinements are small, but the overall error Err is still large. We
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⊲ input: graph G = (V,E) and relative distance estimation function r
⊲ output: coordinates of nodes in V
Calibree-Absolute(G, r)

1 Errcur ←∞
2 repeat

3 Errprev ← Errcur

4 for each x in V

5 do

6 if x has a fixed location
7 then continue

8 F ← 0
9 for each y 6= x in V

10 do

11 if (x, y) ∈ E

12 then F ← F + |rxy − cxy | × unit(x, y)
13 else F ← F + max((500− cxy)× unit(x, y), 0)
14 coorx ← coorx + δ × F

15 Errcur ← Error(G)
16 until |Errprev − Errcur| > tolerance

Fig. 3. The pseudo-code of a graph-based stage of Calibree.

used an optimization that proved to work consistently well in pushing Calibree
towards global equilibrium. With our optimization, when Calibree achieves a
local equilibrium state, instead of terminating, it repositions a randomly chosen
non-fixed node in the average of the current locations of all its connected nodes.
This is repeated several times with different mobile phones.

Figure 3 shows the pseudo-code for the graph-based stage of Calibree. We
leave out the above optimization for simplicity. The algorithm receives as input
two parameters: (a) G, a graph with a set of nodes V and a set of edges E and
(b) r, a pre-computed function of relative pairwise distances between nodes. The
algorithm computes a new set of coordinates that minimizes the total error as
defined in Equation 1. The outermost loop runs until the error difference between
two successive iterations is less than the tolerance value. The inner loop keeps
calculating the net force exerted on each node and updating their coordinates in
the direction of the force. Error function on line 15 calculates the current total
error of graph G.

Calibree-Absolute, shown in Figure 3, works correctly even when no ab-
solute phone locations are known. In this case, although the orientation of the
nodes is arbitrary, the algorithm may be used to estimate relative distances
between any two nodes in the graph.

2.2 Fingerprinting

The fingerprinting algorithm [1] relies on the fact that signal strengths observed
by mobile phones exhibit temporal stability and spatial variability. In other
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words, a given cell tower may be heard stronger or not at all a few meters away,
while at the same location the observed signal strength is likely to be similar
tomorrow and next week.

The fingerprinting algorithm requires a calibration phase, in which a mobile
phone moves through the target environment, recording the strengths of signals
emanating from radio sources (e.g., GSM cell towers). At the end of calibra-
tion, the fingerprinting algorithm creates a mapping from radio measurements
to locations where these measurements were observed. Since the fingerprinting
algorithm does not model radio propagation, a fairly dense grid of radio scans
needs to be collected to achieve good accuracy. The original RADAR experi-
ments, for example, collected measurements of WiFi signal strengths about a
meter apart [1]. In our implementation we collected measurements every two
meters on average.

Once the calibration phase is complete, a mobile phone can estimate its loca-
tion by performing a radio scan and feeding it into the fingerprinting algorithm,
which estimates the phone’s location based on the similarity between the phone’s
radio scan and the measurements recorded during the calibration. The similar-
ity of signatures can be computed in a variety of ways, but it is common to use
the Euclidean distance in signal space [11, 3]. The fingerprinting algorithm then
estimates the location of a mobile phone to be the location of the measurement
in the mapping with the smallest Euclidean distance in signal space to the radio
scan. If a cell tower is not present in one of the measurements, we substitute its
signal strength with the minimal signal strength found in this measurement.

2.3 Centroid

To estimate phone locations, the centroid algorithm [3] needs to know the lo-
cations of GSM cell towers. However, since this information is typically kept
confidential by service providers and it is not available to third parties, the cen-
troid algorithm has to estimate positions of cell towers by reverting to the same
physical sampling of the radio environment employed by the fingerprinting al-
gorithm. Once the physical sampling is complete, the centroid algorithm can
estimate locations of cell towers in the environment by positioning a cell tower
in a location where the signal strength from that cell tower was observed the
strongest. In our experiments, we used the same calibration data for the centroid
algorithm as we did for the fingerprinting algorithm.

Once the positions of cell towers are known and a mobile phone performs a
radio scan, the centroid algorithm computes the location of the mobile phone
as an average of locations of cell towers that appear in the radio scan. Typi-
cally, giving a higher weight during averaging to cell towers with stronger signal
strength yields better localization accuracy.

3 Evaluation

In this section, we describe our data collection process, present our experimental
results and then discuss the usage model of Calibree.
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3.1 Data Collection

To evaluate the accuracy of our localization algorithms, we collected GSM mea-
surements on the streets of the University of Toronto campus. The university
covers an area of approximately 1km2 and it is located in the downtown core of
Toronto, Canada. We gathered additional traces covering a residential area of
similar size located on the outskirts of the city. To test the localization accuracy
of Calibree indoors, we also collected several measurements inside 20 university
buildings.

To collect the measurements, we used a Pocket PC T-Mobile MDA and an
AudioVox SMT 5600 phone, connected to a Holux GPSlim236 GPS via Blue-
tooth. Both the PDA and the phone ran Intel’s POLS [3] data collection software,
which gives access to identities and signal strengths of up to 8 GSM cells. We
walked through the target area at a speed of 2 meters per second and sampled
the radio environment and GPS unit at a rate of one sample per second.

We collected two sets of traces for each area, to be able to train and test our
algorithms on different traces. Full traces for the downtown and the residential
areas contain about 6000 and 5000 measurements, respectively. Since different
network operators use different cell towers, Calibree, fingerprinting and centroid
algorithms work only when training and testing traces use the same operator.
To support multiple operators, separate traces need to be collected for each
operator. We collected all traces using Rogers, a single GSM network operator
available in Toronto, Canada.

3.2 Experimental Results

In this section, we compare accuracy with which Calibree, the fingerprinting
algorithm and the centroid algorithm estimate absolute phone positions and
relative distances between phones.

Absolute Positioning We trained Calibree “on-line” by randomly picking a
number of points from the testing trace, simulating mobile phones with GPS, and
using their GSM signatures and known locations to train the regression formula.
To test the three algorithms, we randomly picked 50 points from a testing trace,
simulating 50 mobile phones, estimated their absolute locations using each of
the three algorithms and calculated the localization error using the actual phone
locations from the trace. For example, if Calibree picks 25 points to train the
regression formula and another 50 points for testing, it will use all 75 points to
construct and solve the mass-spring graph. The 25 points that Calibree uses for
creating the regression formula do not change their location during the runtime of
Calibree and are not included in the calculation of accuracy. To reduce random
effects and smooth the graphs, we repeated this procedure 40 times for each
experiment. The following experiments use downtown traces unless otherwise
specified.

Figure 4 plots the 50th and 95th percentile error of Calibree as a function of
the number of phones with GPS. The results show that although the localization
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Fig. 4. The effect of the number of phones with GPS on the 50th and 95th percentile
localization error of Calibree.
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Fig. 5. Cumulative distribution function of absolute localization error of Calibree, the
fingerprinting and centroid algorithms, evaluated in the downtown area.

accuracy generally improves with the larger number of phones with GPS, the
error levels off at 25 GPS-equipped phones. Note that 25 phones with GPS in
the area of 1km2 is not too many, given that the average population density of
Toronto including residential areas is 4000 people/km2 and it is much higher in
the downtown area.

Figure 5 and Figure 6 show the cumulative distribution function (CDF) of
absolute localization error for the fingerprinting algorithm, the centroid algo-
rithm and Calibree with 25 phones having GPS, evaluated in the downtown
and the residential areas, respectively. In the downtown area, the fingerprinting
and centroid algorithms achieved comparable accuracy to previously reported
implementations, 112m and 200m median error, respectively. Calibree achieved
147m median error, which is better than the centroid algorithm and slightly
worse than the fingerprinting algorithm. In the residential area, the errors are
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Fig. 6. Cumulative distribution function of absolute localization error of Calibree, the
fingerprinting and centroid algorithms, evaluated in the residential area.
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Fig. 7. Median localization error for areas of different size as a function of the number
of GPS devices in the area.

larger for all three algorithms; however, the general picture looks very similar -
fingerprinting algorithm and Calibree show good performance, achieving 138m
and 214m median error respectively, while the centroid algorithm does poorly
with 335m median error. These results are very encouraging because Calibree
achieves similar accuracy to existing localization algorithms, without requiring
off-line calibration. We note that, with 25 phones acting as real time calibration
points, our calibration density is much less than that of the fingerprinting or
centroid algorithms, yet Calibree still achieves accuracies in the same range as
these much more labor-intensive algorithms.

We conjectured that there is a correlation between the area size under con-
sideration and the number of GPS-equipped phones required to achieve similar
localization accuracy. To test this correlation, we experimented with limiting
the traces collected to only half and quarter of the original area size. Figure 7
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Fig. 8. Cumulative distribution function of absolute localization error for mobile
phones located indoors.

shows the median localization error for area sizes of 1km2, 0.5km2 and 0.25km2

as a function of the number of GPS-equipped phones in the area. The results
confirm that it is typically the case that increasing the target area requires more
GPS-equipped phones in the area to achieve comparable accuracy. For instance,
Calibree achieves 123m median error with 10 GPS devices in the area of 0.25km2,
149m median error with 15 GPS devices in the area of 0.5km2 and 147m median
error with 25 GPS devices in the area of 1km2.

Finally, we tested the localization accuracy of Calibree, the fingerprinting and
centroid algorithms on measurements collected inside 20 buildings of our univer-
sity. The training of Calibree was performed as explained previously by picking
25 random points outdoors and estimating the regression formula. For testing
all algorithms, we used 20 testing points, each collected in a different build-
ing. Because we knew where the buildings are located, we marked the ground
truth of each of the 20 testing points manually in our trace. Figure 8 shows
the CDF of absolute localization error for each of the three algorithms. Calibree
achieves better localization accuracy than both the fingerprinting and centroid
algorithms, reaching 151m median error vs. 165m median error for the finger-
printing algorithm and 203m for the centroid algorithm. Interestingly, the 151m
median error that Calibree achieves on indoor measurements is very close to the
median error of 147m that Calibree achieves on measurements taken outdoors.
The results suggest that Calibree is effective in propagating the absolute location
information from phones located outdoors to the phones located indoors.

Relative Positioning In this section, we show that even when no phones re-
port their absolute locations, Calibree is effective at predicting relative distances
between phones. Note that although our regression formula computes distances
between mobile phones that detect at least one common cell, Calibree is also
able to predict distances between phones that have no cells in common. To com-
pute relative positions, the centroid and fingerprinting algorithms first compute
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Fig. 9. Cumulative distribution function of pairwise distance estimation errors for Cal-
ibree, fingerprinting and centroid algorithms.

absolute phone positions and then calculate relative distances directly. Calibree,
on the other hand, was trained using GSM signatures and absolute locations
from 25 phones used in previous experiments.

Figure 9 shows the CDF of estimated relative distances between phones for
Calibree, centroid and fingerprinting localization algorithms. The results show
that Calibree is able to estimate distances between phones with a similar accu-
racy to that obtained by the centroid and fingerprinting algorithms, without the
need to compute absolute locations first.

3.3 Discussion

Although we developed and tested Calibree off-line with stored data, we envision
it as a real time Web service in its final form. Mobile clients would transmit their
measured signal strengths and, if available, their GPS coordinates, to a central
Calibree server. The server would run our algorithm and make the computed,
absolute coordinates available to authorized subscribers. Clients with satisfac-
tory GPS availability would not need the Calibree service, because they already
know their location. These clients could be enticed to contribute their data by
micro-payments, discounted subscriber rates, discounted location data for other
users (assuming authorization), or an offer of free position data from Calibree
whenever they lose GPS satellite connectivity. For privacy, GPS data and the
associated signal strengths could be transmitted to the service completely anony-
mously, although this would complicate the process of giving compensation for
those users. Alternatively, or in addition to regular GPS-equipped users, the
service could exploit GPS and signal strength data from taxis, police cars, mu-
nicipal vehicles, garbage trucks, and delivery vehicles, many of which are already
equipped with GPS and cell phones. Cell phone companies and ordinary users
could set up static GPS and cell phone stations to transmit absolute coordinates
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in regions of particular need, although Calibree ideally exploits only mobile users
to avoid the need for extra infrastructure.

4 Related Work

The Calibree localization algorithm is related to several research efforts in ubiqui-
tous computing and sensor networks. We next describe key distinctions between
these efforts and ours.

4.1 Relative Distance Estimation

Several projects have suggested ways to compute ranging estimates between wire-
less devices. In SpotON [6], tags use received radio signal strength information
as an inter-tag distance estimator. Relate [5] uses a combination of ultrasound
and radio communication to infer relative position and orientation between spe-
cialized USB dongles. Calibree differs from these efforts in the way it computes
relative distances between nodes. Instead of using peer-to-peer measurements
between devices, Calibree estimates distances between devices based on mea-
surements of signals from static beacons – cell towers in our case.

The technique Calibree uses for estimating pairwise distances was inspired
by the NearMe wireless proximity server [8]. NearMe showed that it is possible
to calculate the relative distance between WiFi devices based on their WiFi sig-
natures. In contrast, Calibree applies this technique to GSM instead of WiFi,
and it uses the computed distances to find absolute phone locations with help
from GPS measurements from a small number of phones. Furthermore, Cali-
bree takes advantage of a network of pairwise distance estimates to refine the
location results, while NearMe stopped after computing just individual pairwise
distances.

4.2 Graph-based Location Estimation

Self-mapping [9] is a graph-based algorithm for mapping radio beacon (e.g.,
WiFi APs or GSM cell towers) locations given a small seed of known beacon
locations and a set of radio scans. The main idea behind self-mapping is that
if a radio measurement contains two beacons, these beacons are located within
twice the maximum transmission range of each other. A better distance estimate
may be obtained by using a radio propagation model. Self-mapping combines
the estimated distances into a graph and solves for beacon positions using an
iterative error minimization algorithm.

A number of related localization techniques have been developed for sensor
networks, mainly to improve network routing. Some of these approaches assume
that a small number of beacon nodes with known locations are available [13, 10]
and compute locations of other nodes in the network. Other approaches assume
no such knowledge and compute only the relative node locations [2, 14].
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Calibree applies similar techniques to localize GSM mobile phones instead
of radio beacons or sensor nodes. However, Calibree estimates relative distances
between phones using a regression formula derived in real time from a set of GSM
signatures and their absolute locations. In contrast, self-mapping estimates dis-
tances between beacons based on a simple radio propagation model, while sensor
network efforts either rely on sheer node-to-node connectivity or estimate rel-
ative distances using peer-to-peer measurements of time of flight [10] between
sensor nodes. Finally, Calibree uses a different graph-based algorithm for con-
straint satisfaction: a variation of the Vivaldi algorithm [4].

Vivaldi is a distributed algorithm for predicting communication latency be-
tween Internet hosts without requiring explicit round trip time measurements
between them. For that purpose, Vivaldi assigns each host a synthetic coordi-
nate such that distances between the coordinates accurately predict the latency
between hosts. Vivaldi uses round trip time measurements to estimate relative
distances between network nodes, combines these measurements into a graph
and then solves the graph constraint system using a distributed version of the
mass-spring minimization method. In contrast, Calibree estimates relative dis-
tances based on phones’ measurements of GSM cell towers and it calculates
absolute, not relative, phone positions based on a seed of known locations of
GSM signatures measured by devices with GPS.

5 Conclusions

In this paper, we presented Calibree, a novel GSM localization algorithm that
does not require the tedious calibration phase that normally accompanies cell
tower localization algorithms. Calibree uses a relatively small number of GPS-
equipped mobile phones to compute the locations of mobile phones without
GPS. Calibree takes advantage of the fact radio signatures are a reasonably
good basis for computing the relative distances between mobile phones that
detect at least one cell tower in common. Our algorithm combines these relative
distance measurements with GPS measurements from some of the phones in
an error-minimization procedure to compute the absolute locations of all the
phones.

Our experimental results showed that the accuracy of Calibree is comparable
to traditional, calibration-intensive algorithms for cell phone localization. Even
as the number of cell phones equipped with GPS grows, Calibree will remain
relevant, as it works for phones that are located indoors or otherwise unable to
detect GPS satellites. Calibree is also an effective technique for computing the
relative locations of a group of phones even if none of them have GPS. This can
be useful for proximity-based applications and games.

Extensions to Calibree could include a technique to enforce spatial continuity
of the inferred locations. As it is, Calibree computes locations based on measure-
ments from a single instant in time. It may be possible to improve accuracy and
robustness by smoothing or filtering location estimates across time, using proba-
bilistic motion models. Such models could include path constraints on the mobile
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nodes, such as a network of streets, railways, and pedestrian paths. Considering
both time and path constraints, it may even be possible to compute absolute
locations from a sequence of relative locations by finding the unique set of abso-
lute paths that could give rise to the inferred relative paths. Calibree could be
extended to deal with the error inherent in GPS. As it is, the algorithm assumes
that GPS measurements are always correct, although we know that GPS has its
own error characteristics, including occasional outliers. The spring-mass scheme
could be easily extended to account for some error in the GPS estimates.
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