Chapter 5

12. In Stop-and-Wait ARQ why should the receiver always send an acknowledgment message each time it receives a frame with the wrong sequence number?
13. A 1 Mbyte file is to be transmitted over a 1 Mbps communication line that has a bit error rate of $p=10^{-6}$.
a. What is the probability that the entire file is transmitted without errors? Note for n large and p very small, $(1-p)^{n} \approx \mathrm{e}^{-n p}$.
b. The file is broken up into N equal-sized blocks that are transmitted separately. What is the probability that all the blocks arrive correctly without error? Does dividing the file into blocks help?
c. Suppose the propagation delay is negligible, explain how Stop-and-Wait ARQ can help deliver the file in error-free form. On the average how long does it take to deliver the file if the ARQ transmits the entire file each time?
d. Now consider breaking up the file into N blocks. (Neglect the overhead for the header and CRC bits.) On the average how long does it take to deliver the file if the ARQ transmits the blocks one at a time? Evaluate your answer for $N=80,800$, and 8000 .
e. Explain qualitatively what happens to the answer in part (d) when the overhead is taken into account.
14. A telephone modem is used to connect a personal computer to a host computer. The speed of the modem is 56 kbps and the one-way propagation delay is 100 ms .
a. Find the efficiency for Stop-and-Wait ARQ if the frame size is 256 bytes; 512 bytes. Assume a bit error rate of 10^{-4}.
b. Find the efficiency of Go-Back-N if three-bit sequence numbering is used with frame sizes of 256 bytes; 512 bytes. Assume a bit error rate of 10^{-4}.
15. Perform the bit stuffing procedure for the following binary sequence: 1101111111011111110101 .
16. Consider the PPP byte stuffing method. What are the contents of the following received sequence of bytes after byte destuffing:
$0 x 7 \mathrm{D} 0 \mathrm{x} 5 \mathrm{E} 0 \mathrm{xFE} 0 \mathrm{x} 240 \times 7 \mathrm{D} 0 \mathrm{x} 5 \mathrm{D} 0 \mathrm{x} 7 \mathrm{D} 0 \mathrm{x} 5 \mathrm{D} 0 \mathrm{x} 620 \times 7 \mathrm{D} 0 \mathrm{x} 5 \mathrm{E}$

Chapter 8
8.2. Identify the address class of the following IP addresses: $200.58 .20 .165 ; 128.167 .23 .20 ; 16.196 .128 .50$; 50.156.10.10; 250.10.24.96.
8.6. A host in an organization has an IP address 150.32 .64 .34 and a subnet mask 255.255 .240 .0 . What is the address of this subnet? What is the range of IP addresses that a host can have on this subnet?
8.9. A packet with IP address 150.100 .12 .55 arrives at router R1 in Figure 8.8. Explain how the packet is delivered to the appropriate host.

