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ABSTRACT
In this paper, we develop simple models to study the per-
formance of BitTorrent, a second generation peer-to-peer
(P2P) application. We first present a simple fluid model
and study the scalability, performance and efficiency of such
a file-sharing mechanism. We then consider the built-in in-
centive mechanism of BitTorrent and study its effect on net-
work performance. We also provide numerical results based
on both simulations and real traces obtained from the In-
ternet.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles

General Terms
Performance
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1. INTRODUCTION
Peer-to-Peer (P2P) applications have become immensely

popular in the Internet. Traffic measurements shows that
P2P traffic is starting to dominate the bandwidth in cer-
tain segments of the Internet [2]. Among P2P applications,
file sharing is perhaps the most popular application. Com-
pared to traditional client/sever file sharing (such as FTP,
WWW), P2P file sharing has one big advantage, namely,
scalability. The performance of traditional file sharing ap-
plications deteriorates rapidly as the number of clients in-
creases, while in a well-designed P2P file sharing system,
more peers generally means better performance. There are
many P2P file sharing programs, such as Kazza, Gnuttella,
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eDonkey/overnet, BitTorrent, to name a few. In this pa-
per, we develop simple models to understand and study the
behavior of BitTorrent [8] which is proving to be one of the
more popular P2P applications today. For a BitTorrent net-
work (or a general P2P file sharing network), several issues
have to be addressed in order to understand the behavior of
the system.

• Peer Evolution: In P2P file sharing, the number of
peers in the system is an important factor in deter-
mining network performance. Therefore, it is useful to
study how the number of peers evolves as a function
of the request arrival rate, the peer departure rate, the
uploading/downloading bandwidth of each peer, etc.

• Scalability: To realize the advantages of P2P file shar-
ing, it is important for the network performance to not
deteriorate, and preferably to actually improve, as the
size of the network increases. Network performance
can be measured by the average file downloading time
and the size of the network can be characterized by
the number of peers, the arrival rate of peers, etc.

• File Sharing Efficiency: It is common for peers in a
P2P network to have different uploading/downloading
bandwidths. Further, in BitTorrent-like systems, a file
may be broken into smaller pieces and the pieces may
be distributed at random among the peers in the net-
work. To efficiently download the file, it is important
to design the file-sharing protocol such that each peer
is matched with others who have the pieces of the file
that it needs and further, to ensure that the download-
ing bandwidth of each peer is fully utilized.

• Incentives to prevent free-riding: Free-riding is a ma-
jor cause for concern in P2P networks. Free-riders are
peers who try to download from others while not con-
tributing to the network, i.e., by not uploading to oth-
ers. Thus, most P2P networks try to build in some
incentives to deter peers from free-riding. Once the in-
centive mechanism is introduced into the network, each
peer may try to maximize its own net benefit within
the constraints of the incentive mechanism. Thus, it is
important to study the effect of such behavior on the
network performance.

1.1 Relationship to prior work
The basic idea of P2P network is to have peers participate

in an application level overlay network and operate as both
servers and clients. Since the service burden is distributed to



all participating peers, the system is expected to scale well
even when the network is very large. Besides file sharing,
P2P overlays have also been deployed in distributed direc-
tory service [18, 21], web cache [15], storage [9], and grid
computation [1] etc. While early work on P2P systems has
mainly focused on system design and traffic measurement
[19, 20, 17], some recent research has emphasized perfor-
mance analysis. In [13], a closed queueing system is used
to model a general P2P file sharing system and basic in-
sights on the stationary performance are provided. In [6, 7],
a stochastic fluid model is used to study the performance
of P2P web cache (SQUIRREL) and cache clusters. A part
of our work is motivated by the models in [11, 24], where
a branching process is used to study the service capacity
of BitTorrent-like P2P file sharing in the transient regime
and a simple Markovian model is presented to study the
steady-state properties. Our work differs from [11, 24] in
the following respects:

• Instead of studying the Markov chain numerically, we
develop a simple deterministic model which allows us
to obtain simple expressions for the average file-transfer
time, thus providing insight into the performance of
the P2P network. We also incorporate realistic sce-
narios in our fluid model such as the abandonment of
file transfers by peers and download bandwidth con-
straints.

• Then, we develop a simple stochastic fluid model which
characterizes the variability of the number of peer around
the equilibrium values predicted by the deterministic
fluid model.

• We also develop a simple model to study the efficiency
of downloading from other peers and argue that the
file-sharing protocol in BiTorrent is very efficient.

• Finally, we consider the mechanisms built into BitTor-
rent to avoid free-riding and study the impact of these
mechanisms on the users’ behaviors and network per-
formance.

2. A BRIEF DESCRIPTION
OF BITTORRENT

BitTorrent is a P2P application whose goal is to facili-
tate fast downloads of popular files. Here we provide a brief
description of how BitTorrent operates when a single file is
downloaded by many users. Typically the number of simul-
taneous downloaders for popular files could be of the order
of a few hundreds while the total number of downloaders
during the lifetime of a file could be of the order of several
tens or sometimes even hundreds of thousands. The basic
idea in BitTorrent is to divide a single large file (typically a
few 100 MBytes long) into pieces of size 256 KB each. The
set of peers attempting to download the file do so by con-
necting to several other peers simultaneously and download
different pieces of the file from different peers. To facilitate
this process, BitTorrent uses a centralized software called
the tracker. In a BitTorrent network, a peer that wants to
download a file first connects to the tracker of the file. The
tracker then returns a random list of peers that have the
file. The downloader then establishes a connection to these
other peers and finds out what pieces reside in each of the
other peers. A downloader then requests pieces which it

does not have from all the peers to which it is connected.
But each peer is allowed to upload only to a fixed num-
ber (default is four) at a given time. Uploading is called
unchoking in BitTorrent. Which peers to unchoke is deter-
mined by the current downloading rate from these peers,
i.e., each peer uploads to the four peers that provide it with
the best downloading rate even though it may have received
requests from more than four downloaders. This mechanism
is intended to deter free-riding. Since a peer is only upload-
ing four other peers at any time, it is possible that a peer,
say Peer A, may not be uploading to a peer, say Peer B,
which could provide a higher downloading rate than any of
the peers to which Peer A is currently uploading. There-
fore, to allow each peer to explore the downloading rates of
other peers, BitTorrent uses a process called optimistic un-
choking. Under optimistic unchoking, each peer randomly
selects a fifth peer from which it has received a downloading
request and uploads to this peer. Thus, including optimist
unchoking, a peer may be uploading to five other peers at
any time. Optimistic unchoking is attempted once every
30 seconds and to allow optimistic unchoking while keeping
the maximum number of uploads equal to five, an upload to
the peer with the least downloading rate is dropped. Bit-
Torrent distinguishes between two types of peers, namely
downloaders and seeds. Downloaders are peers who only
have a part (or none) of the file while seeds are peers who
have all the pieces of the file but stay in the system to al-
low other peers to download from them. Thus, seeds only
perform uploading while downloaders download pieces that
they do not have and upload pieces that they have. Ideally,
one would like an incentive mechanism to encourage seeds to
stay in the system. However, BitTorrent currently does not
have such a feature. We simply analyze the performance of
BitTorrent as is. In practice, a BitTorrent network is a very
complicated system. There may be hundreds of peers in
the system. Each peer may have different parts of the file.
Each peer may also have different uploading/downloading
bandwidth. Further, each peer only has partial information
of the whole network and can only make decisions based
on local information. In addition, BitTorrent has a proto-
col (called the rarest-first policy) to ensure a uniform dis-
tribution of pieces among the peers and protocols (call the
endgame mode) to prevent users who have all but a few of
the pieces from waiting too long to finish their download. As
with any good modelling exercise, we tradeoff between the
simplicity of the model and its ability to capture all facets
of the protocol. Thus, we will first use a simple fluid model
to study the scalability and the stability of the system. We
will then assume that each peer has the global information
and study the incentive mechanism of BitTorrent. We will
finally briefly study the effect of the optimistic unchoking
on free-riding.

3. A SIMPLE FLUID MODEL
Our model for file-sharing is influenced by the model in

[11]. However, while [11] only uses the model to develop a
Markov chain which is then studied numerically, we use the
key modelling idea in [11] to develop a simple deterministic
fluid model which is amenable to analysis and provides in-
sights into the system performance. In our model, we use
the following quantities to capture a BitTorrent peer-to-peer
network [8] that serves a given file (without loss of generality,
we assume that the file size is 1):



x(t) number of downloaders (also known as leechers) in the
system at time t.

y(t) number of seeds in the system at time t.

λ the arrival rate of new requests. We assume that peers
arrive according to a Poisson process.

µ the uploading bandwidth of a given peer. We assume that
all peers have the same uploading bandwidth.

c the downloading bandwidth of a given peer. We assume
that all peers have the same downloading bandwidth
and c ≥ µ.

θ the rate at which downloaders abort the download.

γ the rate at which seeds leave the system.

η indicates the effectiveness of the file sharing, which we will
describe shortly. η takes values in [0, 1].

In a BitTorrent-like P2P network, a downloader can upload
data to other peers even though it may only have parts of
a file. The parameter η is used to indicate the effectiveness
of this file sharing. If there is no constraint on downloading
bandwidth, the total uploading rate of the system can be ex-
pressed as µ(ηx(t)+y(t)). If η = 0, then the downloaders do
not upload data to each other and only download from seeds.
When the downloading bandwidth constraint is considered,
the total uploading rate will be min{cx(t), µ(ηx(t) + y(t))}.
To obtain a Markovian description of the system, we as-
sume that the probability that some downloader becomes a
seed in a small interval δ is given by min(cx, µ(ηx + y))δ.
These assumptions can be easily relaxed to allow more gen-
eral distributions for all the random variables involved by
using phase-type distributions as in [14, 22, 10]. Next, we
comment on the parameters θ and γ. A downloader may
not stay in the system till it completely downloads the file.
Occasionally, a downloader may leave the network before
the downloading is complete if he/she feels that the down-
load is taking too long. We assume that each downloader
independently aborts its download after a certain amount
of time which is exponentially distributed with mean 1/θ.
Equivalently, θ is the rate at which downloaders abort their
download and leave the system. In a fluid model, the rate
of departures of downloaders will be given be

min{cx(t), µ(ηx(t) + y(t))}+ θx(t).

While the departures that occur due to the fact that the file
download has been completed will become seeds instanta-
neously, the remaining downloaders will permanently leave
the system. The parameter γ is the rate at which seeds de-
part from the network. We assume that each seed stays in
the system for a random time which is exponentially dis-
tributed with mean 1/γ. Clearly, γ will have an effect on
system performance: the lower the γ, the lower the down-
load times since this means that there will more seeds in
the system. This parameter γ can be influenced by provid-
ing incentives for users to stay in the system after they have
downloaded the file, i.e., after they have become seeds. How-
ever, BitTorrent currently does not have such incentives and
therefore, we simply consider γ to be a fixed constant. Now,
we are ready to describe the evolution of x and y based on

the above model. A deterministic fluid model for the evolu-
tion of the number of peers (downloaders and seeds) is given
by

dx

dt
= λ− θx(t) − min{cx(t), µ(ηx(t) + y(t))},

dy

dt
= min{cx(t), µ(ηx(t) + y(t))} − γy(t), (1)

along with the obvious constraint that x(t) and y(t) should
be non-negative. A key contribution of [11] was to describe
the efficiency of data transfer from other downloaders using
the parameter η. Our fluid model provides a simple descrip-
tion of the system that was described by a Markov chain in
[11]. In addition, we have incorporated other realistic sce-
narios such as departures of downloaders due to impatience
with the downloading process (described by θ) and down-
loading bandwidth constraint c. In a later subsection, we
will also present a simple stochastic fluid model that char-
acterizes the variability around the fluid model. We now
study the steady-state performance of the P2P system us-
ing the above fluid model.

3.1 Steady-State Performance
To study the system in steady-state, we let

dx(t)

dt
=

dy(t)

dt
= 0

in (1) and obtain

0 = λ− θx̄− min{cx̄, µ(ηx̄+ ȳ)},
0 = min{cx̄, µ(ηx̄+ ȳ)} − γy(t), (2)

where x̄ and ȳ are the equilibrium values of x(t) and y(t)
respectively. We first assume η > 0. Further, suppose that
the downloading speed is the constraint, i.e., cx̄ ≤ µ(ηx̄+ ȳ).
Equation (2) then becomes a simple linear equation. Solving
the equation, we have

x̄ =
λ

c(1 + θ
c
)

ȳ =
λ

γ(1 + θ
c
)
. (3)

Now, the assumption that cx̄ ≤ µ(ηx̄+ ȳ) is equivalent to

1

c
≥ 1

η
(
1

µ
− 1

γ
).

Instead, if we assume that the uploading bandwidth is the
constraint, i.e., cx̄ ≥ µ(ηx̄+ ȳ), we get

x̄ =
λ

ν(1 + θ
ν
)

ȳ =
λ

γ(1 + θ
ν
)
, (4)

where 1
ν

= 1
η
( 1

µ
− 1

γ
). From cx̄ ≥ µ(ηx̄+ ȳ), we have

1

c
≤ 1

ν
=

1

η
(
1

µ
− 1

γ
).

Define 1
β

= max{ 1
c
, 1

η
( 1

µ
− 1

γ
)}, then (3) and (4) can be



combined to yield

x̄ =
λ

β(1 + θ
β
)

ȳ =
λ

γ(1 + θ
β
)
. (5)

To calculate the average downloading time for a peer in
steady state, we use Little’s law [4] as follows:

λ− θx̄

λ
x̄ = (λ− θx̄)T,

where T is the average downloading time, λ − θx̄ is the
average rate at which downloads are completed, and λ−θx̄

λ

is the fraction of downloaders that will become seeds. Using
(5), it is now easy to see that

T =
1

θ + β
. (6)

Recall that 1
β

= max{ 1
c
, 1

η
( 1

µ
− 1

γ
)}. Equation (6) provides

several insights into the behavior of BitTorrent:

• The average downloading time T is not related to λ,
the request arrival rate. Hence, the BitTorrent P2P
system scales very well.

• When η increases, T decreases. This is because the
peers share the file more efficiently.

• When γ increases, T increases because a larger γ means
that there are fewer seeds in the system.

• Initially, when c increases, T decreases. However, once
c is large enough ( 1

c
≤ 1

η
( 1

µ
− 1

γ
)), increasing c further

will not decrease T, because the downloading band-
width is no longer the bottleneck. A similar observa-
tion can be made regarding the uploading bandwidth
µ.

• It is often true that the downloading bandwidth c of a
peer would be much higher than its uploading band-
width µ. Common examples of such an asymmetry are
DSL and cable modem connections. For performance
analysis purposes, it may be tempting to set c = ∞
as in [11, 24]. However, the expression for T in (6)
shows that the average download time is not always
constrained by the uploading bandwidth of the peers.
In fact, if the seed leaving rate γ is smaller than µ, then
the downloading bandwidth c determines the network
performance even though c may be much larger than
µ.

We briefly comment on the case η = 0, which means that
downloaders do not upload data to each other and only
download from seeds. If γ < µ, the previous analysis as
in the case of η > 0 still holds and T = 1/c. On the other
hand, if γ > µ, from (1), we can see

dy(t)

dt
≤ (µ− γ)y(t).

This tells us that y(t) decreases at least exponentially. So
if γ > µ, the number of seeds will exponentially decrease to
zero and the system dies. Recall that when η > 0, the sys-
tem reaches a steady state no matter what γ is. So, it is very
important for the downloaders to upload data to each other.

Even if the file sharing is not very efficient (a small η), it can
play an important role in keeping the system alive. From
(6), we also see that η is important to the network perfor-
mance. In the next subsection, we will derive an expression
for η and argue that η is very close to 1 in BitTorrent.

3.2 Effectiveness of File Sharing
In this section, we present a simple model to calculate

the value of η, which indicates the effectiveness of the file
sharing. For a given downloader i, we assume that it is con-
nected to k = min{x− 1, K} other downloaders, where x is
the number of downloaders in the system and K is the max-
imum number of downloaders to which a peer can connect.
We also assume that each downloader has the information
about which pieces the connected peers have. Hence if peer
i has pieces that are of interest to at least one peer that is
connected to it, then peer i will upload data. We then have

η = 1 − P

{

downloader i has no piece that
the connected peers need

}

.

We assume that the piece distributions between different
peers are independent and identical. For each downloader,
we assume that the number of pieces it has is uniformly
distributed in {0, · · · , N − 1}, where N is the number of
pieces of the served file. Let ni denote the random variable
describing the number of pieces at downloader i. We assume
that given ni, these pieces are chosen randomly from the set
of all pieces of the file. This is a reasonable assumption
because BitTorrent takes a rarest first piece selection policy
when downloading. Under these assumptions, we have 1

η = 1 −
N−1
∑

ni=0

1

N
P

{

downloader j needs no
piece from downloader i

∣

∣

∣

∣

ni

}k

,

where j is a downloader connected to i. We then have

P

{

downloader j needs no
piece from downloader i

∣

∣

∣

∣

ni

}

= P{j has all pieces of downloader i|ni}

=

N−1
∑

nj=ni

1

N
P{j has all pieces of i|ni, nj}

=
1

N

N−1
∑

nj=ni

(

N−ni

nj−ni

)

(

N

nj

) =
1

N

N−1
∑

nj=ni

(

nj

nj−ni

)

(

N

ni

)

=
1

N

(

N

ni+1

)

(

N

ni

) =
N − ni

N(ni + 1)

and

η = 1 −
N−1
∑

ni=0

1

N

(

N − ni

N(ni + 1)

)k

≈ 1 − 1

N

(

1 +
1

2k
+ · · · + 1

Nk

)

,

when N is large. So, if k = 1,

η ≈ 1 − logN

N
. (7)

1We thank Michael Walfish for pointing out an error in the
expression for η in our original Sigcomm paper. The original
expression is incorrect when k > 1.



If k > 1,

η ≈ 1 − C(k)

N
, (8)

where C(k) = 1+ 1
2k + · · ·+ 1

Nk is a constant. Now, we will
interpret the expression for realistic file sizes. In BitTorrent,
each piece is typically 256KB. Thus, for a file that is a few
hundreds of megabytes in size, N is of the order of several
hundreds. Hence, even if k = 1, η is very close to one. For
BitTorrent, k is actually larger, since the maximum number
of connections K is typically 40. This tells us that BitTor-
rent is very efficient in sharing files. When k increases, η
also increases but very slowly and the network performance
increases slowly. Note that, since k depends on the number
of other peers in the system, it may be related to the arrival
rate λ. Hence, when λ increases, the network performance
increases but very slowly. Thus, our observation in the pre-
vious subsection that the network performance is essentially
independent of λ still holds. This also matches the observa-
tions of real BitTorrent networks presented in [11, 24]. Note
that when k = 0, the downloader is not connected to any
other downloaders and hence η = 0.

3.3 Local Stability
When deriving the steady-state quantities x̄, ȳ and T, we

implicitly assumed that the system is stable and will reach
its equilibrium. In this section, we study the stability of
the fluid model (1) around the equilibrium {x̄, ȳ}. When
1
c
< 1

η
( 1

µ
− 1

γ
), the uploading bandwidth is the constraint

and around a small neighborhood of {x̄, ȳ}, we have

dx(t)

dt
= λ− θx(t) − µ(ηx(t) + y(t))

dy(t)

dt
= µ(ηx(t) + y(t)) − γy(t).

Let

A1 =

[

−(µη + θ) −µ
µη −(γ − µ)

]

. (9)

Then the eigenvalues of A1 determine the stability of the
equilibrium {x̄, ȳ}. Let ψ be an eigenvalue of A1. The eigen-
values of A are the solutions of

ψ2 + (µη + θ + γ − µ)ψ + µηγ + θ(γ − µ) = 0. (10)

Since 1
c
< 1

η
( 1

µ
− 1

γ
), we have γ > µ. When η > 0, both

µη+θ+γ−µ and µηγ+θ(γ−µ) are greater than zero. So the
eigenvalues have strictly negative real parts and the system
is stable. Similarly, when 1

c
> 1

η
( 1

µ
− 1

γ
), the downloading

bandwidth is the constraint and around a small neighbor-
hood of {x̄, ȳ}, we have

dx(t)

dt
= λ− θx(t) − cx(t)

dy(t)

dt
= cx(t) − γy(t).

Let

A2 =

[

−(θ + c) 0
c −γ

]

. (11)

Then the eigenvalues of A2 satisfy

ψ2 + (θ + γ + c)ψ + (θ + c)γ = 0. (12)

Again, since both θ+γ+c and (θ+c)γ are greater than zero,
we see that the eigenvalues have strictly negative real parts

and the system is stable. The case where 1
c

= 1
η
( 1

µ
− 1

γ
) is a

little more tricky since the dynamics are determined by the
matrix A1 or the matrix A2, depending upon the direction
in which the system is perturbed. Thus, a linear analysis
will not suffice to even determine local stability. To avoid
lengthy arguments, we do not consider this special case here.
Even in the cases where 1

c
6= 1

η
( 1

µ
− 1

γ
), the global stability

of the fluid model (1) may be hard to analyze because of
the fact that the dynamics of the system changes depending
upon whether cx > µ(ηx+y) or not. Such systems are called
switched linear systems; we refer the reader to the survey in
[16] for the stability issues associated with such models.

3.4 Characterizing Variability
When the request arrival rate is large (which also means

a large number of downloaders and seeds), the fluid model
is a good approximation of the real system. However, it
is important to understand how the number of seeds and
downloaders vary around the numbers predicted by the de-
terministic model. In this subsection, we present a simple
characterization of the variance of x and y around x̄ and
ȳ using a Gaussian approximation. Under the assumptions
that we have discussed in Section 3, when the arrival rate λ
is large, the number of downloaders and seeds at any time t
can be described by

x(t) +
√
λx̂(t), y(t) +

√
λŷ(t),

respectively, where X̂ = (x̂, ŷ)T is the solution to the fol-
lowing stochastic fluid differential equation whose solution
is known as the Ornstein-Uhlenbeck process:

dX̂(t) = AX̂(t)dt+ BdW(t). (13)

In (13), the components of W are independent standard
Wiener processes (Brownian motions), with the entries of
A and B being determined by whether the downloading
or the uploading bandwidth is the bottleneck. Specifically,
A = A1 given by (9) if 1

c
< 1

η
( 1

µ
− 1

γ
) and A = A2 given by

(11) if 1
c
> 1

η
( 1

µ
− 1

γ
). In both cases, we have

B =

[

1 −√
ρ −

√

(1 − ρ) 0

0 0
√

(1 − ρ) −
√

(1 − ρ)

]

(14)

where ρ := θ
θ+β

. We do not consider the more complicated

case 1
c

= 1
η
( 1

µ
− 1

γ
) which is unlikely to occur in practice.

From (13), it is easy to compute the steady-state covariance

of X̂, i.e, Σ = limt→∞ E(X̂(t)X̂T (t)). This is given by the
so-called Lyapunov equation [3]

AΣ + ΣA
T + BB

T = 0. (15)

The steady-state variance of x̂ is then given by (1, 1) ele-
ment of Σ and the steady-state variance of ŷ is given by
the (2, 2) element of Σ. The above result essentially states
that, in steady-state, the number of seeds and downloaders
is distributed as Gaussian random variables whose variances
are determined by Σ. The formal proof required to establish
(13) is beyond the scope of this paper. We will simply state
here that it involves showing that the original stochastic
process converges to the deterministic and stochastic differ-
ential equation limits when the arrival rate goes to ∞. This
can be established using weak-convergence theorems such as
the ones in [5, 12, 23].



4. INCENTIVE MECHANISM
In this section, we discuss the algorithm in BitTorrent

which is intended to discourage free-riding. We first describe
the algorithm and then study the optimal selfish behavior
of the users under this algorithm.

4.1 Peer Selection Algorithm
There is a built-in incentive mechanism in BitTorrent to

encourage users to upload. The basic idea is that each peer
uploads to nu peers from which it has the highest download-
ing rates (the default value of nu is 4). But since a peer only
has partial information of the whole network (i.e., it doesn’t
have the upload rate information of all peers), optimistic un-
choking [8] is used to explore the network. In this section,
our objective is to understand how the built-in incentive
mechanism affects the network performance. Hence, we ig-
nore the details of optimistic unchoking and assume that
each peer has the global information of uploading rates. We
also assume that there are no downloading bandwidth con-
straints, all peers are fully connected and have demands from
each other. Under the above assumptions, we can simplify
the peer selection algorithm of BitTorrent as follows. We
first sort the peers according to their uploading bandwidth
(it could be the physical uploading bandwidth or the upload-
ing bandwidth that has been set manually by the user) such
that the first peer has the highest uploading bandwidth. If
two or more peers have the same uploading bandwidth, they
are randomly ordered. The peer selection process proceeds
in steps with peer i choosing peers to upload at step i. In
the real BitTorrent, the peer selection does not proceed in
steps like this. However, after we describe the selection al-
gorithm, it would be clear that the step-by-step selection
process does not change the selection of the peers signifi-
cantly. Let N be the total number of peers and let µi be
the uploading bandwidth of peer i. Then at step i, peer i
selects peers to upload according to the following rules.

1. If peer i is selected by peer j (j < i), then i selects j.
For any peer k (k ≥ i), let ni

k be the number of peers
that have selected peer k prior to step i.

2. If ni
i < nu and nu − ni

i ≤ N − i, peer i selects nu − ni
i

peers from the set {k|k > i} using the following set
of rules to prioritize a peer, say k1, over another peer
k2 :

(a) If µk1 > µk2, select k1.

(b) If µk1 = µk2 and ni
k1 < ni

k2, select k1.

(c) If µk1 = µk2, n
i
k1 = ni

k2, and k1 < k2, select k1.

3. If ni
i < nu and nu−ni

i > N−i, peer i selects all peers in
{k|k > i} and also randomly selects (nu−ni

i)−(N− i)
peers from the peers that i has not selected yet.

These rules are easy to understand. Rule 1 states that if
the downloading rate from peer j to peer i is greater than
or equal to the uploading rate of i, peer i should upload
to peer j to try to keep the downloading rate high. We
will show in Lemma 1 that ni

i ≤ nu. So rule 1 will not
violate the requirement that the number of uploads cannot
exceed nu. Rule 2(a) simply gives priority to peers with
higher uploading rates. Rule 2(b) tries to treat peers with
the same uploading rate as fairly as possible and rule 2(c) is
simply a tie-break rule. Rule 3 takes care of the last several

peers and makes sure that all peers have nu uploads. The
following lemma is a simple property of the peer selection
algorithm.

Lemma 1. With the peer selection algorithm, when peer
i selects uploading peers, we have ni

i ≤ nu and for any k2 >
k1 ≥ i, ni

k2 ≤ ni
k1 ≤ nu.

Proof: First, when i = 1, ni
i = 0 ≤ nu and ni

k2 =
ni

k1 = 0 ≤ nu, the lemma is true. Now, we assume that
the lemma is true for peer i and prove that it is also true
for peer i+ 1 and hence by induction, it is true for all i. If
the lemma is true for i, we will have ni

i+1 ≤ ni
i ≤ nu and

ni
k2 ≤ ni

k1 ≤ nu for any k2 > k1 ≥ i+ 1. Now, if ni
i = nu,

then peer i already has nu uploads and it will not select any
peer from {k|k > i}. Hence, for any k > i, ni

k = ni+1
k and

the lemma is true for i+ 1. If ni
i < nu, then ni

i+1 < nu. So,
no matter whether peer i selects peer i+1 or not, we always
have ni+1

i+1 ≤ nu. To show the second part of the lemma, if

ni
k1 > ni

k2, after peer i makes the selection, we always have
ni+1

k1 ≥ ni+1
k2 . If ni

k1 = ni
k2, according to rule 2, we also have

ni+1
k1 ≥ ni+1

k2 . Hence the lemma is true for i+ 1.
Now let Di be the set of peers that select peer i. We

exclude peers that randomly select i by using rule 3 here for
two reasons. First, each peer i has about equal chance to
be selected and hence on average, the effect of the random
selection can be equivalently seen as each peer getting a
constant download rate dr. Secondly, if the number of peers
is large, dr will be very small and can be ignored. The
aggregate downloading rate of peer i then is

di =
1

nu

∑

k∈Di

µk.

Note that if two peers have the same uploading bandwidth,
they may get different downloading rates. Generally, if µi =
µi+1 = · · · = µj are peers with the same uploading band-
width, we will have di ≥ di+1 ≥ · · · ≥ dj . So, for a given
peer i, the downloading rate not only depends on the up-
loading bandwidth µi, but also depends on how the peer is
ordered with regards to other peers with the same upload-
ing bandwidth. To eliminate the ambiguity, when there are
two or more peers with the same uploading bandwidth µ,
we define the downloading rate of these peers to be

d(µ) =
1

j − i+ 1

j
∑

k=i

dk, (16)

where i (resp. j) is the first (resp. last) peer with uploading
bandwidth µ. Moreover, we have the following lemma when
nu ≥ 2.

Lemma 2. Suppose that peers i, i+1, · · · , j have the same
uploading bandwidth µ, where i (resp. j) is the first (resp.
last) peer with uploading bandwidth µ. If j+ i−1 > nu ≥ 2,
then for any k > j, we have

1. di ≥ di+1 ≥ · · · ≥ dj ≥ dk,

2. di > dk,

3. d(µ) > dk.

Proof: First, from the peer selection rules, it is easy to
see that for any two peers k1 < k2, dk1 ≥ dk2. So condition
1 is obviously true. Now, to prove condition 2, we only need



to prove di > dj+1. When peer i selects peers, if ni
i = nu

(i.e., peer i has already been selected by nu peers that have
uploading bandwidth greater than µ), then di > µ. If ni

i <
nu, peer i will select nu − ni

i peers from i+ 1, · · · , j. So, we
always have di ≥ µ. Now, when peer m (i ≤ m ≤ j − nu)
selects peers, if nm

m+1 ≥ 1, obviously we will have nm+1
m+1 ≥

1. If nm
m+1 = 0, since peers m and m + 1 have the same

uploading bandwidth, from peer selection rule 2(b), we have
nm

m ≤ 1 < nu and m will select peer m+1. Hence nm+1
m+1 = 1.

In both case, we have nm+1
m+1 ≥ 1. When m+ 1 selects peers,

since nm+1
m+1 ≥ 1, nu − nm+1

m+1 ≤ nu − 1. From m+ 2 to j, we
have more than nu − 1 peers with uploading bandwidth µ.
So, m + 1 will not select peer j + 1 and peer j + 1 can at
most be selected by nu − 1 peers with uploading bandwidth
µ. So

dj+1 ≤ 1

nu

((nu − 1)µ+ µj+2) < µ ≤ di.

Since dj+1 ≥ dk for any k ≥ j + 1, we have di > dk. From
the condition 2 and the definition of d(µ) (16), it is easy to
see that d(µ) > dk and we are done.

Now, we have defined the peer selection rules. We will
next study how these rules affect the peer’s choice of µi, the
uploading bandwidth.

4.2 Peer Strategy
The objective of the incentive mechanism is to encourage

users to contribute. In BitTorrent, the uploading bandwidth
can be chosen by each user up to a maximum of the physical
uploading bandwidth. The purpose of the rest of this section
is to study how the incentive mechanism will affect the peer
strategy, i.e, how the users set their bandwidth. Let pi be
the physical uploading bandwidth of peer i and let {µ−i} be
the set of uploading bandwidth chosen by the peers except
µi. Let di(µi, µ−i) be the aggregate downloading rate of peer
i when the uploading bandwidth of peer i is µi. When {µ−i}
is given, it is obvious that di is a non-decreasing function of
µi. So when µi = pi, peer i gets the maximum downloading
rate. But setting µi = pi is not necessarily the best strategy
for peer i. For each peer i, di is the gain and µi is the cost.
A peer wants to maximize the gain, but at the same time,
it also wants to minimize the cost. Here, we assume that
maximizing the gain has priority over minimizing the cost.
Intuitively, we may want peer i to choose µi such that

µi = min{µ̃i|di(µ̃i, µ−i) = di(pi, µ−i)}. (17)

But unfortunately, the minimum of the set {µ̃i|di(µ̃i, µ−i) =
di(pi, µ−i)} may not exist (e.g., for the set (4, 6]). If we take
this into account, the best strategy for peer i will be

µi = min {inf{µ̃i|di(µ̃i, µ−i) = di(pi, µ−i)} + ε, pi} , (18)

where ε > 0 is a small number. The parameter ε can be
interpreted as the small difference between two rates that
a peer can differentiate. Note that even if the minimum of
{µi|di(µi, µ−i) = di(pi, µ−i)} exists, it is still better to add
a small number ε. Because if the uploading bandwidth of
two peers are very close, we may not be able to detect the
difference between them. Hence, adding a small positive
number can help differentiate peer i from other competing
peers. Given the peer selection algorithm (game rules), we
can now study the system as a non-cooperative game. A
Nash equilibrium for our problem is a set of uploading rates

{µ̄i} such that

µ̄i = min {inf{µ̃i|di(µ̃i, µ̄−i) = di(pi, µ̄−i)} + ε, pi} .
Let’s consider a small BitTorrent network with 6 peers. The
number of uploads nu = 4 for all peers. We will show that if
the peers have different physical uploading bandwidth and
the minimum uploading bandwidth min{pi} > 2ε, there is
no Nash equilibrium point for the system. In this simple ex-
ample, we can see that if the uploading bandwidth µi of peer
i is less than those of all other peers, then peer i will get zero
downloading rate because the other five peers will upload to
each other and not to peer i. On the other hand, once µi is
greater than the uploading bandwidth of at least one peer,
peer i will get the same downloading rate even if µi < pi.
So the strategy for peer i (18) in this example turns out to
setting µi such that it is the fifth highest uploading band-
width. Now, assume that there is a Nash equilibrium point
{µ̄i} and we sort the peers by their uploading bandwidth
such that µ̄1 is the highest uploading bandwidth. Then we
have µ̄5 > µ̄6. Otherwise, if they are equal, since the two
peers have different physical uploading bandwidth, there is
at least one peer with µi < pi and this peer can increase its
uploading bandwidth to increase its download rate. Now, if
µ̄5 > µ̄6, we know that peer 6 gets a zero downloading rate.
Since {µ̄i} is a Nash equilibrium, given {µ̄−6}, the maximum
downloading rate that peer 6 can get is also zero. Hence,
from (18), we have µ̄6 = ε. Now, if µ̄6 = ε, from ( 18),
we have µ̄5 = 2ε < min{pi}. If µ̄5 < min{pi}, peer 6 can
increase its uploading bandwidth such that µ6 > µ̄5, which
contradicts the fact that µ̄5 is the fifth highest uploading
bandwidth. Hence, there is no Nash equilibrium point for
the system. While there may be no Nash equilibrium point
for a general network setting, when the network consists of
groups of peers where members of each group have the same
uploading and downloading bandwidths, there does exist a
Nash equilibrium point as we will show in the next subsec-
tion.

4.3 Nash Equilibrium Point
We consider a network with a finite number of groups of

peers. In group j, all peers have the same physical uploading
bandwidth pj . Note that this is in fact a good model for
the current Internet users, who have only a finite number
of network access methods (dial-up, dsl, cable modem, etc).
Let gj be the set of peers in group j and ||gj || be the number
of peers in group j. Without loss of generality, we also
assume p1 > p2 > · · · .

Proposition 1. If nu ≥ 2 and the number of peers in
a group ||gj || > nu + 1 for all groups, there exists a Nash
equilibrium point for the system, in which µ̄i = pj if peer
i ∈ gj. Moreover, with any initial setting of {µ0

i }, the system
converges to the Nash equilibrium point {µ̄i}.

Proof: We first prove that {µ̄i} is a Nash equilibrium
point. To prove this, we only need to prove that for any peer
i, if µi < µ̄i, then di(µi, µ̄−i) < di(µ̄i, µ̄−i). Without loss of
generality, we assume that i ∈ gj . Since ||gj || > nu + 1, if
we set µi < µ̄i = pj , there will be still at least nu + 1 peers
with uploading bandwidth pj . From Lemma 2, it is easy to
see that di(µi, µ̄−i) < di(µ̄i, µ̄−i). To prove convergence, we
first consider the first group g1. Let vm be the (nu + 1)th
highest uploading bandwidth after m rounds of iterations.
Then v0 is the (nu + 1)th highest uploading bandwidth of



the initial set {µ0
i }. If after m rounds, vm + ε ≤ p1, then in

the m+ 1 round, any peer i ∈ g1 will increase its uploading
bandwidth to µi ≥ vm + ε to maximize its downloading
rate. Since ||g1|| > nu + 1, after the m + 1 round, we will
have vm+1 ≥ vm + ε. The increase in vm will continue
until vm = p1 and the peers cannot increase their uploading
bandwidth anymore. In this case, any peer i ∈ g1 will have
the uploading bandwidth µi = p1. Once peers in the first
group reach their maximum limit, they will not change their
uploading bandwidth anymore. We can now use a similar
argument to prove that peers in the second group will also
reach the Nash equilibrium point. Continuing in a similar
fashion, we can establish that the whole system converges
to the Nash equilibrium point.

5. OPTIMISTIC UNCHOKING
In Section 4, we assume that each peer knows the up-

loading bandwidths of all other peers. In reality, each peer
only has the rate information about peers from which it is
downloading. Hence optimistic unchoking is used to explore
the network and obtain information about other peers. In
this section, we briefly study the effect of optimistic un-
choking on free-riders. Specifically, while in Section 4.3, we
showed that rational users would set their uploading rate to
be equal to the maximum possible limit, here we will show
that the maximum downloading rate that an irrational user
who chooses to free-ride is limited to 1

nu+1
of the normal

downloading rate that they can get if they behave rationally.

5.1 Free-Riding
Free-riding means that a peer does not contribute any-

thing to the system, while it attempts to obtain service (or
downloading) from other peers. If peers have global informa-
tion, the free-riding problem can be solved by not uploading
to peers with zero uploading bandwidth. In reality, peers use
optimistic unchoking to explore the network and this gives
an opportunity to free-ride. To illustrate it, let’s consider
a simple example. We consider a network with a group of
peers (g1) that have the same uploading bandwidth µ. The
number of peers in the group is N . We assume that each
peer has nu uploads and one optimistic unchoking upload.
Now, a new peer j with zero uploading bandwidth joins the
network. Each peer i ∈ g1 will randomly choose a peer that
it is not currently uploading to as the target of its optimistic
unchoking. So, for peer i, on average, 1

N−nu
of the time, it

will optimistically upload to peer j. Since there is a total of
N peers in g1, the total average downloading rate of peer j
will be

N
1

N − nu

µ

nu + 1
≈ µ

nu + 1
,

when N is large. In this example, we see that because of op-
timistic unchoking, peer j contribute nothing to the system,
but it still get an average downloading rate of µ

nu+1
. In cur-

rent BitTorrent, nu = 4 and thus a free-rider gets 20% of the
possible maximum downloading rate. It would seem that nu

can be increased to reduce the amount that a free-rider can
get. However, choosing nu to be large means that multiple
TCP connections have to share the same bandwidth and
thus may lead to more time-outs and result in poor per-
formance. The choice of an optimal nu or other methods
to alleviate the free-riding problem is a subject for further
study.

6. EXPERIMENTAL RESULTS
We performed a series of experiments to validate the fluid

model described in Section 3. In the first two experiments,
we compare a simulated BitTorrent-like network and the
fluid model. In the last experiment, we actually introduced
a seed into the BitTorrent network, studied the evolution of
the seeds/downloaders, and compared it to our fluid model
results. Due to copyright reasons, we obviously could not
introduce a very popular file into the network. However,
as we will show in our experimental results, even for a file
which had a total of less than 100 completed downloads,
the match between the fluid model and the observed data is
quite close.

6.1 Experiment 1
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Figure 1: Experiment 1 : The evolution of the num-

ber of seeds as a function of time
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Figure 2: Experiment 1 : The evolution of the num-

ber of downloaders as a function of time

In Figs 1 and 2, we compare the simple deterministic fluid
model that we derived with the results from a discrete-event
simulation of a BitTorrent-like network. In the discrete-
event simulation, we use the Markov model described in
Section 3.4. We chose the following parameters for this sim-
ulation: µ = 0.00125, c = 0.002, θ = γ = 0.001. When the
number of downloaders is 1, we set η = 0, otherwise, we set



η = 1. This is in keeping with our observation regarding
the efficiency of the download as described in Section 3.2.
Initially, there is one seed and no downloader. We also keep
the number of seeds no less than one during the entire sim-
ulation. We change the arrival rate λ from 0.04 to 40 and
plot number of seeds/downloaders normalized by the arrival

rate, i.e., y(t)
λ

and x(t)
λ
, from both simulations and the fluid

model. In this experiment, since γ < µ, we know that down-
loading bandwidth is the bottleneck. From the figures, we
see that the simple fluid model is a good approximation of
the system when λ is large, but the match is quite good
even for small λ. The figures also indicate that the number
of downloaders increases linearly with the arrival rate λ. By
Little’s law, this implies that the average download time is
constant, independent of the peer arrival rate, which shows
that the system scales very well. In other words, even very
popular files can be downloaded at the same speed as less
popular files.

6.2 Experiment 2
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Figure 3: Experiment 2 : The evolution of the num-

ber of seeds
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Figure 4: Experiment 2 : The evolution of the num-

ber of downloaders

In Figs. 3 and 4, we have the same setting as the first
experiment, except that now we set γ = 0.005. With the
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Figure 5: Experiment 2 : Histogram of the variation

of the number of seeds around the fluid model
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Figure 6: Experiment 2 : Histogram of the varia-

tion of the number of downloaders around the fluid

model

change of γ, the uploading bandwidth now becomes the bot-
tleneck. In this setting, we have the similar result as before.
Again, we see that the simple fluid model is accurate when
λ is large, but performs well even for smaller λ. We also plot
the histogram of x̂ and ŷ in Figs. 5 and 6,

x̂(t) =
xsim(t) − x(t)√

λ

and

ŷ(t) =
ysim(t) − y(t)√

λ
,

where xsim(t) and ysim(t) are the number of downloaders
and seeds respectively in the actual simulation and x(t) and
y(t) are the number of downloaders and seeds in determin-
istic fluid model. From the theory presented in Section 3.4,
we expect the histograms to look roughly Gaussian and this
fact is borne out by the figures for sufficiently large λ. We
can see that the variance of x̂ and ŷ do not change much
when λ changes from 0.04 to 40.

6.3 Experiment 3



In this experiment, we introduced a file into the BitTor-
rent network and collected the log files of the BitTorrent
tracker for a time period of around three days. When a
peer joins/leaves the system or completes the download, it
reports the event to the tracker. In addition, peers regu-
larly report information such as the total amount of data
uploaded/downloaded so far, the number of bytes that still
need to be downloaded, etc. The tracker keeps all the infor-
mation in the log files. Hence, we can analyze the tracker
log files and retrieve useful information. The parameters λ,
θ, and γ can be measured by counting the peer arrival, the
downloader departure, and the seed departure respectively.
However, from the tracker log files, we cannot determine
whether the uploading bandwidth or the downloading band-
width is the bottleneck. So we assume the uploading band-
width is the bottleneck and estimate µ by dividing the mea-
sured total uploading rate by the number of peers (i.e., we
assume that η = 1). The size of the file that was introduced
was around 530MB. The average uploading bandwidth was
estimated to be 90kb/s. We use 1 min as the time unit to
calculate arrival rates, departure rates, etc. The normalized
uploading bandwidth (normalized by the file size in bytes)
was estimated µ = 0.0013. The downloader leaving rate was
estimated to be θ = 0.001. An interesting feature that we
observed in the real BitTorrent is that λ and γ are in fact
time-varying. We attribute this to the fact that when a new
file is introduced into the system, the first few seeds stay in
the system long enough to ensure that there is a sufficient
population of peers to sustain the system. If the initial seeds
depart too quickly, the system will simply die, i.e., there will
be no one to download from. From the tracker logs, we esti-
mate that, for t ≤ 800min, λ = 0.06 and γ = 0.001. When
t ≥ 1300min, λ = 0.03 and γ = 0.0044. In between, the
arrival rate increases roughly linearly. In our fluid model
simulation, for time between 800min and 1300min, we let
λ and γ change linearly. We also set the downloading band-
width c = 1 for the fluid model simulation (note that the
actual value of c will not affect the fluid model results if it is
above a certain threshold). The simulation results are shown
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Figure 7: Experiment 3 : Evolution of the number

of seeds

in Figs 7 and 8. The real trace is measured from the tracker
log file and the fluid model is calculated by using the above
measured parameters. For the fluid model, we also numeri-
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Figure 8: Experiment 3 : Evolution of the number

of downloaders

cally calculate the standard deviation from the steady state
network parameters by using (15) and plot the error bar for
95% confidence intervals. From Fig. 7, we see that the fluid
model captures the evolution of the number of seeds well. In
Fig. 8, the oscillation of the number of downloaders is more
significant. This is because that the file is not very popular
and the arrival rate λ is small. Hence, our model is only an
approximation of the real network. But despite this, we can
see that the oscillation is within the level suggested by the
95% confidence interval.

7. CONCLUSIONS
In this paper, we first presented a simple fluid model for

BitTorrent-like networks and studied the steady-state net-
work performance. Specifically, we obtained expressions for
the average number of seeds, the average number of down-
loaders, and the average downloading time as functions of
the peer arrival rate, downloader leaving rate, seed leav-
ing rate, uploading bandwidth, etc, which explicitly give
us insight on how the network performance is affected by
different parameters. We also characterized the variability
of the system by applying limit theorems to the stochastic
model when the arrival rate is large. We then abstracted
the built-in incentive mechanism of BitTorrent and studied
its effect on network performance. Under certain conditions,
we proved that a Nash equilibrium exists, under which each
peer chooses its physical uploading bandwidth to be equal to
the actual uploading bandwidth. We also briefly discussed
the effect of optimistic unchoking on free-riding. Our experi-
mental results show that the simple fluid model can capture
the behavior of the system even when the arrival rate is
small.
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