
CISC 322
Software Architecture

Lecture 07:

Architecture Styles (2)

Emad Shihab
Adapted from Ahmed E. Hassan and Spiros Mancoridis

Announcement

■ Professional Internship Program

– Sep. 22 @ 5:30 in Goodwin Hall 247

■ Quizzes and teaching style

Last Class Recap

■ Architectural styles are used to:

– Communicate between stakeholders

– Document design decisions

– Support sharing of styles for similar software

systems

■ Repository – e.g. World of War Craft

■ Pipe and Filter – e.g. Traditional compilers

© SERG Software Design (Software Architecture)

Repository Style

Shared Data

Memory

Memory Access

Computation

Summary of Repository Style

■ Independent components (programs)

access and communicate exclusively

through global repository

■ Advantages
■ Efficient storage of

data

■ Easily manageable

■ Can solve complex

problems

■ Disadvantages
■ Evolving data is

expensive

■ Cannot handle high

volume or complex

logic

© SERG Software Design (Software Architecture)

Pipe and Filter

Architectural Style

filter

pipes

Summary of Pipe-and-Filter Style

■ Independent components connected by

pipes that route data streams between

filters

■ Advantages
■ Easy to understand

■ Easy to maintain

and enhance

■ Disadvantages:
■ Poor performance

■ Increased

complexity

© SERG Software Design (Software Architecture)

Object-Oriented Style

obj

obj

obj

obj

obj

obj

obj

obj

object

© SERG Software Design (Software Architecture)

Object-Oriented Style

• Data representations and their associated

operations are encapsulated in an abstract

data type

• Components: are objects.

• Connectors: are function and procedure

invocations (methods).

Object-Oriented Style

■ Topology: Arbitrary

■ Maximize Cohesion

– Operate only on your own data

■ Minimize Coupling

– Minimize dependencies between objects

© SERG Software Design (Software Architecture)

Object-Oriented Invariants

• Objects are responsible for preserving the

integrity of the data

– Data only manipulated by appropriate functions

• The data representation is hidden from

other objects (information hiding)

© SERG Software Design (Software Architecture)

Object-Oriented Advantages

• Object can change the implementation

without affecting its clients.

• Can design systems as collections of

autonomous interacting agents.

– Since accessing routines bundled with data

© SERG Software Design (Software Architecture)

Object-Oriented Disadvantages

• Objects need to identify other objects they
want to interact with

– Contrast with Pipe and Filter Style

– What if identity of an object changes?

• Objects cause side effect problems:

– E.g., A and B both use object C, then B’s effects
on C look like unexpected side effects to A.

Main Program Lunar Lander

Example

Taylor et al. 2010

Object-Oriented Lunar Lander

Example

Interaction with the user are handled by one object

Taylor et al. 2010

UML representation of Lunar

Lander Example

Taylor et al. 2010

QA evaluation for Object Oriented

■ Performance

– In distributed environment, may require

middleware to access remote objects

■ Availability

– Distributed, if part of the system is impacted,

the rest can function

■ Modifiability

– Easy to modify implementation without

affecting other clients

– Changing identity of objects may have high

impact

© SERG Software Design (Software Architecture)

Implicit Invocation Style

procedure procedure procedure

Broadcasting System

Implicit Invocation Variants

■ Publish-Subscribe

– Subscribers register to receive specific

messages

– Publishers maintain a subscription list and

broadcast messages to subscribers

■ Event-Based

– ICs asynchronously emit and receive “events”

communicated over event bus

Taylor et al. 2010

Implicit Invocation Style

■ Components

– Publishers, subscribers

– Event generators and consumers

■ Connectors

– (PS) Procedure calls

– Event bus

Taylor et al. 2010

Implicit Invocation Style Topology

■ Subscribers connect to publishers directly

(or through network)

■ Components communicate with the event

bus, not directly to each other

Implicit Invocation Style Topology

Publish-Subscribe Event Based

Taylor et al. 2010

© SERG Software Design (Software Architecture)

Implicit Invocation Advantages

• (PS) Efficient dissemination of one-way

information

• Provides strong support for reuse

– Any component can be added, by

registering/subscribing for events

• Eases system evolution

– components may be replaced without affecting

other components in the system

© SERG Software Design (Software Architecture)

Implicit Invocation

Disadvantages

• (PS) Need special protocols when number

of subscribers is very large

• When a component announces an event:

– it has no idea what other components will

respond to it,

– it cannot rely on the order in which the

responses are invoked

– it cannot know when responses are finished

© SERG Software Design (Software Architecture)

Implicit Invocation Examples

• Used in programming environments to

integrate tools:

– Debugger stops at a breakpoint and makes that

announcement

– Editor scrolls to the appropriate source line and

highlights it

• Twitter, Google+

QA evaluation for Implicit

Invocation

■ Performance

– (PS) Can deliver 1000s of msgs

– Event bus: how does it compare to Repository?

■ Availability

– Publisher needs to be replicated

■ Scalability

– Can support 1000s of users, growth in data size

■ Modifiability

– Easily add more subscribers, change in

message format affects many subscribers

