
Application Layer 2-1

Chapter 2
Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:
� If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
� If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
� SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-3

Chapter 2: application layer

our goals:

� conceptual,
implementation aspects
of network application
protocols

� transport-layer
service models

� client-server
paradigm

� learn about protocols by
examining popular
application-level
protocols
� HTTP

� FTP

� SMTP / POP3 / IMAP

� DNS

� creating network
applications

� socket API (To be
done during Lab 3)

Application Layer 2-4

Some network apps

� e-mail

� web

� text messaging

� remote login

� P2P file sharing

� multi-user network games

� streaming stored video
(YouTube, Hulu, Netflix)

� voice over IP (e.g., Skype)

� real-time video
conferencing

� social networking

� search

� …

� …

Application Layer 2-5

Creating a network app

write programs that:

� run on (different) end systems

� communicate over network

� e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

� network-core devices do not
run user applications

� applications on end systems
allows for rapid app
development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Application Layer 2-6

Application architectures

possible structure of applications:

� client-server

� peer-to-peer (P2P)

Application Layer 2-7

Client-server architecture

server:
� always-on host

� permanent IP address

� data centers for scaling

clients:
� communicate with server

� may be intermittently
connected

� may have dynamic IP
addresses

� do not communicate directly
with each other

client/server

Application Layer 2-8

P2P architecture

� no always-on server

� arbitrary end systems
directly communicate

� peers request service from
other peers, provide service
in return to other peers

� self scalability – new
peers bring new service
capacity, as well as new
service demands

� peers are intermittently
connected and change IP
addresses

� complex management

peer-peer

Application Layer 2-9

Processes communicating

process: program running
within a host

� within same host, two
processes communicate
using inter-process
communication (defined by
OS)

� processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

� aside: applications with P2P
architectures have client
processes & server
processes

clients, servers

Application Layer 2-10

Sockets

� process sends/receives messages to/from its socket

� socket analogous to door

� sending process shoves message out door

� sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-11

Addressing processes

� to receive messages,
process must have identifier

� host device has unique 32-
bit IP address

� Q: does IP address of host
on which process runs
suffice for identifying the
process?

� identifier includes both IP
address and port numbers
associated with process on
host.

� example port numbers:
� HTTP server: 80

� mail server: 25

� to send HTTP message to
gaia.cs.umass.edu web
server:
� IP address: 128.119.245.12

� port number: 80

� more shortly…

� A: no, many processes
can be running on same
host

Application Layer 2-12

App-layer protocol defines

� types of messages
exchanged,

� e.g., request, response

� message syntax:

� what fields in messages
& how fields are
delineated

� message semantics

� meaning of information
in fields

� rules for when and how
processes send & respond
to messages

open protocols:

� defined in RFCs

� allows for interoperability

� e.g., HTTP, SMTP

proprietary protocols:

� e.g., Skype

Application Layer 2-13

What transport service does an app need?

data integrity

� some apps (e.g., file transfer,
web transactions) require
100% reliable data transfer

� other apps (e.g., audio) can
tolerate some loss

timing

� some apps (e.g., Internet
telephony, interactive
games) require low delay
to be “effective”

throughput

� some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

� other apps (“elastic apps”)
make use of whatever
throughput they get

security

� encryption, data integrity,
…

Application Layer 2-14

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no

yes, 100’s
msec

yes, few secs

yes, 100’s
msec
yes and no

Application Layer 2-15

Internet transport protocols services

TCP service:
� reliable transport between

sending and receiving
process

� flow control: sender won’t
overwhelm receiver

� congestion control: throttle
sender when network
overloaded

� does not provide: timing,
minimum throughput
guarantee, security

� connection-oriented: setup
required between client and
server processes

UDP service:
� unreliable data transfer

between sending and
receiving process

� does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-16

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Securing TCP

TCP & UDP

� no encryption

� cleartext passwds sent
into socket traverse
Internet in cleartext

SSL

� provides encrypted
TCP connection

� data integrity

� end-point
authentication

SSL is at app layer

� Apps use SSL libraries,
which “talk” to TCP

SSL socket API

� cleartext passwds sent
into socket traverse
Internet encrypted

� See Chapter 7

Application Layer 2-17

Application Layer 2-18

Chapter 2: outline

2.1 principles of network
applications
� app architectures

� app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
� SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-19

Web and HTTP

First, a review…
� web page consists of objects

� object can be HTML file, JPEG image, Java applet,
audio file,…

� web page consists of base HTML-file which
includes several referenced objects

� each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-20

HTTP overview

HTTP: hypertext
transfer protocol

� Web’s application layer
protocol

� client/server model
� client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

� server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

Application Layer 2-21

HTTP overview (continued)

uses TCP:
� client initiates TCP

connection (creates
socket) to server, port 80

� server accepts TCP
connection from client

� HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

� TCP connection closed

HTTP is “stateless”
� server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

� past history (state) must be
maintained

� if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-22

HTTP connections

non-persistent HTTP

� at most one object
sent over TCP
connection

� connection then
closed

� downloading multiple
objects required
multiple connections

persistent HTTP

� multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 2-23

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,

references to 10
jpeg images)

www.someSchool.edu/someDepartment/home.index

Application Layer 2-24

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer 2-25

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:

� one RTT to initiate TCP
connection

� one RTT for HTTP request
and first few bytes of HTTP
response to return

� file transmission time

� non-persistent HTTP
response time =

2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 2-26

Persistent HTTP

non-persistent HTTP issues:
� requires 2 RTTs per object

� OS overhead for each TCP
connection

� browsers often open
parallel TCP connections
to fetch referenced objects

persistent HTTP:
� server leaves connection

open after sending
response

� subsequent HTTP
messages between same
client/server sent over
open connection

� client sends requests as
soon as it encounters a
referenced object

� as little as one RTT for all
the referenced objects

Application Layer 2-27

HTTP request message

� two types of HTTP messages: request, response

� HTTP request message:
� ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character

line-feed character

Application Layer 2-28

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer 2-29

Uploading form input

POST method:
� web page often includes

form input

� input is uploaded to
server in entity body

URL method:
� uses GET method

� input is uploaded in URL
field of request line:

www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-30

Method types

HTTP/1.0:
� GET

� POST

� HEAD

� asks server to leave
requested object out
of response

HTTP/1.1:
� GET, POST, HEAD

� PUT

� uploads file in entity
body to path specified
in URL field

� DELETE

� deletes file specified in
the URL field

Application Layer 2-31

HTTP response message

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

Application Layer 2-32

HTTP response status codes

200 OK

� request succeeded, requested object later in this msg

301 Moved Permanently

� requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

� request msg not understood by server

404 Not Found

� requested document not found on this server

505 HTTP Version Not Supported

� status code appears in 1st line in server-to-
client response message.

� some sample codes:

Application Layer 2-33

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.

anything typed in sent

to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1

Host: cis.poly.edu

by typing this in (hit carriage

return twice), you send

this minimal (but complete)

GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Application Layer 2-34

User-server state: cookies

many Web sites use cookies

four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:

� Susan always access Internet
from PC

� visits specific e-commerce
site for first time

� when initial HTTP requests
arrives at site, site creates:

� unique ID

� entry in backend
database for ID

Application Layer 2-35

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for user create
entry

usual http response
set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
amazon 1678

backend

database

Application Layer 2-36

Cookies (continued)

what cookies can be used
for:

� authorization
� shopping carts
� recommendations
� user session state (Web

e-mail)

cookies and privacy:

� cookies permit sites to
learn a lot about you

� you may supply name and
e-mail to sites

aside

how to keep “state”:
� protocol endpoints: maintain state at

sender/receiver over multiple
transactions

� cookies: http messages carry state

Application Layer 2-37

Web caches (proxy server)

� user sets browser: Web
accesses via cache

� browser sends all HTTP
requests to cache

� object in cache: cache
returns object

� else cache requests
object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin

server

origin

server

Application Layer 2-38

More about Web caching

� cache acts as both
client and server
� server for original

requesting client

� client to origin server

� typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?

� reduce response time
for client request

� reduce traffic on an
institution’s access link

� Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-39

Caching example:

origin

servers
public

Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

assumptions:
� avg object size: 100K bits

� avg request rate from browsers to
origin servers:15/sec

� avg data rate to browsers: 1.50 Mbps

� RTT from institutional router to any
origin server: 2 sec

� access link rate: 1.54 Mbps

consequences:
� LAN utilization: 15%

� access link utilization = 99%

� total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

problem!

Application Layer 2-40

assumptions:
� avg object size: 100K bits

� avg request rate from browsers to
origin servers:15/sec

� avg data rate to browsers: 1.50 Mbps

� RTT from institutional router to any
origin server: 2 sec

� access link rate: 1.54 Mbps

consequences:
� LAN utilization: 15%

� access link utilization = 99%

� total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

Caching example: fatter access link

origin

servers

1.54 Mbps

access link
154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public

Internet

institutional

network
1 Gbps LAN

institutional

network
1 Gbps LAN

Application Layer 2-41

Caching example: install local cache

origin

servers

1.54 Mbps

access link

local web
cache

assumptions:
� avg object size: 100K bits

� avg request rate from browsers to
origin servers:15/sec

� avg data rate to browsers: 1.50 Mbps

� RTT from institutional router to any
origin server: 2 sec

� access link rate: 1.54 Mbps

consequences:
� LAN utilization: 15%

� access link utilization = 100%

� total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public

Internet

Application Layer 2-42

Caching example: install local cache

Calculating access link
utilization, delay with cache:

� suppose cache hit rate is 0.4
� 40% requests satisfied at cache,

60% requests satisfied at origin

origin

servers

1.54 Mbps

access link

� access link utilization:
� 60% of requests use access link

� data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
� utilization = 0.9/1.54 = .58

� total delay
� = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
� = 0.6 (2.01) + 0.4 (~msecs)
� = ~ 1.2 secs
� less than with 154 Mbps link (and

cheaper too!)

public

Internet

institutional

network
1 Gbps LAN

local web
cache

Application Layer 2-43

Conditional GET

� Goal: don’t send object if
cache has up-to-date
cached version
� no object transmission

delay

� lower link utilization

� cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

� server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

before

<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

after

<date>

client server

Application Layer 2-44

Chapter 2: outline

2.1 principles of network
applications
� app architectures

� app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
� SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 2-45

FTP: the file transfer protocol

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

� transfer file to/from remote host
� client/server model

� client: side that initiates transfer (either to/from remote)

� server: remote host

� ftp: RFC 959
� ftp server: port 21

Application Layer 2-46

FTP: separate control, data connections

� FTP client contacts FTP server
at port 21, using TCP

� client authorized over control
connection

� client browses remote
directory, sends commands
over control connection

� when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

� after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

� server opens another TCP
data connection to transfer
another file

� control connection: “out of
band”

� FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-47

FTP commands, responses

sample commands:
� sent as ASCII text over

control channel

� USER username

� PASS password

� LIST return list of file in
current directory

� RETR filename
retrieves (gets) file

� STOR filename stores
(puts) file onto remote
host

sample return codes
� status code and phrase (as

in HTTP)

� 331 Username OK,
password required

� 125 data
connection
already open;
transfer starting

� 425 Can’’’’t open
data connection

� 452 Error writing
file

Application Layer 2-48

Chapter 2: outline

2.1 principles of network
applications
� app architectures

� app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
� SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 2-49

Electronic mail

Three major components:
� user agents

� mail servers

� simple mail transfer
protocol: SMTP

User Agent
� a.k.a. “mail reader”

� composing, editing, reading
mail messages

� e.g., Outlook, Thunderbird,
iPhone mail client

� outgoing, incoming
messages stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Application Layer 2-50

Electronic mail: mail servers

mail servers:
� mailbox contains incoming

messages for user

� message queue of outgoing
(to be sent) mail messages

� SMTP protocol between
mail servers to send email
messages

� client: sending mail
server

� “server”: receiving mail
server

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Application Layer 2-51

Electronic Mail: SMTP [RFC 2821]

� uses TCP to reliably transfer email message from
client to server, port 25

� direct transfer: sending server to receiving
server

� three phases of transfer
� handshaking (greeting)

� transfer of messages

� closure

� command/response interaction (like HTTP, FTP)
� commands: ASCII text

� response: status code and phrase

� messages must be in 7-bit ASCI

Application Layer 2-52

user

agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Application Layer 2-53

Sample SMTP interaction

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

Application Layer 2-54

Try SMTP interaction for yourself:

� telnet servername 25

� see 220 reply from server

� enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client (reader)

Application Layer 2-55

SMTP: final words

� SMTP uses persistent
connections

� SMTP requires message
(header & body) to be in
7-bit ASCII

� SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:

� HTTP: pull

� SMTP: push

� both have ASCII
command/response
interaction, status codes

� HTTP: each object
encapsulated in its own
response msg

� SMTP: multiple objects
sent in multipart msg

Application Layer 2-56

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

� header lines, e.g.,
� To:

� From:

� Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

� Body: the “message”
� ASCII characters only

header

body

blank
line

Application Layer 2-57

Mail access protocols

� SMTP: delivery/storage to receiver’s server

� mail access protocol: retrieval from server
� POP: Post Office Protocol [RFC 1939]: authorization,

download

� IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

� HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user

agent
user

agent

Application Layer 2-58

POP3 protocol

authorization phase
� client commands:

� user: declare username

� pass: password

� server responses

� +OK

� -ERR

transaction phase, client:
� list: list message numbers

� retr: retrieve message by
number

� dele: delete

� quit

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: <message 1 contents>

S: .

C: dele 1

C: retr 2

S: <message 1 contents>

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

Application Layer 2-59

POP3 (more) and IMAP

more about POP3
� previous example uses

POP3 “download and
delete” mode

� Bob cannot re-read e-
mail if he changes
client

� POP3 “download-and-
keep”: copies of messages
on different clients

� POP3 is stateless across
sessions

IMAP
� keeps all messages in one

place: at server

� allows user to organize
messages in folders

� keeps user state across
sessions:

� names of folders and
mappings between
message IDs and folder
name

Application Layer 2-60

Chapter 2: outline

2.1 principles of network
applications
� app architectures

� app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
� SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-61

DNS: domain name system

people: many identifiers:

� SSN, name, passport #

Internet hosts, routers:

� IP address (32 bit) -
used for addressing
datagrams

� “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
� distributed database

implemented in hierarchy of
many name servers

� application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

� note: core Internet function,
implemented as application-
layer protocol

� complexity at network’s
“edge”

Application Layer 2-62

DNS: services, structure

why not centralize DNS?
� single point of failure

� traffic volume

� distant centralized database

� maintenance

DNS services
� hostname to IP address

translation

� host aliasing
� canonical, alias names

� mail server aliasing

� load distribution

� replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 2-63

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
� client queries root server to find com DNS server

� client queries .com DNS server to get amazon.com DNS server

� client queries amazon.com DNS server to get IP address for
www.amazon.com

… …

Application Layer 2-64

DNS: root name servers

� contacted by local name server that can not resolve name

� root name server:
� contacts authoritative name server if name mapping not known

� gets mapping

� returns mapping to local name server

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA

(5 other sites)

b. USC-ISI Marina del Rey, CA

l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA

f. Internet Software C.

Palo Alto, CA (and 48 other

sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo

(5 other sites)

c. Cogent, Herndon, VA (5 other sites)

d. U Maryland College Park, MD

h. ARL Aberdeen, MD

j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,

OH (5 other sites)

Application Layer 2-65

TLD, authoritative servers

top-level domain (TLD) servers:
� responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp

� Network Solutions maintains servers for .com TLD

� Educause for .edu TLD

authoritative DNS servers:
� organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

� can be maintained by organization or service provider

Application Layer 2-66

Local DNS name server

� does not strictly belong to hierarchy

� each ISP (residential ISP, company, university) has
one
� also called “default name server”

� when host makes DNS query, query is sent to its
local DNS server
� has local cache of recent name-to-address translation

pairs (but may be out of date!)

� acts as proxy, forwards query into hierarchy

Application Layer 2-67

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

� host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
� contacted server

replies with name of
server to contact

� “I don’t know this
name, but ask this
server”

Application Layer 2-68

45

6

3

recursive query:
� puts burden of name

resolution on
contacted name
server

� heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server

dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-69

DNS: caching, updating records

� once (any) name server learns mapping, it caches
mapping
� cache entries timeout (disappear) after some time (TTL)

� TLD servers typically cached in local name servers

• thus root name servers not often visited

� cached entries may be out-of-date (best effort
name-to-address translation!)
� if name host changes IP address, may not be known

Internet-wide until all TTLs expire

� update/notify mechanisms proposed IETF standard
� RFC 2136

Application Layer 2-70

DNS records

DNS: distributed db storing resource records (RR)

type=NS
� name is domain (e.g.,

foo.com)

� value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
� name is hostname

� value is IP address

type=CNAME
� name is alias name for some

“canonical” (the real) name

� www.ibm.com is really

servereast.backup2.ibm.com

� value is canonical name

type=MX
� value is name of mailserver

associated with name

Application Layer 2-71

DNS protocol, messages

� query and reply messages, both with same message
format

msg header

� identification: 16 bit # for
query, reply to query uses
same #

� flags:

� query or reply

� recursion desired

� recursion available

� reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-72

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-73

Inserting records into DNS

� example: new startup “Network Utopia”

� register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)
� provide names, IP addresses of authoritative name server

(primary and secondary)

� registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

� create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Application Layer 2-74

Chapter 2: summary

� application architectures

� client-server

� P2P

� application service
requirements:

� reliability, bandwidth, delay

� Internet transport service
model

� connection-oriented,
reliable: TCP

� unreliable, datagrams: UDP

our study of network apps now complete!

� specific protocols:

� HTTP

� FTP

� SMTP, POP, IMAP

� DNS

Application Layer 2-75

� typical request/reply
message exchange:

� client requests info or
service

� server responds with
data, status code

� message formats:

� headers: fields giving
info about data

� data: info being
communicated

important themes:

� control vs. data msgs

� in-band, out-of-band

� centralized vs. decentralized

� stateless vs. stateful

� reliable vs. unreliable msg
transfer

� “complexity at network
edge”

Chapter 2: summary

most importantly: learned about protocols!

