UNIVERSITE

Q/T’Concordla

UNIVERSITY

SOA and Virtualization Technologies
(ENCS 691K - Chapter 2)

Roch Glitho, PhD

Associate Professor and Canada Research Chair
My URL - http://users.encs.concordia.ca/~glitho/

\./f Concordia University
Engineering and

Computer Science
' Concordia Institute for
Information Systems Engineering

The Key Technologies on Which Cloud
Computing Relies

= Web Services

= Virtualization

EEEEEEEEEE

References (Web Services)

I. F Belgasmi, C. Fu, R. Glitho, Services Provisioning in Next Generation
Networks: A Survey, IEEE Communications Magazine, December 2011

2. L. Richardson and S. Ruby, “RESTful Web Services”, O’ Reilly & Associates,
ISBN 10: 0-596-52926-0, May 2007

3. Lightweight REST Framework, http://www.restlet.org/

4. C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web Services vs.
“Big”’Web Services: Making the Right Architectural Decision™, In Proceedings
of the 17th International World Wide Web Conference, pages 805-814, Beijing,
China, April 2008, ACM Press.

5. C. Pautasso and E. Wilde, “Why is the web loosely coupled? A multi-faceted
metric for service design”, in Proc. of the 18th World Wide Web Conference,
Madrid, Spain (April 2009)

g — kil
[]

References (Virtualization)

6. M. Pearce et al., Virtualization: Issues, Security, Threats, and Solutions, ACM
Computing Survey, February 2013

7. A. Khan et al., Network Vitrtualization: A Hypervisor for the Internet?, IEEE
Communications Magazine, January 2012

8. N.M Chowdhury and r. Boutaba, Network Virtualization: State of the Art and
Research Challenges, IEEE Communications Magazine, July 2009

9. J. Carapinha et al., Network Virtualization — A View from the Bottom, VISA '09
Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and
architectures, Pages 73-80

e — o
X .'

Web Services

Outline

1. Introduction to Web Services

/S
~
»

2. RESTful Web Services Overview

a

.Nwr‘_ - © Concoraia
[]

Introduction to Web Services

1. Definition and principles

2. Overall business model

3. Technologies

llllllllll

UUUUUUUUUU

Web Services so far

= SOAP - BASED WEB SERVICES

= RESTFul Web Services

= This part of the course will discuss the general
characteristics of Web services

e — V=t
[]

Definitions and principles

Today Tomorrow
. > .
e Publication of documents <SF—>¢ Publication of
% “reusable business logic”
—
e Human interaction -8:% Automated
<P Program to program
= interaction
e Proprietary ad-hoc interfac e Industry standard interfaces

s

Note: There are other technologies such as JSON that may be used

g — kil
[!

Definitions and principles

“The term Web Services refers to an architecture that allows
applications (on the Web) to talk to each other. Period.
End of statement”

Adam Bobsworth in ACM Queue, Vol1, Nof1

Definitions and principles

The three fundamental principles, still according to Adam
Bobsworth:

1. Coarse grained approach (l.e. high level interface)

2. Loose coupling (e.g. application A which talks to
application B should not necessarily be re-written if
application B is modified)

3. Synchronous mode of communication, but also
asynchronous mode

g — caie
[]

Business model

Broker
(Human + agent)

Requestor Provider
(Human + agent) (Human + agent)

/ N

B . Tcanisiti
[|

Business model

Requestor
*Person or organization that wishes to make use of a Web service.

*Uses an agent (l.e requestor agent) to exchange messages with both
broker agent and provider agent.

Provider

*Person or organization that owns a Web service it wants to make
available for usage

*Use an agent (l.e provider agent) to exchange messages with
broker agent and requestor agent.

*The provider agent is also the software piece which implements the
Web service (e.g. mapping towards legacy)

Broker
*Person or organization that puts requestors and providers in contact

—Providers use brokers to publish Web services
—Requestors use brokers to discover Web services

*Use an agent (l.e broker agent) to exchange messages with
requestor agent and provider agent

llllllllll

h_ VS
[|

Business model

Service 1
Description

Service 2
Description

Service Broker/
Registry

y
Publlsh\

Service Requestor

Publish

Service 1
Description

Service 2
Description

Bind

Service 2
Description

hvr’ _ ¥ Concoraia
[|

Technologies

Some of the technologies are mandatory for some Web services while
optional for other Web services:

HTTP

« Mandatory for RESTful Web services but “optional” for SOAP
Based Web services

* Note: In practice HTTP is also used for SOAP Based Web Services
XML

« Mandatory for SOAP Based Web Services but optional for
RESTful Web services

h_ VS
[|

HTTP

HTTP (HyperText Transfer Protocol)
= [s an application-level protocol for distributed, collaborative,
hypermedia information systems
= HTTP has been in use since 1990
= HTTP is a request-response protocol
= HTTP requests relates to resources

= Aresource is any object or service network that can be
identified by a URI (Universal Resource Identifier)

h_ s
[|

HTTP

Client
— A program that establishes connections for the purpose of sending
requests
User Agent
— The client which initiates a request (e.g. browser)
. Note

= Arequest may pass through several servers

I :

HTTP

Server
= An application program that accepts connections in order to service
requests by sending back responses

= A given program may be capable of being both a client and a server
= The role depends on connections

[]

HTTP

= QOrigin server

= The server on which a given resource resides or is to be created

= Proxy server

= An intermediary program which acts as both a server and a client for
the purpose of making requests on behalf of other clients

= Gateway server

= receives requests as if it were the origin server for the requested
resource, and forwards the request to another server

- Is transparent to the client

e — V=t
[]

HTTP

HTTP-message = Request | Response

generic-message = start-line
*(message-header CRLF)
CRLF

[message-body]

start-line = Request-Line | Status-Line

T — e
[]

HTTP

HEAD

= retrieve meta-information about a web page, without retrieving the
page content (ex: get the date for last modification)

GET
- retrieve the page content
PUT
= store the enclosed content under the supplied Request-URI

POST
= add the entity enclosed in the request as a new subordinate of the
resource identified by the Request-URI
= E.qg.
» Post a message to a mailinglist

» Extend a database by appending information
» Transfer a form data

h_ s
[|

HTTP

DELETE
. Deletes the page

TRACE
. Debug

OPTIONS

. Allows the client to discover the options supported by the server
supporte

CONNECT
= Not used currently

[]

HTTP

The built-in HTTP request methods.

Method Description
GET Request to read a Web page
HEAD Request to read a Web page’s header
PUT Request to store a Web page
POST Append to a named resource (e.g., a Web page)
DELETE Remove the Web page
TRACE Echo the incoming request
CONNECT | Reserved for future use
OPTIONS Query certain options

e T concardia
[|

HTTP

The status code response groups.

Code Meaning Examples
1XX Information 100 = server agrees to handle client’s request
2XX Success 200 = request succeeded; 204 = no content present
3XX Redirection 301 = page moved; 304 = cached page still valid
4xX Client error | 403 = forbidden page; 404 = page not found
5xX Server error | 500 = internal server error; 503 = try again later

.] NS
[] }

@Concﬁor'dia

XML

XML documents
Data objects made of elements

<element> content </element>

Well-formed Documents
- If it obeys to the XML syntax
- Exp: - Al XML elements must have a closing tag

- The name in an element's end-tag MUST maitch the
element type in the start-tag.

- All XML elements must be properly nested

llllllllll

XML

XML processor

- Read XML documents
- Provide access to the content and the structure
- Behaviour described in the XML specifications

- Navigate XML document structure and add, modify, or delete its
elements.

- Most popular programming APIs
- Document Object Model (DOM) from W3C
- Simple API for XML (SAX) — From XML-DEV mailing list

llllllllll

[]

RESTFul Web Services

1. Introduction

2. Resource Oriented Architecture
3. Resources

4. Properties

5. Tool kits

6. Examples of RESTful Web services

llllllllll

. V=t

Introduction

= What about using the Web's basic technologies
(e.g. HTTP) as a platform for distributed
services?

= This is what is REST about.

EEEEEEEEEEE

T — szt
[]

Introduction

» REST was first coined by Roy Fielding in his Ph.D.

dissertation in 2000

= lItis a network architectural style for distributed
hypermedia systems.

[]

IIIIIIIIIII

IIIIIIIIII

Introduction

= REST is a way to reunite the programmable web with the
human web.

= |t is simple
= Uses existing web standards
= The necessary infrastructure has already become pervasive
= RESTFull web services are lightweight
= HTTP traverse firewall

EEEEEEEEEEE

h_ Geoncardls
[|

Introduction

= RESTFul web services are easy for clients to use

= Relies on HTTP and inherits its advantages, mainly
= Statelessness
= Addressability
= Unified interface

IIIIIIIIIII

[]

Resource-Oriented Architecture

= The Resource-Oriented Architecture (ROA)

= |s a RESTful architecture

= Provides a commonsense set of rules for designing
RESTful web services

g — Csicsidy
[]

Resource-Oriented Architecture

= Concepts

= Resources
= Resources names (Unified Resource Identifiers-URIs)
» Resources representations
= Links between resources

= Key properties:
= Addressability
= Statelessness
= Uniform interface

IIIIIIIIIII

T — szt
[]

Resources

What’s a Resource?

= Aresource is any information that
= can be named
= |s important enough to be referenced as a thing in itself

= A resource may be a physical object or an abstract concept
" e.g.

= a document

= arow in a database

= the result of running an algorithm.

g — Wizl
[]

Resources

= Naming:
= Unified Resource Identifier (URI)

= The URI is the name and address of a resource
= Each resource should have at least one URI
= URIs should have a structure and should vary in predictable ways

T — ol
[]

Resource

Representation

= A representation is any useful information about the state
of a resource

= Different representation formats can be used (Unlike
SOAP based Web services)
= plain-text
= JSON
= XML
= XHTML

e — o
X .'

Resource

* |n most RESTful web services, representations are
hypermedia
= j.e. documents that contain data, and links to other resources.

IIIIIIIIIII

T — szt
[]

Properties

= Addressabillity

= An application is addressable if it exposes a URI for
every piece of information it serves

= This may be an infinite number of URIs

= e.g. for search results
= hitp://www.qoogle.com/search ?qg=jellyfish

g — kit
[]

Properties

Statelessness

= The state should stay on the client side, and be transmitted to
the server for every request that needs it.
= Makes the protocol simpler
» Ease load balancing

IIIIIIIIIII

T — szt
[]

Properties

= Uniform interface

= HTTP GET:
= Retrieve a representation of a resource
HTTP PUT

= Create a new resource, where the client is in charge of creating the
resource URI: HTTP PUT to the new URI

= Modify an existing resource: HTTP PUT to an existing URI

HTTP POST:

= Create a new resource, where the server is in charge of creating
the resource URI: HTTP POST to the URI of the superordinate of
the new resource

HTTP DELETE:
= Delete an existing resource:
HTTP HEAD:
= Fetch metadata about a resource
HTTP OPTIONS:
= |ets the client discover what it’s allowed to do with a resource.

g — kil

Examples of tool kits

= Restlet
= Jersey

llllllllll

UUUUUUUUUU

Examples of RESTful Web Services

= Examples of existing RESTful web services include:
= Amazon’s Simple Storage Service (S3) (htip./aws.amazon.com/s3)

= Services that expose the Atom Publishing Protocol .
(http.//www.ietf.org/html.charters/atompub-charter.html) and its variants
such as GData (http./code.google.com/apis/gdata/)

= Most of Yahoo!'s web services (hiip./developer.yahoo.com))

= Twitter is a popular blogging site that uses RESTful Web services
extensively.

g — kil
[]

Examples of RESTful Web Services

URL
Resources Base URL: http://{serverRoot}/{apiVersion}/ HTTP action

smsmessaging
Quthound SMS message GET: read pending outbound message requasts
requests U SRR T POST: create new outbound messages request
Quthound SMS message GET: read a given sent message, along with its

fouthound/{senderAddress}/requests /{requestid}

request and delivery status delivery status

Inbound SMS message GET: read all active subscriptions POST: create new

subscriptions R message subscription
S GET: read individual subscription
e finbound/subscriptions/{subscriptionld} DELETE: remave subscription and stop corre-

message subscription . e
J P sponding notifications

Table 2. A subset of ParlayREST SMS resources.

T — kil
[]

Examples of RESTful Web Services

Application Sarver

1 : POST outbound SMS request -
|

SIS Create resource and allocate reques[l&ﬁ

sending 2 : Hesponse with created resource including requestid

3| : GET delivery status of request using reguestig

=T 4 : Response with delivery status
Inbound 5 : POST inbound SMS online subscription
SMS
notification Create resource and allocate su bscripticnlﬁ’]
.;;"L ___

6 : Response with created resource incl. subscriptignid

some time Iatenb'[

=
7 : POST notification 1o the notifyURL specified in the sulpscription
__:_-_.

8 : Response
. At later Iimél]
9 : DELETE the subscription

application < 10 T Response
specified as -
notifyURL

To another

ERSITE

v Figure 4. Sample scennario for SMS handling. Ffff,!}.‘?,

Virtualization

IIIIIIIIII

Outline

1. Systems virtualization

/S
~
»

2. Network virtualization

a

[]

Systems Virtualization

1. On operating systems

2. Brief history of systems virtualization

3. Key concepts (virtual machine, virtual
machine monitor/hypervisor)

4. Examples of benefits

llllllllll

UUUUUUUUUU

On operating systems

Some of the motivations

= Only one single tread of CPU can run at a time on any single
core consumer machine

= Machine language is tedious

On operating systems

Operating systems bring a level of abstraction on which
multiple processes can run at a time — Deal among other
things with:

= Multiplexing
= Hardware management issues

However only one operating system can run on a bare single
core consumer machine

h_ VS
[|

Brief history

Systems virtualization dates back to the 60s

IBM experimentation with “time sharing systems”

= Need for virtual machines to test how applications / users can
time share a real machine

llllllllll

Key concepts

Virtual machine (VM) (sometimes called virtual hardware)

= Software that provides same inputs / outputs and behaviour
expected from hardware (i.e. real machine) and that supports
operations such as:

= Create

= Delete

= Migrate

= |ncrease resources

Virtual machine monitor (also called hypervisor)

= Software environment that enables operations on virtual
machines (e.g. XEN, VMWare) and ensures isolation

llllllllll

g — Geonerdls
[]

Key concepts

cal Machines

Phys

%
®
L
=
&
®
=
[
>
=
>

From reference [6] — Note: There 1s a small in the figure

I1TE

¥ Concordia

v

NIVERS

—

UNIVERSITY

Key concepts

Types of hypervisor

= Type | — bare metal

= Type 2 - hosted

EEEEEEEEEE

uuuuuuuu

Key concepts

Types of hypervisor/virtual machine monitor

Virtual Virtual Virtual Virtual
Machine 1 Mchina Machine 3 Machine 4

-]

Key concepts

Full virtualization vs. para-virtualization

= Full virtualization

= No need to modify guest operating system before installing it on
top of hypervisor

= Para virtualization
= Operating system needs to be modified
= Note: Some hardware (e.g. X86) are not fully virtualisable

llllllllll

[]

Examples of Benefits

All benefits are due to the possibility to manipulate virtual
machine (e.g. create, delete, increase resources, migrate), e.g.

= Co-existence of operating systems

= Operating systems research

Software testing and run-time debugging
Optimization of hardware utilization

Job migration

h_ VS
[|

Network virtualization

1. Motivations

2. Basic components

llllllllll

UUUUUUUUUU

Motivations

Bring the benefits of systems virtualization to the networking
world, e.g.
= Co-existence of virtual networks on top of a same real network

= Note: Virtual Private Networks (VPNs) do not rely on virtualization
and have several limitations

= Different technologies and protocol stacks cannot be used for
instance

= Networking research

= Optimization of networking resources utilization

= Nodes
= Links

llllllllll

g — Geonerdls
[]

Basic components

b)

11 SEk

i :.Il'u:::::FF.' i
L Fer————s

Virtual Physical aggregate
Virtual ¢4, interface link
node

node

From reference 9

uuuuuuuuu E

Basic components

From reference 9

IIIIIIIIII

[]

The End

[]

