
Service Oriented Architectures
(ENCS 691K – Chapter 2)

Roch Glitho, PhD

Associate Professor and Canada Research Chair

My URL - http://users.encs.concordia.ca/~glitho/

The Key Technologies on Which Cloud
Computing Relies

� Web Services

� Virtualization

References (Web Services)

1. F. Belqasmi, C. Fu, R. Glitho, Services Provisioning in Next Generation
Networks: A Survey, IEEE Communications Magazine, December 2011

2. L. Richardson and S. Ruby, “RESTful Web Services”, O’ Reilly & Associates,
ISBN 10: 0-596-52926-0, May 2007

3. Lightweight REST Framework, http://www.restlet.org/

4. C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web Services vs.
“Big”Web Services: Making the Right Architectural Decision”, In Proceedings
of the 17th International World Wide Web Conference, pages 805–814, Beijing,
China, April 2008, ACM Press.

5. C. Pautasso and E. Wilde, “Why is the web loosely coupled? A multi-faceted
metric for service design”, in Proc. of the 18th World Wide Web Conference,
Madrid, Spain (April 2009)

Web Services

Outline

1. Introduction to Web Services

2. RESTful Web Services Overview

3. A Case Study On Conferencing

Introduction to Web Services

1. Definition and principles

2. Overall business model

3. Technologies

Web Services so far

� SOAP – BASED WEB SERVICES

� RESTFul Web Services

� This part of the course will discuss the general
characteristics of Web services

Definitions and principles

Today Tomorrow

• Publication of documents • Publication of

“reusable business logic”

• Human interaction • Automated

Program to program

interaction

• Proprietary ad-hoc interfaces • Industry standard interfaces

X
M

L
 T

ec
h

n
o
lo

g
y

Note: There are other technologies such as JSON that may be used

Definitions and principles

“The term Web Services refers to an architecture that allows
applications (on the Web) to talk to each other. Period.
End of statement”

Adam Bobsworth in ACM Queue, Vol1, No1

Definitions and principles

The three fundamental principles, still according to Adam
Bobsworth:

1. Coarse grained approach (I.e. high level interface)

2. Loose coupling (e.g. application A which talks to
application B should not necessarily be re-written if
application B is modified)

3. Synchronous mode of communication, but also
asynchronous mode

.

Broker

(Human + agent)

Requestor

(Human + agent)

Provider

(Human + agent)

Business model

Business model

Requestor

•Person or organization that wishes to make use of a Web service.

•Uses an agent (I.e requestor agent) to exchange messages with both
broker agent and provider agent.

Provider

•Person or organization that owns a Web service it wants to make
available for usage

•Use an agent (I.e provider agent) to exchange messages with
broker agent and requestor agent.

•The provider agent is also the software piece which implements the
Web service (e.g. mapping towards legacy)

Broker

•Person or organization that puts requestors and providers in contact

–Providers use brokers to publish Web services

–Requestors use brokers to discover Web services

•Use an agent (I.e broker agent) to exchange messages with
requestor agent and provider agent

Business model

Service Requestor

Service Broker/

Registry

Service Provider 2

Service 1

Description

Service 2

Description

Publish

Publish

Find

Bind

Service 2

Description

Service Provider 1

Service 1

Service 1

Description

Service 2

Service 2

Description

Technologies

Some of the technologies are mandatory for some Web services while
optional for other Web services:

HTTP

• Mandatory for RESTful Web services but “optional” for SOAP
Based Web services

• Note: In practice HTTP is also used for SOAP Based Web Services

XML

• Mandatory for SOAP Based Web Services but optional for
RESTful Web services

HTTP

HTTP (HyperText Transfer Protocol)

� Is an application-level protocol for distributed, collaborative,
hypermedia information systems

� HTTP has been in use since 1990

� HTTP is a request-response protocol

� HTTP requests relates to resources

� A resource is any object or service network that can be

identified by a URI (Universal Resource Identifier)

HTTP

Client

– A program that establishes connections for the purpose of sending

requests

User Agent

– The client which initiates a request (e.g. browser)

� Note

� A request may pass through several servers

HTTP

Server

� An application program that accepts connections in order to service

requests by sending back responses

� A given program may be capable of being both a client and a server

� The role depends on connections

HTTP

� Origin server

� The server on which a given resource resides or is to be created

� Proxy server

� An intermediary program which acts as both a server and a client for

the purpose of making requests on behalf of other clients

� Gateway server

� receives requests as if it were the origin server for the requested

resource, and forwards the request to another server

� Is transparent to the client

HTTP

HTTP-message = Request | Response

generic-message = start-line

*(message-header CRLF)

CRLF

[message-body]

start-line = Request-Line | Status-Line

HEAD

� retrieve meta-information about a web page, without retrieving the

page content (ex: get the date for last modification)

GET

� retrieve the page content

PUT

� store the enclosed content under the supplied Request-URI

POST

� add the entity enclosed in the request as a new subordinate of the

resource identified by the Request-URI

� E.g.

� Post a message to a mailinglist

� Extend a database by appending information

� Transfer a form data

HTTP

HTTP

DELETE

� Deletes the page

TRACE

� Debug

OPTIONS

� Allows the client to discover the options supported by the server

supporte

CONNECT

� Not used currently

HTTP

The built-in HTTP request methods.

HTTP

The status code response groups.

XML

XML documents

Data objects made of elements

- <element> content </element>

Well-formed Documents

- If it obeys to the XML syntax

- Exp: - All XML elements must have a closing tag

- The name in an element's end-tag MUST match the
element type in the start-tag.

- All XML elements must be properly nested

XML

XML processor

- Read XML documents

- Provide access to the content and the structure

- Behaviour described in the XML specifications

- Navigate XML document structure and add, modify, or delete its
elements.

- Most popular programming APIs

- Document Object Model (DOM) from W3C

- Simple API for XML (SAX) – From XML-DEV mailing list

RESTFul Web Services

1. Introduction

2. Resource Oriented Architecture

3. Resources

4. Properties

5. Tool kits

6. Examples of RESTful Web services

Introduction

� What about using the Web’s basic technologies

(e.g. HTTP) as a platform for distributed

services?

� This is what is REST about.

Introduction

� REST was first coined by Roy Fielding in his Ph.D.
dissertation in 2000

� It is a network architectural style for distributed
hypermedia systems.

Introduction

� REST is a way to reunite the programmable web with the
human web.

� It is simple
� Uses existing web standards
� The necessary infrastructure has already become pervasive
� RESTFull web services are lightweight
� HTTP traverse firewall

Introduction

� RESTFul web services are easy for clients to use

� Relies on HTTP and inherits its advantages, mainly
� Statelessness
� Addressability
� Unified interface

Resource-Oriented Architecture

� The Resource-Oriented Architecture (ROA)
� Is a RESTful architecture
� Provides a commonsense set of rules for designing

RESTful web services

Resource-Oriented Architecture

� Concepts
� Resources

� Resources names (Unified Resource Identifiers-URIs)

� Resources representations

� Links between resources

� Key properties:
� Addressability
� Statelessness
� Uniform interface

Resources

� What’s a Resource?
� A resource is any information that

� can be named

� Is important enough to be referenced as a thing in itself

� A resource may be a physical object or an abstract concept

� e.g.

� a document

� a row in a database

� the result of running an algorithm.

Resources

� Naming:

� Unified Resource Identifier (URI)
� The URI is the name and address of a resource

� Each resource should have at least one URI

� URIs should have a structure and should vary in predictable ways

Resource

Representation

� A representation is any useful information about the state
of a resource

� Different representation formats can be used (Unlike
SOAP based Web services)
� plain-text

� JSON

� XML

� XHTML

� ….

Resource

…

� In most RESTful web services, representations are
hypermedia
� i.e. documents that contain data, and links to other resources.

Properties

� Addressability

� An application is addressable if it exposes a URI for

every piece of information it serves

� This may be an infinite number of URIs

� e.g. for search results

� http://www.google.com/search?q=jellyfish

Properties

� Statelessness

� The state should stay on the client side, and be transmitted to
the server for every request that needs it.

� Makes the protocol simpler

� Ease load balancing

Properties

� Uniform interface
� HTTP GET:

� Retrieve a representation of a resource

� HTTP PUT
� Create a new resource, where the client is in charge of creating the

resource URI: HTTP PUT to the new URI

� Modify an existing resource: HTTP PUT to an existing URI

� HTTP POST:
� Create a new resource, where the server is in charge of creating

the resource URI: HTTP POST to the URI of the superordinate of
the new resource

� HTTP DELETE:
� Delete an existing resource:

� HTTP HEAD:
� Fetch metadata about a resource

� HTTP OPTIONS:
� Lets the client discover what it’s allowed to do with a resource.

Examples of tool kits

� RestLet

� Jersey

Examples of RESTful Web Services

� Examples of existing RESTful web services include:
� Amazon’s Simple Storage Service (S3) (http://aws.amazon.com/s3)

� Services that expose the Atom Publishing Protocol
(http://www.ietf.org/html.charters/atompub-charter.html) and its variants
such as GData (http://code.google.com/apis/gdata/)

� Most of Yahoo!’s web services (http://developer.yahoo.com/)

� Twitter is a popular blogging site that uses RESTful Web services
extensively.

Examples of RESTful Web Services

Examples of RESTful Web Services

Chapter II – Addendum

(Stepwise procedure for REST modelling)

Case Study – REST for Conferencing

http://users.encs.concordia.ca/~glitho/

References

• F. Belqasmi, C. Fu, R. Glitho, Services Provisioning in Next Generation Networks: A
Survey, IEEE Communications Magazine, December 2011

• F. Belqasmi, J. Singh, S. Bani Melhem, and R. Glitho, SOAP Based Web Services vs.
RESTful Web Services: A Case Study for Multimedia Conferencing Applications, IEEE
Internet Computing, July/August 2012

Case Study On Conferencing

1. A stepwise procedure

2. On conferencing semantics

3. Applying the procedure to
conferencing

The procedure – First Part

� Figure out the data set

� Split the data set into resources

The procedure – Second Part

For each resource:
� Name the resources with URIs
� Identify the subset of the uniform interface that is exposed by the

resource
� Design the representation(s) as received (in a request) from and

sent (in a reply) to the client
� Consider the typical course of events by exploring and defining how

the new service behaves and what happens during a successful
execution

On Conferencing semantics

� The conversational exchange of multimedia

content between several parties

� About multimedia

� Audio, video, data, messaging

� About participants

� Any one who wants to participates the conference

On Conferencing semantics

Classification:

� Dial-in / dial-out

� Open/close

� Pre-arranged/ad hoc

� With/without sub-conferencing (i.e. sidebar)

� With/without floor control

On conferencing semantics

� Case considered in the use case

� Create a service that allows a conference

manager to :

� Create a conference

� Terminate a conference

� Get a conference status

� Add users to a conference

� Remove users from a conference

� Change media for a participant

� Get a participant media

Applying the procedure – First part
1. Data set

� Conferences
� Participants
� Media

Applying the procedure – First part

2. Split the data set into resources
� Each conference is a resource
� Each participant is a resource
� One special resource that lists the participants
� One special resource that lists the conferences (if we consider

simultaneous conferences)

Applying the procedure – Second part

3. Name the resources with URIs

� I’ll root the web service at

http://www.confexample.com/

� I will put the list of conferences at the root URI

� Each conference is defined by its ID:

http://www.confexample.com/{confId}/

� A conference participants’ resources are subordinates of the
conference resource:

� The lists of participants:

http://www.confexample.com/{confId}/participants/

� Each participant is identified by his/her URI:

http://www.confexample.com/{confId}/participants/{participantURI}/

Applying the procedure – Second part

4. Expose a subset of the uniform interface

conference?

Applying the procedure – Second part

Applying the procedure – Second part

9. What might go wrong?

� Conference

Operation Server->Client Way it may go wrong

Create

(POST)

Success: 200 OK

Failure: 400 Bad Request

The received request is not correct

(e.g. has a wrong body)

Read (GET)
Success: 200 OK

Failure: 404 Not Found

The targeted conference does not

exist

Delete

(DELETE)

Success: 200 OK

Failure: 404 Not Found

The targeted conference does not

exist

Applying the procedure – Second part

9. What might go wrong?

� Participant(s)

Operation Server->Client Way it may go wrong

Create

(POST)

Success: 200 OK

Failure: 400 Bad Request

Failure: 404 Not Found

• The received request is not correct

(e.g. has a wrong body)

• The target conference does not exist

Read (GET)
Success: 200 OK

Failure: 404 Not Found

• The target conference does not exist

• The target participant does not exist

Update

(PUT)

Success: 200 OK

Failure: 400 Bad Request

Failure: 404 Not Found

• The received request is not correct

• The target conference does not exist

• The target participant does not exist

Delete

(DELETE)

Success: 200 OK

Failure: 404 Not Found

• The target conference does not exist

• The target participant does not exist

The End
•A

.

