Data Center Networking

(ENCS 691K – Chapter 6)

Roch Glitho, PhD
Associate Professor and Canada Research Chair
My URL - http://users.encs.concordia.ca/~glitho/

Data Center Networking

Basics

Challenges and traditional protocols

Data Center Networking - Basics

- Concepts
- Data Center Topology
- Data Center Virtualization

References

1. MD. Bari et al., Data Center Networking Virtualization: A Survey, IEEE Communications Surveys & Tutorials, Vol.15, No2, Second Quarter 2013

Concepts

Data Center

Consists of:

- Servers (Physical machines)
- Storage
- Network devices (switch, router, cables)
- Power distribution systems
- Cooling systems

Data Center Network

Communications infrastructure – Could be described by:

- Topology
- Routing / switching equipment
- Protocols

Data Center Network

Data Center Network vs. ISP Networks:

- Number of nodes
 - ISPs backbones (hundreds)
 - 487 for AT&T Ref. 1
 - Data centers (thousands)
 - Google (12 000) Ref. 1
- Topology
 - Topology with specific properties are used for data center in order to allow topology specific routing optimization

Data Center Network Topology

Conventional Topology

Three layers:

- Access layer with Top of the Rack (ToR) switches
- Aggregation layer
- Core layer

Conventional Topology (REf1)

Conventional Topology

Specific case:

Flat layer 2 topology: Only layer 2 switches

Clos Topology

Hierarchical / staged/layered:

- Each switch in a stage is connected to all the switches in the next stage
- Key benefit:
 - Extensive path diversity

Clos Topology (Ref. 1)

Clos Topology

Specific case: Fat tree

Built in a tree like structure

Clos Topology – Fat tree (Ref. 1)

Data Center Virtualization

Virtualized Data Center

Data center with some or all the hardware virtualized

- Servers (Physical machines)
- Storage
- Network devices (switch, router)
- Power distribution systems
- Cooling systems

Virtual Data Center

Collection of virtual resources, e.g.

- Virtual machine
- Virtual switches
- Virtual links

Virtual Data Center (Ref. 1)

Physical Data Center

- ---- Mapping of a VM to a server
- □----- Mapping of a virtual switch to a physical switch

Data Center Networking: Challenges and Traditional Protocols

Data Center Networking Challenges

Traditional Transport Protocols (Beyond TCP / UDP)

Traditional Transport Protocols vs. Challenges

References

- 1. K. Kant, Towards a Virtualized Data Center Transport Protocol, Infocom Workshop, 2008
- 2. M Alizadeh, Data Center TCP, ACM Sigcom 2011

Why is it necessary to re-think networking in cloud data center settings?

- Very high data rates (e.g. 100 Gb/sec Ethernet)
 - TCP can hardly cope with 10 GB/sec
 - New techniques are needed to make TCP cope, e.g.
 - Hardware acceleration
 - Need for QoS mechanisms
 - A single MAC pipe can carry data with different QoS requirements

Why is it necessary to re-think networking in cloud data center settings?

- Wide range of physical layer
 - Wired
 - Wireless
 - Optical
- Emerging PHY/MAC layers, e.g.
 - Ultra Wide Band
 - Huge amount of data over a short distance

Why is it necessary to re-think networking in cloud data center settings?

- Multiple level virtualization and cluster enabled applications
 - Real time applications / soft real time applications vs. other applications

An illustration:

Soft real time applications, e.g.

- Web search
- Advertisement
- Retail

Partition / Aggregate pattern

An illustration:

Examples of requirements:

- Low latency
- High burst tolerance

Important: Many other applications with conflicting requirements reside in the same data center

Let us focus on transport layer protocols requirements

- High data rate support (Up to 100 GB/s)
- User Level Protocol Indicator Support
- QoS friendly
- Virtual cluster support
- Data center flow / cong. Control
- High availability
- Compatibility with TCP/IP base
- Protection against DoS

On Transport Layer

Traditional Transport Layers (Beyond TCP / UDP)

Transport Layer Basics

■ 1 - Protocol layering

2 - Transport layer basics

Layered Architectures

Figure 1.13 (Reference [1])

Layered Architectures

Figure 1.15 (Reference [1])

Cross Layered Architecture

- Definition of cross layer design
 - Violation of the principles of layered protocol architectures
 - Examples
 - Allowing communications between non adjacent layers
 - Sharing variables between layers
 - Designing protocols that span several layers

On The Transport Layer

On The Transport Layer

- Provide service to application layer by using the service provided by network layer
- Hide physical network
 - Hide processing complexity
 - Hide different network technologies and architectures
- Provides host-to-host transport

On The Transport Layer

- Addressing
- Connection Establishment
- Connection Release
- Flow Control
- Error Detection and Crash Recovery

The Other Transport Protocols

1 - Motivations and taxonomy

• 2 - SCTP

■ 3 - DCCP

References

- 1, IETF RFC 3550, RTP / RTCP
- 2. A. Caro et al., SCTP: A Proposed Standard for Robust Internet Data Transport, IEEE Computer November 2003
- 3. S. Fu and M. Atiquzzaman, SCTP: State of the Art in Research, Products and Technical Challenges, IEEE Communications Magazine, April 2004
- 4. P. Natarajan et al., SCTP: What, Why and How? IEEE Internet Computing, September / October 2009
- 5. Y-C Lai, DCCP: Transport Protocol with Congestion Control and Unreliability, IEEE Internet Computing, September / October 2008

Key characteristics of TCP

- Reliability
 - Three way handshake connection
 - Re-transmission
- Congestion control
 - Windows
 - Transmission rate reduction
- Uni-homing

Key characteristics of UDP

- No reliability
- No congestion control
- Uni-homing

The one size (either TCP or UDP) fits all philosophy does not always work

- What about
 - Applications requiring reliability but real time delivery (i.e. no retransmission)?
 - Interactive audio/video (e.g. conferencing)
 - Applications requiring more reliability than what is provided by TCP?
 - Multimedia session signalling
 - Applications requiring real time delivery, low reliability, but congestion control?
 - Multi party games

Two possible approaches

- Build a new transport protocol that complements / runs on top of existing transport protocols (e.g. UDP)
 - RTP/RTCP on top of UDP and application using RTP/RTCP
- Build a new transport protocol from scratch (i.e. runs on top of IP)
 - SCTP
 - DCCP

Stream Control Transmission Protocol (SCTP)

Designed in early 2000s to carry multimedia session signaling traffic over IP, then subsequently extended to meet the needs of a wider range of application

- Design goals much more stringent than TCP design goals (e.g. redundancy, higher reliability)
- Offer much more than TCP
- A sample of additional features
 - Four way handshake association instead of three way handshake connection
 - Multi-homing instead of uni-homing
 - Multi-streaming instead of uni-streaming

Stream Control Transmission <u>Protocol</u>

Application SCTP, TCP, UDP Transport Network

Four way handshake

Why?

 Key reason: Make SCTP resilient to denial of service (DOS) attacks, a feature missing in TCP

Multi-homing

Why?

- Key reason: Make SCTP resilient in resource failures, a feature missing in TCP (High availability)
 - Multi-homed host: Host accessible via multiple IP addresses
 - Use cases
 - Subscription to multiple ISP to ensure service continuity when of the ISP fails
 - Mission critical systems relying on redundancy
 - Load balancing

Multi-homing

Why?

- Key reason: Make SCTP resilient in resource failures, a feature missing in TCP
 - Multi-homing with SCTP (only for redundancy)
 - Multi-homed host binds to several IP addresses during associations unlike TCP which binds to a single IP address
 - Retransmitted data is sent to an alternate IP address
 - Continued failure to reach primary address leads to the conclusion that primary address has failed and all traffic goes to alternate address

Multi-streaming

Data Congestion Control Protocol (DCCP)

One of the most recent transport protocols (Second half of the 2000s)

- Primary goal:
 - Delivery of real time media (somehow similar to the goal assigned to RTP / RTCP)
- Build on the experience acquired in protocol design / deployment since the design of RTP / RTCP (ie. Early 1990s)
 - Some examples of improvements:
 - Congestion control incorporated in the transport protocol (unlike RTP/RTCP)
 - Possibility to avoid DoS

Overall view

- Three way handshake connection like TCP
 - In-built possibility to use cookies during response phase to avoid DoS
 - A connection can be seen as two half-connections (i.e. unidirectional connections)
 - Possibility for a receiver to send only ACK
- Reliable connection establishment and feature negotiation
- Unreliable data transfer (no retransmission)
- Feature negotiation

The protocol states

Client Server (0) No connection **CLOSED** LISTEN (1) Initiation DCCP-Request --> **REQUEST** <-- DCCP-Response RESPOND DCCP-Ack or DCCP-DataAck --> **PARTOPEN** (2) Data transfer <-- DCCP-Data, Ack, DataAck --> OPEN **OPEN** (3) Termination <-- DCCP-CloseReq **CLOSEREQ** DCCP-Close --> **CLOSING** <-- DCCP-Reset **CLOSED TIMEWAIT CLOSED**

Half connection

Use case: Unidirectional streams (e.g. Streaming applications)

Data transfer

- Packets have sequence numbers
 - Client server and server client sequence numbers are independent
 - Tracking on both sides is possible
- Acknowledgements report last received packet
- Data drop option
 - Examples
 - Application not listening
 - Receiver buffer
 - Corrupt
 - May help in selecting congestion control mechanism

Data transfer

- Packets have sequence numbers
 - Client server and server client sequence numbers are independent
 - Tracking on both sides is possible
- Acknowledgements report last received packet
- Data drop option
 - Examples
 - Application not listening
 - Receiver buffer
 - Corrupt
 - May help in selecting congestion control mechanism

Feature negotiation

- Enable dynamic selection of congestion mechanism
 - Data drop option may help
 - Tracking on both sides is possible
 - TCP congestion control may be used
 - Other mechanisms may also be used

Traditional Transport Protocols vs. Challenges

References

1. K. Kant, Towards a Virtualized Data Center Transport Protocol, Infocom Workshop, 2008

Traditional Transport Protocols vs. Challenges (Ref. 1.)

Feature	TCP	SCTP	IBA
Scalability to 100 Gb/s	difficult	difficult	Easy?
Msg. based & ULP support	No	Yes	Yes
QoS friendly transport?	No	No	Yes
Virtual cluster support	No	No	limited
DC centric flow/cong. control	No	No	limited
Power aware transmission	Limited	limited	No
High availability features	Poor	Fair	Fair
Compatible w/ TCP/IP base	Yes	Yes	No
Protection against DoS attacks	Poor	Good	No

The End

