TOP PREDICTION ALGORITHMS | | TYPE | NAME | DESCRIPTION | ADVANTAGES | DISADVANTAGES | |---------------|---------|------------------------|---|--|---| | Linear | | Linear
regression | The "best fit" line through all data points. Predictions are numerical. | Easy to understand
you clearly see what the
biggest drivers of the
model are. | X Sometimes too simple to capture complex relationships between variables. X Does poorly with correlated features. | | | <i></i> | Logistic
regression | The adaptation of linear regression to problems of classification (e.g., yes/no questions, groups, etc.) | Also easy to understand. | X Sometimes too simple to capture complex relationships between variables. X Does poorly with correlated features. | | Tree-based | ٠٠ | Decision
tree | A series of yes/no rules based on the features, forming a tree, to match all possible outcomes of a decision. | Easy to understand. | Not often used on its own for prediction because it's also often too simple and not powerful enough for complex data. | | | \ | Random
Forest | Takes advantage of many decision trees, with rules created from subsamples of features. Each tree is weaker than a full decision tree, but by combining them we get better overall performance. | A sort of "wisdom of the crowd". Tends to result in very high quality models. Fast to train. | X Models can get very large.X Not easy to understand predictions. | | | | Gradient
Boosting | Uses even weaker decision trees, that are increasingly focused on "hard" examples. | High-performing. | X A small change in the feature set or training set can create radical changes in the model. X Not easy to understand predictions. | | ural networks | ** | Neural
networks | Interconnected «neurons» that pass messages to each other. Deep learning uses several layers of neural networks stacked on top of one another. | Can handle extremely complex tasks - no other algorithm comes close in image recognition. | X Very slow to train, because they often have a very complex architecture. X Almost impossible to understand predictions. |