# 1953-1990: My Time at Sydney University 

Gregory Butler

Department of Computer Science \& Software Engineering Concordia University, Montréal, Canada

28 November 2023

- University of Sydney


## Influences



John Cannon 1943 -


Tim Wall; Charles Sims; John McKay; Joachim Neubüser


Clement Lam; Reinhard Laue; Adrian Tsang; Justin Powlowski

## University of Sydney Campus: $2023+1857$



Source - University of Sydney Archives, G74/1/

## 1953 - 1972: Darlington becomes Engineering campus

48-50: Darlo 'slum' to SU


49-67: Family in Darlo
... Rose St Darlington
... Lander St Redfern
Camperdown from 1967 to 2003
53: Born in RPAH


59-63: Darlo Public School


64-65: Summer Hill O.C. ...amazing opportunity

## $1973-1980$

## SU Undergraduate

72: Y1 B.Sc for Chemistry
73: Y2: A Year of Changes
Dropped Chemistry.
... Started Computer Science.

## Summer RA with JJC

Implement in Fortran

- Centralizer algorithm from Sims' 1970 paper OR
- Low index subgroups from Aachen machine code
I made the right choice!
Y3: CS and Math
...another summer RA with JJC Honours Pure Mathematics
Thesis: Computational Algorithms for Permutation Groups
describe, prove correct, implement
... all known algorithms


## SU Graduate

## 76: Masters by Research

Cwlth Postgraduate Research Award
Schreier-Sims for matrix groups
CPRA ok with trip to ETH Zürich
... amazing!
H2 1976
First paper: SYMSAC'76 NY
... then Montreal - John McKay
... then Zürich
Aachen visit
H1 1977
JJC: Write up or transfer into PhD?
JJC: Need a math. theorem for PhD
... Maximal subgroups of Held
visit Donald Livingstone (Birmingham)
ANU Summer Sch. 1977
Completed Thm on maximals of He ... Jan 1978 ... CSIRO Cyber 76 used
PhD submitted July 1979
303 pages +2 microfiches

## PhD - Handle groups much larger than $10^{6}$

Algorithms ... implementations .... proofs .... timings

## Extend Schreier-Sims algorithm

+ matrix groups
Variations: Todd-Coxeter, random
Apply to JJC's algorithms: normal closure, commutator subgroups, series


## Extend Sims' backtrack search

centralizer, conjugacy of elements, intersection, set stabiliser

+ normalizer, conjugacy subgroups
+ Sylow subgroups
... and to matrix groups (except normalizer)
Thm: Maximal subgroups of He


## Other

Random algorithm for conjugacy class of elements
EARNS, Aut(G), canonical coset representative
Fortran
JJC Stackhandler (now Blockhandler) provided
... dynamic memory management ... objects
Enabled GB explicit runtime stack management for recursive backtrack searches Backtrack search as template algorithm pattern

## $1980-1990$

> 79-81 Postdoc Concordia \& McGill John McKay (CS) \& Hans Schwerdtfeger (Math)

1981-1990 CS Faculty member at SU
1982: married in Montreal (after Durham conference)
1990/01-07 Visiting Faculty Bayreuth
Reinhard Laue

## CGT

Hom: perm-gp to perm-gp
Hom: perm-gp to p-gp
Sylow subgroups using Hom
Conjugacy classes of elements

## Other

Algorithms, DB, reasoning
Cayley V4 language design (JJC) deductive databases (with EAO) "object" databases in Prolog/C

Need better understanding
software architectures
system modularity, re-use, etc knowledge representation
... a never-ending journey
... still ongoing

## 1990: Moving On from CGT

Ticked off all CGT algorithms on my list
... except double coset enumeration

## Algorithms become Case-Based Reasoning

Theorem 5.1 (O'Nan-Scott). Let $G$ be a group which acts primitively and faithfully on $\Omega$ with $|\Omega|=n$. Let $H=\operatorname{Soc}(G)$ and $\omega \in \Omega$. Then $H$ is homogeneous of type $T$ and exactly one of the following cases holds.

1. "Affine". $T$ is abelian of order $p, n=p^{m}$ and $\operatorname{Stab}_{G}(\omega)$ is a complement to $H$ which acts irreducibly on $H$.
2. "Almost simple". $m=1$ and $H \triangleleft G \leq \operatorname{Aut}(H)$.
3. "Diagonal type". $m \geq 2$ and $n=|T|^{m-1}$. Further, $G$ is a subgroup of $V=\left(T \imath S_{m}\right)$. Out $(T) \leq \operatorname{Aut}(T)$ ¿ $S_{m}$ in diagonal action and either
a) $m=2$ and $G$ acts intransitively on $\left\{T_{1}, T_{2}\right\}$ or
b) $m \geq 2$ and $G$ acts primitively on $\left\{T_{1}, \ldots, T_{m}\right\}$.

In case a) $T_{1}$ and $T_{2}$ both act regularly. Moreover, the point stabilizer $V_{\omega}$ of $V$ is of the form $\operatorname{diag}\left(\operatorname{Aut}(T)^{\times m}\right) \cdot S_{m} \cong \operatorname{Aut}(T) \times S_{m}$ and thus $H_{\omega}=\operatorname{diag}\left(T^{\times m}\right)$.
4. "Product type". $m=r s$ with $s>1$. We have that $G \leq W=A 乙 B$ and the wreath product acts in product action with A acting primitively, but not regularly, on d points and B acting transitively on spoints. Thus $n=d^{s}$. The group $A$ is primitive of either
a) type 3 a with socle $T^{2}$ (i.e. $r=2, s<m$ ),
b) type 3 b with socle $T^{r}$ (i.e. $r>1, s<m$ ) or
c) type 2 (i.e. $r=1, s=m$ ).

We have that $W_{\omega} \cap A^{s} \cong A_{1}^{\times s}$ and $\operatorname{Soc}(G)=\operatorname{Soc}(W)$. Furthermore $W=$ $A^{\times s} G$.
5. "Twisted wreath type". $H$ acts regularly and $n=|T|^{m} . G_{\omega}$ is isomorphic to a transitive subgroup of $S_{m}$. The normalizer $N_{G_{\omega}}\left(T_{1}\right)$ has a composition factor isomorphic to $T$. Thus, in particular, $m \geq k+1$ where $k$ is the smallest degree of a permutation group which has $T$ as a composition factor.

## Recap: Highlights of My Life

Family
Opportunity Class at Summer Hill

JJC: Challenging Algorithm Research
JJC and Zürich
PhD

Montréal, Marriage, Fungal Genomics

Travel

## Challenges for the Next Generation

## Double Coset Enumeration

"Unfortunately, no really satisfactory algorithm for solving this problem has been found to date."

Holt, Eick, O'Brien, Handbook of CGT, 2005, page 131

## Automate the McKay Connections

1. Monstrous Moonshine of 1978 on Monster, simple groups, representation theory, modular functions, lattices, theoretical physics
2. McKay's A-D-E Correspondence of 1979 on Dynkin diagrams, Lie theory, and geometric singularities
3. Alperin-McKay Conjecture of 1972 on modular representations

Yang-Hui He, John Keith Stuart McKay: 1939-2022, arxiv 2023.
https://doi.org/10.48550/arXiv.2305.00850

## Thank You!

## Any Questions?

