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Supervised Machine Learning — Traditional
Workflow

Cross-Validation

Supervised Learning Dataset
dataset of known datapoints with

features and labels for
training + validation + independent test

Training
Optimisation of parameters for Model
Minimise, across whole training set,
loss between actual label & predicted label

Validation
Use validation set to compare Models
Select

best choice of ML algorithm and/or
best hyper-parameters for ML algorithm

Cross-Validation
Provides mean ± sd for selection
Hence, significance of Model differences

Independent Test
To gauge final Model on “new” data
independent of training and validation data

External Validation
Evaluate on real-world data
eg compare result of human experts
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ML Concerns

Criteria for Choice of Model

▶ Whether the model meets the goal

▶ How much pre-processing the model needs
including the time required to train the model

▶ How accurate is the model
in general, how well it performs during evaluation

▶ How explainable is the model
explainable method; explainable prediction

▶ How fast is the model in making predictions

▶ How scalable is the model
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ML Concerns

Data
▶ Amount
▶ Quality: noise in features and labels
▶ Imbalance
▶ Bias

Feature Engineering

Independence of Test Set
data leakage due to unseen confounding factors
leak = evolution of proteins: set percent identity (pid) threshold
pid 60, 40, 20 commonly used

Overfitting

Which Performance Metric
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Neural Networks — Traditional Feed Forward
Architecture

Terminology
Activation function combines previous layer and edge weights

Sigmoid f (x) = 1/(1 + e−x ), Tanh f (x) = 2 × sigmoid(2x) − 1
Rectified Linear Unit (ReLU) f (x) = 0 if x ≤ 0 else x

loss function
optimise by gradient descent and back-propagation
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Deep Neural Networks

Deep — More than Three Hidden Layers

Types
FFNN — Feed Forward NN aka multilayer perceptron (MLP)
CNN — Convolution NN for computer vision
RNN — Recurrent NN for sequential & time-series data

LSTM — Long Short-Term Memory RNN capturing long-term dependencies

Concern: Computation Resources
Require new optimisation algorithms; GPU im-
plementations
Theano: Yoshua Bengio Python library 2010;
released v1.0.0 2017/11/15; now PyTorch

J. Bergstra et al. Theano: A CPU and GPU Math Expression Compiler. Proc. of the Python for Scientific
Computing Conference (SciPy) 2010.
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Deep Neural Networks — Transformers
Encoder/Decoder

Attention Mechanisms to Capture Context

BERT Encoder: attention, but no RNN
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Deep Neural Networks — Transformers
BERT
Bidirectional Encoder Representation from Transformers
GPT
Generative Pre-Training

Transformers
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Deep Neural Networks
Breakthrough Moment for DL — 2012
AlexNet wins ImageNet 2012 Challenge on 2012-09-30
Achieved top-5 error of 15.3% vs runner-up 26.2%

AlexNet ImageNet
14M+ images hand-annotated
20K+ categories of objects in images

ImageNet Challenge
2010+ ImageNet Large Scale Visual
Recognition Challenge
Dataset is ImageNet subset
1000 non-overlapping categories
1000 approx. images per category
1.2M training images
50K validation images
150K test images

AlexNet
Convolution Neural Network (CNN)
ReLU activation function
Multiple GPUs for training

Alex Krizhevsky, Ilya Sutskever, G.E. Hinton (2017-05-24). ImageNet
classification with deep convolutional neural networks. Communications of the
ACM 60 (6): 84–90. doi:10.1145/3065386 10 / 35
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AlphaFold Breakthrough for Protein Structure Prediction
AlphaFold
2018: AlphaFold top-ranked in CASP13 (Critical Assessment of
Techniques for Protein Structure Prediction)
CNN, supervised learning with 29K proteins+structures from PDB
2020: AlphaFold2 top-ranked in CASP14
RMSD between the Cα atoms: 0.96Å vs 2.83Å for runner-up
Transformer, triangle attention mechanism, MSA information
Training 7d on 128 TPU v3 cores; Fine-tuning 4d
See also: RosettaFold, ESMFold, ColabFold, OpenFold

Alpha Protein Structure Database (alphafold.ebi.ac.uk)
200M+ million entries; broad coverage of UniProt
Predicted Aligned Error (PAE) for each entry

John Jumper et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
https://doi.org/10.1038/s41586-021-03819-2
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Large Language Models — NLP
Pre-training — Self-Supervised
Task independent; Large corpus of text; Large computation
MLM: Masked Language Modeling; NSP: Next Sentence Prediction

Fine-Tuning — Supervised
Downstream task-specific
Foundation Models & Transfer Learning
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Protein Sequence Representation
Traditional
amino acid composition vector
k-mer and skipped k-mer
many physiochemical & surface accessibility “features”
Post NLP Deep Learning
sequence as text: each amino acid as “word”
(truncated) sequence as image: AA as 20-dim one-hot encoding
SeqVec (2019): RostLab based on ELMo (LSTM)

Z. Chen et al. iFeature: a python package and web server for features extraction and selection from protein and
peptide sequences. Bioinformatics, 2018, 34 (14) pp. 2499–2502, doi:10.1093/bioinformatics/bty140.
https://ifeature.erc.monash.edu
M. Heinzinger et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC
Bioinformatics 20, 723 (2019). https://doi.org/10.1186/s12859-019-3220-8
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Protein Language Model (PLM): MLM pre-training

Training Sets
UniRef100: 216M proteins, 80B AA
BFD: 2.1B proteins, 393B+ AA
Tasks
sec. structure; localization Q10, Q2
role of MSA (evolution info)
ProtT5 — best performer w/o MSA

Secondary Structure

A. Elnaggar et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE
Trans PAMI , vol. 44, no. 10, pp. 7112-7127, 1 Oct. 2022, doi:10.1109/TPAMI.2021.3095381 14 / 35
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Open Source PLM

A. Elnaggar et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE
Trans PAMI , vol. 44, no. 10, pp. 7112-7127, 1 Oct. 2022, doi:10.1109/TPAMI.2021.3095381
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Ankh — PLM of Choice

Ahmed Elnaggar et al. Ankh: Optimized Protein Language Model Unlocks General-Purpose Modelling. biorxiv
2023 https://doi.org/10.48550/arXiv.2301.06568 16 / 35
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Benchmark Tasks for PLMs
PEER: Protein sEquence undERstanding (MILA)
17 tasks; single task learning & multi-task learning

Minghao Xu et al (2022). PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence
Understanding. Proc. NeurIPS 2022 Track on Datasets and Benchmarks.
Henriette Capel et al. ProteinGLUE multi-task benchmark suite for self-supervised protein modeling. Sci Rep 12,
16047 (2022). https://doi.org/10.1038/s41598-022-19608-4

17 / 35

https://doi.org/10.1038/s41598-022-19608-4


xTrimoPGLM PLM (proprietary BioMap Research)
XTrimoPGLM
100B parameters; 1T training tokens; SOTA in 13/15 tasks
Training Set

Training: MLM+GLM

Bo Chen et al. xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of
Protein. biorxiv 2023 doi:https://doi.org/10.1101/2023.07.05.547496
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DL in Protein Sequence Analysis — SOTA
DeepLoc
DeepLoc (2017): CNN+attention+RNN
DeepLoc 2.0 (2022): ESM-1b/ProtT5+attention
high-quality model ProtT5-XL-Uniref50 (3B parameters)
high-throughput model 33-layer ESM-1b (650M parameters)
DeepGO (2018) & DeepGOPlus (2020): CNN, GO aware

DeepEC (2019): CNN

DeepTMHMM (2022): ESM-1b+LSTM+CRF

SignalP 6.0 (2022): ProtBERT pre-trained on UniRef100

Vineet Thumuluri et al. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models.
Nucleic Acids Research, Vol 50 (W1), 5 July 2022, pp. W228–W234, https://doi.org/10.1093/nar/gkac278
Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics.
2021 May 23;37(8):1187. doi:10.1093/bioinformatics/btaa763
Jae Yong Ryu et al. Deep learning enables high-quality and high-throughput prediction of enzyme commission
numbers. PNAS June 20, 2019 116 (28) 13996-14001 https://doi.org/10.1073/pnas.1821905116
Jeppe Hallgren et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks.
biorxiv 2022 doi:https://doi.org/10.1101/2022.04.08.487609
F. Teufel et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol
40, 1023–1025 (2022). https://doi.org/10.1038/s41587-021-01156-3 19 / 35
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TooT-Suite Project for Protein Sequence Analysis

Proposal in 2017 before advent of PLMs

Aim — Initial
Predict and classify transmembrane transport proteins
Tasks: Discriminate membrane proteins, transport proteins
Tasks: Predict SC (substrate class) & SS (specific substrate)
Apply to proteomes and meta-proteomes

Aim — After PLM successes
Investigate DL for these tasks
Broaden benchmark tasks for PLMs
Are there protein-specific (not NLP) pre-training methods?
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Conclusions

PLM Foundation Models superceding other DL methods
Ankh is open-source PLM of choice
No single one-size-fits-all for task-specific transfer learning

Trade-Offs
PLM size

versus
cost of pre-training and fine-tuning

and
classification throughput

Open Question
Is fine-tuning both task-specific component and PLM worth the
computation cost?

DL in bioinformatics is only just beginning!
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Thank You!

Questions, Please?

22 / 35



Example TooT-BERT-M — Membrane Proteins
Aim
Discriminate membrane proteins from non-membrane
Evaluate PLM ProtBERT-BFD for this task; Logistic Regression
Compare frozen vs fine-tuned approach
Dataset

Hyperparameters

H. Ghazikhani & G. Butler. TooT-BERT-M: Discriminating Membrane Proteins from Non-Membrane Proteins
using a BERT Representation of Protein Primary Sequences. CIBCB, 2022.
doi:10.1109/CIBCB55180.2022.9863026 23 / 35
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Example TooT-BERT-M — Membrane Proteins
TooT-BERT-M is State-of-the-Art (SOTA)?

Frozen vs Fine-Tuned
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Example TooT-BERT-T-CNN — Transport Proteins

Aim
Discriminate transport proteins from non-transport
Evaluate PLM ProtBERT-BFD for this task
Compare traditonal ML with CNN

Aim — Fine-Tuning PLMs & Catastrophic Forgetting
“Catastrophic forgetting refers to the phenomenon where a model,
when exposed to new data, tends to forget previously acquired
knowledge”’
MembraneBERT adds knowledge of membrane vs non-membrane

H. Ghazikhani & G. Butler. Enhanced identification of membrane transport proteins: a hybrid approach combining
ProtBERT-BFD and convolutional neural networks. Journal of Integrative Bioinformatics 20 (2) 2023.
https://doi.org/10.1515/jib-2022-0055

25 / 35

https://doi.org/10.1515/jib-2022-0055


Example TooT-BERT-T-CNN
Dataset

Workflow

CNN
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Example TooT-BERT-T-CNN
TooT-BERT-T-CNN is SOTA

CNN outperforms traditional ML

Evidence of Catastrophic Forgetting
See MembraneBERT in table above
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Example TooT-BERT-ICAT
Aim
Predict specific substrates for inorganic ion transporters
Evaluate PLM ProtBERT-BFD for this task
Compare Logistic Regression with FFNN
Compare frozen vs fine-tuned approach
Does transfer learning handle the small dataset?

S. Ataei & G. Butler. Predicting the specific substrate for transmembrane transport proteins using BERT language
model. CIBCB, 2022. doi:10.1109/CIBCB55180.2022.9863051
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Example TooT-BERT-ICAT
Results
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SPOT using (seq, substrate) pairs

SPOT Discriminating Transporters from Non-Transporters
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SPOT — Independence of Test Set?

Alexander Kroll et al (2023). A general substrate prediction model for transport
proteins using machine and deep learning. biorxiv doi.org/10.1101/2023.10.31.564943
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SPOT Predicting Seven Substrate Classes

Dataset

Performance
Confusion Matrix
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Conclusions

PLM Foundation Models superceding other DL methods
Ankh is open-source PLM of choice
No single one-size-fits-all for task-specific transfer learning

Trade-Offs
PLM size

versus
cost of pre-training and fine-tuning

and
classification throughput

Open Question
Is fine-tuning both task-specific component and PLM worth the
computation cost?

DL in bioinformatics is only just beginning!
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Thank You!

Questions, Please?
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Generative AI and Biology

Protein Design
Zhao, J.; Yan, W.; Yang, Y. DeepTP: A Deep Learning Model for Thermophilic
Protein Prediction. Int. J. Mol. Sci. 2023, 24, 2217.
https://doi.org/10.3390/ijms24032217

Madani, A., Krause, B., Greene, E.R. et al. Large language models generate functional
protein sequences across diverse families. Nat Biotechnol (2023).
https://doi.org/10.1038/s41587-022-01618-2

Kroll A, Engqvist MKM, Heckmann D, Lercher MJ (2021) Deep learning allows
genome-scale prediction of Michaelis constants from structural features. PLoS Biol
19(10): e3001402. https://doi.org/10.1371/journal.pbio.3001402

Kroll, A., Ranjan, S., Engqvist, M.K.M. et al. A general model to predict small
molecule substrates of enzymes based on machine and deep learning. Nat Commun
14, 2787 (2023). https://doi.org/10.1038/s41467-023-38347-2

Mehrsa Mardikoraem, Zirui Wang, Nathaniel Pascual and Daniel Woldring. Generative
models for protein sequence modeling: recent advances and future directions. Briefings
in Bioinformatics, 2023, 24(6), 1–19 https://doi.org/10.1093/bib/bbad358
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