Deep Learning in Protein Sequence Analysis

Gregory Butler

Department of Computer Science & Software Engineering Concordia University, Montréal, Canada

23 November 2023 — University of Waikato
01 December 2023 — University of New South Wales

Outline

Basics of Machine Learning Supervised learning

Basics of Deep Learning

Some Major Breakthroughs

Large Language Models and Protein LMs

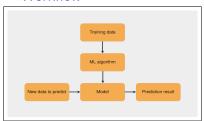
self-supervised learning pre-training + fine-tuning foundation models + transfer learning

DL in Protein Sequence Analysis

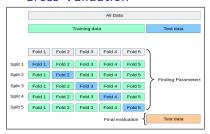
Conclusion

Supervised Machine Learning — Traditional

Workflow



Cross-Validation



Supervised Learning Dataset

dataset of **known** datapoints with features and labels for training + validation + independent test

Training

Optimisation of *parameters* for Model Minimise, across whole training set, *loss* between actual label & predicted label

Validation

Use *validation set* to compare Models Select

best choice of ML algorithm and/or best *hyper-parameters* for ML algorithm

Cross-Validation

Provides $\textit{mean} \pm \textit{sd}$ for selection Hence, significance of Model differences

Independent Test

To gauge final Model on "new" data independent of training and validation data

External Validation

Evaluate on real-world data eg compare result of human experts

ML Concerns

Criteria for Choice of Model

- Whether the model meets the goal
- How much pre-processing the model needs including the time required to train the model
- How accurate is the model in general, how well it performs during evaluation
- How explainable is the model explainable method; explainable prediction
- How fast is the model in making predictions
- ► How **scalable** is the model

ML Concerns

Data

- Amount
- Quality: *noise* in features and labels Imbalance

Feature Engineering

Independence of Test Set

data leakage due to unseen confounding factors leak = evolution of proteins: set percent identity (pid) threshold pid 60, 40, 20 commonly used

Overfitting

Which Performance Metric

Neural Networks — Traditional Feed Forward

Architecture

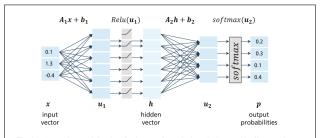


Fig. 1.1 A neural network for classification transforms the input by layers with affine transformations and nonlinear activation functions, e.g. ReLU. The final layer usually is a logistic classifier

Terminology

Activation function combines previous layer and edge weights Sigmoid $f(x) = 1/(1+e^{-x})$, Tanh $f(x) = 2 \times sigmoid(2x) - 1$ Rectified Linear Unit (ReLU) f(x) = 0 if $x \le 0$ else x loss function optimise by gradient descent and back-propagation

Deep Neural Networks

Deep — More than Three Hidden Layers

Types

FFNN — Feed Forward NN aka multilayer perceptron (MLP)

CNN — Convolution NN for computer vision

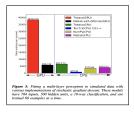
RNN — Recurrent NN for sequential & time-series data

LSTM — Long Short-Term Memory RNN capturing long-term dependencies

Concern: Computation Resources

Require new optimisation algorithms; GPU implementations

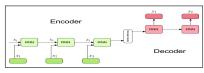
Theano: Yoshua Bengio Python library 2010; released v1.0.0 2017/11/15; now **PyTorch**



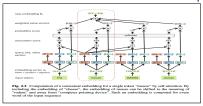
J. Bergstra et al. Theano: A CPU and GPU Math Expression Compiler. Proc. of the Python for Scientific Computing Conference (SciPy) 2010.

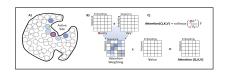
Deep Neural Networks — Transformers

Encoder/Decoder

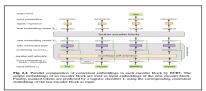


Attention Mechanisms to Capture Context





BERT Encoder: attention, but no RNN



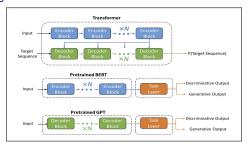
Deep Neural Networks — Transformers

BERT

Bidirectional Encoder Representation from Transformers GPT

Generative Pre-Training

Transformers

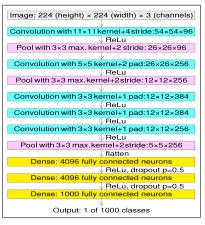


Deep Neural Networks

Breakthrough Moment for DL — 2012

AlexNet wins *ImageNet* 2012 Challenge on 2012-09-30 Achieved *top-5 error* of 15.3% vs runner-up 26.2%

AlexNet



ImageNet

14M+ images hand-annotated 20K+ categories of objects in images

ImageNet Challenge

2010+ ImageNet Large Scale Visual Recognition Challenge Dataset is ImageNet subset 1000 non-overlapping categories 1000 approx. images per category 1.2M training images 50K validation images 150K test images

AlexNet

Convolution Neural Network (CNN) ReLU activation function Multiple GPUs for training

Alex Krizhevsky, Ilya Sutskever, G.E. Hinton (2017-05-24). *ImageNet classification with deep convolutional neural networks*. Communications of the ACM **60 (6)**: 84–90. doi:10.1145/3065386

AlphaFold Breakthrough for Protein Structure Prediction

AlphaFold

2018: AlphaFold top-ranked in CASP13 (Critical Assessment of Techniques for Protein Structure Prediction)

CNN, supervised learning with 29K proteins+structures from PDB

2020: AlphaFold2 top-ranked in CASP14

RMSD between the C α atoms: 0.96Å vs 2.83Å for runner-up Transformer, triangle attention mechanism, MSA information Training 7d on 128 TPU v3 cores; Fine-tuning 4d

See also: RosettaFold, ESMFold, ColabFold, OpenFold

Alpha Protein Structure Database (alphafold.ebi.ac.uk)

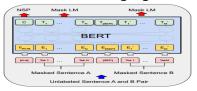
200M+ million entries; broad coverage of UniProt Predicted Aligned Error (PAE) for each entry

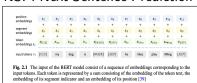
John Jumper et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2

Large Language Models — NLP

Pre-training — Self-Supervised

Task independent; Large corpus of text; Large computation MLM: Masked Language Modeling; NSP: Next Sentence Prediction





Fine-Tuning — Supervised

Downstream task-specific

Foundation Models & Transfer Learning

Protein Sequence Representation

Traditional

amino acid composition vector k-mer and skipped k-mer many physiochemical & surface accessibility "features"

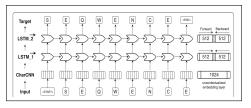
Post NLP Deep Learning

sequence as text: each amino acid as "word"

(truncated) sequence as image: AA as 20 dim one h

(truncated) sequence as image: AA as 20-dim one-hot encoding

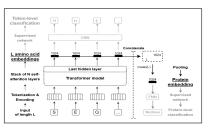
SeqVec (2019): RostLab based on ELMo (LSTM)



Z. Chen et al. iFeature: a python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018, 34 (14) pp. 2499–2502, doi:10.1093/bioinformatics/bty140. https://ifeature.erc.monash.edu

M. Heinzinger et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinformatics 20, 723 (2019). https://doi.org/10.1186/s12859-019-3220-8

Protein Language Model (PLM): MLM pre-training



Training Sets

UniRef100: 216M proteins, 80B AA BFD: 2.1B proteins, 393B+ AA

Tasks

sec. structure; localization Q10, Q2 role of MSA (evolution info)
ProtT5 — best performer w/o MSA

Secondary Structure

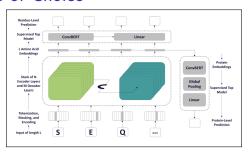
Jonuary	Jul	ictur
Dataset	CASP12	NEW364
DeepProtVec	62.9	64.7
ProtTXL*	71.5	72.8
ProtTXL-BFD*	71.7	72.2
DeepSeqVec	73.0	76.0
ProtXLNet*	73.7	77.3
ProtElectra*	73,9	78,1
ProtAlbert*	74.6	78.5
ProtBert*	75.0	80.1
ProtBert-BFD*	75.8	81.1
ESM-1b	76.9	82.6
ProtT5-XXL-BFD*	77.7	81.6
ProtT5-XL-BFD*	77.5	82.0
ProtT5-XXL-U50*	79.2	83.3
ProtT5-XL-U50*	81.4	84.8
NetSurfP-2.0	82.0	84.3

Open Source PLM

Hyperparameter	Pro	tTXL	Pro	Bert	ProtXLNet	ProtAlbert	ProtElectra	ProtT	5-XL	ProtT5	-XXL
Dataset	BFD100	UniRef100	BFD100	UniRef100	UniRef100	UniRef100	UniRef100	UniRef50	BFD100	UniRef50	BFD10
Number of Layers	32	30	3	0	30	12	30	24		24	ŀ
Hidden Layers Size	1	024	10	124	1024	4096	1024	102	24	102	24
Hidden Layers Intermediate Size	4	096	40	196	4096	16384	4096	163	84	655	36
Number of Heads	14	16	1	.6	16	64	16	32	2	12	8
Positional Encoding Limits		-	40)K	-	40K	40K	-		-	
Dropout	().15	0	.0	0.1	0.0	0.0	0.:	1	0.1	0.0
Target Length		512	512/	2048	512	512/2048	512/1024	51	2	51	2
Memory Length		512		-	384	-	-	-		-	
Masking Probability		-	15	5%	-	15%	25%	159	%	15	%
Local Batch Size	8	5	32/6	30/5	2	21/2	18/7	8	4	8	4
Global Batch Size	44928	22464	32768/6144	15360/2560	1024	10752/1024	9216/3584	2048	4096	2048	4096
Optimizer	L	amb	La	mb	Adam	Lamb	Lamb	AdaFa	actor	AdaFa	actor
Learning Rate	0.0005	0.002	0.0	002	0.00001	0.002	0.002	0.0	1	0.0	1
Weight Decay	0.0	0.01	0.	01	0.01	0.01	0.01	0.0)	0.0)
Training Steps	40.7K	31.3K	800K/200K	300K/100K	847K	150K/150K	400K/400K	991K	1.2M	343K	920K
Warm-up Steps	13.6K	5.5K	140K/20K	40K/0K	20K	40K/5K	40K/40K	10	K	10	K
Mixed Precision		del Weight ster Weight	No	one	None	None	None	No	ne	No	ne
Number of Parameters	562M	409M	42	0M	409M	224M	420M	3F	3	11	В
System	Summit	Summit	TPU	Pod	TPU Pod	TPU Pod	TPU Pod	TPU	Pod	TPU	Pod
Number of Nodes	9	936	128	64	64	64	64	32	128	32	128
Number of GPUs/TPUs	- 5	616	1024	512	512	512	512	256	1024	256	1024

A. Elnaggar et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans PAMI, vol. 44, no. 10, pp. 7112-7127, 1 Oct. 2022, doi:10.1109/TPAMI.2021.3095381

Ankh — PLM of Choice



Task	Dataset	Ankh	Ankh base	ProtT5- XL-U50	ESM- 1b	ESM-2 (650M)	ESM-2 (3B)	ESM-2 (15B)
SSP	CASP12 [41] CASP14 [42]	83.8±3% 77.6±3%	80.8±4% 76.8±3%	83.4±4% 74.1±3%	79.6±4% 75.1±4%	82.3±4% 77.0±3%	83.3±4% 76.8±3%	83.2±3% 76.8±4%
СР	ProteinNet L/1 [34] ProteinNet L/5 CASP14 L/1 CASP14 L/5	49.0±8% 73.2±11% 30.2±8% 50.7±11%	43.2±8% 66.6±11% 28.8±7% 48.0±11%	44.7±8% 69.2±11% 26.9±7% 42.4±14%	24.6±6%	50.2±10%	24.8±7%	33.3±6% 54.7±10% 25.9±7% 40.4±15%
EAT		71.7±6%	$74.8 \pm 6\%$	71.0±6%	$64.5 \pm 7\%$	$55.5 \pm 7\%$	$65.6 \pm 6\%$	$65.4 \pm 7\%$
FolP		61.1±4%	58.8±4%	57.6±4%	$57.6 \pm 4\%$	56.3±4%	60.5±4%	56.7±4%
FluP		0.62±0.004	0.61 ± 0.004	0.58 ± 0.004	0.5 ± 0.005	0.48±0.005	$0.48 {\pm} 0.005$	0.55±0.00
SolP		$76.4\pm2\%$	74.2±2%	74.4±2%	$67.3 \pm 2\%$	$75.0\pm2\%$	$74.9 \pm 2\%$	$60.4{\pm}2\%$
GB1	P	0.84±0.008	0.85±0.008	0.78 ± 0.01	0.81±0.00	90.82±0.009	0.81±0.009	0.57±0.02
LocP		83.2±2%	81.4±2%	83.2±2%	80.0±2%	81.8±2%	82.4±2%	81.8±2%

Summary of the benchmarking results involving, Ankh and Ankh Asse, with Prof.Tr.-XL-UsO, ESM-Ib, ESM-2 (188); We report the Speaman Correlation score for the regression tasks and accuracy across for all classification tasks, except for contact prediction where we report the L/1 and L/5 precision. In EAT, the score reported is the mean of the accuracy scores of the four amountations (Class.) Architecture, Topology and Homologous super-family). Task Abbreviations. SSF: Secondary Structure Prediction, Architecture, Topology and Homologous super-family, Task Abbreviations. SSF: Secondary Structure Prediction, College (Secondary Structure Prediction). The Prediction (Sec.) Subhibity Prediction, GBIP: GBI Firms Prediction, Lord; Localization Prediction

Benchmark Tasks for PLMs

PEER: Protein sEquence undERstanding (MILA)

17 tasks; single task learning & multi-task learning

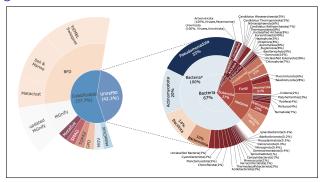
Task (Acronym)	Task Category	Data Source	#Protein	Seq. len.	#Train/Validation/Test	Metric
		Function Prediction				
GB1 fitness prediction (GB1)	Protein-wise Reg.	FLIP [16]	8,733	378.6 _{mm}	381/43/8,309	Spearman's p
AAV fitness prediction (AAV)	Protein-wise Reg.	FLIP [16]	82,583	1033.0(3.4)	28,626/3,181/50,776	Spearman's p
Thermostability prediction (Thermo)	Protein-wise Reg.	FLIP [16]	7,158	880.6(974.2)	5,149/643/1,366	Spearman's p
Fluorescence prediction (Flu)	Protein-wise Reg.	Sarkisyan's dataset [71]	54,025	343.3(1.3)	21,446/5,362/27,217	Spearman's p
Stability prediction (Sta)	Protein-wise Reg.	Rocklin's dataset [66]	68,934	66.6(5.2)	53,571/2,512/12,851	Spearman's p
β -lactamase activity prediction (β -lac)	Protein-wise Reg.	Envision [25]	5,198	396.1(0.7)	4,158/520/520	Spearman's p
Solubility prediction (Sol)	Protein-wise Cls.	DeepSol [39]	71,419	424.1(225.9)	62,478/6,942/1,999	Acc
		Localization Prediction				
Subcellular localization prediction (Sub)	Protein-wise Cls.	DeepLoc [2]	13,961	665.3гмя т	8,945/2,248/2,768	Acc
Binary localization prediction (Bin)	Protein-wise Cls.	DeepLoc [2]	8,634	636.5(396.5)	5,161/1,727/1,746	Acc
		Structure Prediction				
Contact prediction (Cont)	Residue-pair Cls.	ProteinNet [3]	25,563	320.0(275.2)	25,299/224/40	L/5 precision
Fold classification (Fold)	Protein-wise Cls.	DeepSF [31]	13,766	235.4(155.1)	12,312/736/718	Acc
Secondary structure prediction (SSP)	Residue-wise Cls.	NetSurfP-2.0 [41]	11,361	360.5(229.3)	8,678/2,170/513	Acc
	Prote	in-Protein Interaction Pro	diction			
Yeast PPI prediction (Yst)	Protein-pair Cls.	Guo's dataset [26]	1,707	726.3(432.0)	1,668/131/373	Acc
Human PPI prediction (Hum)	Protein-pair Cls.	Pan's dataset [59]	5,553	727.7(438.2)	6,844/277/227	Acc
PPI affinity prediction (Aff)	Protein-pair Reg.	SKEMPI [56]	627	304.9(193.8)	2,127/212/343	RMSE
	Prote	in-Ligand Interaction Pre	diction			
Affinity prediction on PDBbind (PDB)	Protein-ligand Reg.	PDBbind [49]	10,607	414.9(234.3)	16,436/937/285	RMSE
Affinity prediction on BindingDB (BDB)	Protein-ligand Reg.	BindingDB [47]	1.006	799.8(417.0)	7.900/878/5,230	RMSE

Minghao Xu et al (2022). PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding. Proc. NeurIPS 2022 Track on Datasets and Benchmarks.
Henriette Capel et al. ProteinGLUE multi-task benchmark suite for self-supervised protein modeling. Sci Rep 12, 16047 (2022). https://doi.org/10.1038/s41598-022-19608-4

xTrimoPGLM PLM (proprietary BioMap Research)

XTrimoPGLM

100B parameters; 1T training tokens; SOTA in 13/15 tasks Training Set



Training: MLM+GLM

Bo Chen et al. xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein. biorxiv 2023 doi:https://doi.org/10.1101/2023.07.05.547496

DL in Protein Sequence Analysis — SOTA DeepLoc

DeepLoc (2017): CNN+attention+RNN

DeepLoc 2.0 (2022): ESM-1b/ProtT5+attention

high-quality model ProtT5-XL-Uniref50 (3B parameters)

high-throughput model 33-layer ESM-1b (650M parameters)

DeepGO (2018) & DeepGOPlus (2020): CNN, GO aware

DeepEC (2019): CNN

DeepTMHMM (2022): ESM-1b+LSTM+CRF

SignalP 6.0 (2022): ProtBERT pre-trained on UniRef100

Vineet Thumuluri et al. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Research, Vol 50 (W1), 5 July 2022, pp. W228-W234, https://doi.org/10.1093/nar/gkac278 Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics. 2021 May 23;37(8):1187. doi:10.1093/bioinformatics/btaa763

Jae Yong Ryu et al. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. PNAS June 20, 2019 116 (28) 13996-14001 https://doi.org/10.1073/pnas.1821905116 Jeppe Hallgren et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. biorxiv 2022 doi:https://doi.org/10.1101/2022.04.08.487609

F. Teufel et al. Signal P 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40. 1023–1025 (2022). https://doi.org/10.1038/s41587-021-01156-3

TooT-Suite Project for Protein Sequence Analysis

Proposal in 2017 before advent of PLMs

Aim — Initial

Predict and classify transmembrane transport proteins
Tasks: Discriminate membrane proteins, transport proteins
Tasks: Predict SC (substrate class) & SS (specific substrate)

Apply to proteomes and meta-proteomes

Aim — After PLM successes

Investigate DL for these tasks
Broaden benchmark tasks for PLMs
Are there protein-specific (not NLP) pre-training methods?

Conclusions

PLM Foundation Models superceding other DL methods Ankh is open-source PLM of choice No single one-size-fits-all for task-specific transfer learning

Trade-Offs

PLM size
versus
cost of pre-training and fine-tuning
and
classification throughput

Open Question

Is fine-tuning both task-specific component and PLM worth the computation cost?

DL in bioinformatics is only just beginning!

Thank You!

Questions, Please?

Example TooT-BERT-M — Membrane Proteins

Aim

Discriminate membrane proteins from non-membrane Evaluate PLM ProtBERT-BFD for this task; Logistic Regression Compare frozen vs fine-tuned approach

Dataset

TABLE I: DS-M: Membrane dataset

Class	Training	Test	Total
Membrane	7,945	883	8,828
Nonmembrane	8,157	907	9,064
Total	16,102	1,790	17,892

TABLE II: Functional types of membrane proteins TABLE III: Structural types of the membrane proteins

Туре	Count	Percentage
Transporter	2224	25%
Receptor	1123	13%
Enzyme	2878	33%
Other	2603	29%

Туре	Count	Percentage
Single-pass	2684	36%
Multi-pass	2877	39%
Lipid-anchor	460	6%
GPI-anchor	218	3%
Peripheral	1175	16%

Hyperparameters

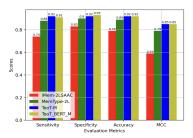
Hyperparamer	Value
training epochs	10
training batch size	1
evaluation batch size	32
warmup steps	1000
weight decay	0.01
gradient accumulation steps	64

H. Ghazikhani & G. Butler. TooT-BERT-M: Discriminating Membrane Proteins from Non-Membrane Proteins using a BERT Representation of Protein Primary Sequences, CIBCB, 2022. doi:10.1109/CIBCB55180.2022.9863026

Example TooT-BERT-M — Membrane Proteins TooT-BERT-M is State-of-the-Art (SOTA)?

TABLE VII: Comparison with other methods

Method	Sen(%)	Spc(%)	Acc(%)	MCC
iMem-2LSAAC	74.52	83.90	79.27	0.59
MemType-2L	88.67	90.19	89.44	0.79
TooT-M	92.41	92.5	92.46	0.85
TooT-BERT-M	91.28	93.61	92.46	0.85



Frozen vs Fine-Tuned

TABLE V: BERT representation comparison

Rep	Sen(%)	Spc(%)	Acc(%)	MCC
Frozen	91.18	83.47	87.37	0.7492
Fine-tuned	91.28	93.61	92.46	0.8493

Example TooT-BERT-T-CNN — Transport Proteins

Aim

Discriminate transport proteins from non-transport Evaluate PLM ProtBERT-BFD for this task Compare traditional ML with CNN

Aim — Fine-Tuning PLMs & Catastrophic Forgetting

"Catastrophic forgetting refers to the phenomenon where a model, when exposed to new data, tends to forget previously acquired knowledge"

MembraneBERT adds knowledge of membrane vs non-membrane

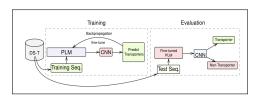
H. Ghazikhani & G. Butler. Enhanced identification of membrane transport proteins: a hybrid approach combining ProtBERT-BFD and convolutional neural networks. Journal of Integrative Bioinformatics 20 (2) 2023. https://doi.org/10.1515/jib-2022-0055

Example TooT-BERT-T-CNN

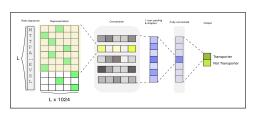
Dataset

Class	Training	Test	Total
Transporter	780	120	900
Non-transporter	600	60	660
Total	1380	180	1560

Workflow



CNN



Example TooT-BERT-T-CNN

TooT-BERT-T-CNN is SOTA

Classifier	Representer	Sen	Spc	Acc	MCC
TooT-T [6]	Traditional ^a	94.17	88.33	92.22	0.8200
TooT-BERT-T [7]	ProtBERT-BFD	95.83	90.00	93.89	0.8620
TooT-BERT-CNN-T	ProtBERT-BFD	95.00	95.00	95.00	0.8894

CNN outperforms traditional ML

Classifier	Representation		Independent						
		Sen	Spc	Acc	мсс	Sen	Spc	Acc	MCC
kNN	ProtBERT-BFD	97.02 ± 2.79	97.10 ± 2.78	97.06 ± 2.65	0.9405 ± 0.0537	93.33	88.33	92.20	0.8250
	ProtBERT	91.21 ± 2.37	64.25 ± 2.79	79.49 ± 1.95	0.5857 ± 0.0422	95.00	60.00	83.89	0.6265
	MembraneBERT	98.00 ± 3.54	96.79 ± 5.08	97.47 ± 4.20	0.9485 ± 0.0857	85.83	88.33	86.67	0.7172
RF	ProtBERT-BFD	95.84 ± 3.13	97.11 ± 3.04	96.38 ± 3.08	0.9276 ± 0.0619	94.17	88.33	92.22	0.8250
	ProtBERT	88.40 ± 3.38	76.91 ± 4.40	83.31 ± 2.42	0.6635 ± 0.0493	89.17	78.33	83.89	0.6750
	MembraneBERT	97.82 ± 3.68	96.88 ± 5.10	97.43 ± 4.29	0.9473 ± 0.0877	85.00	90.00	86.67	0.7073
SVM	ProtBERT-BFD	94.05 ± 2.80	86.10 ± 2.68	90.59 ± 2.50	0.7999 ± 0.0506	100.00	90.00	92.78	0.8369
	ProtBERT	85.69 ± 2.69	53.97 ± 2.80	71.90 ± 1.64	0.4186 ± 0.0360	100.00	86.67	90.00	0.7771
	MembraneBERT	97.65 ± 3.64	96.68 ± 4.81	97.23 ± 4.13	0.9439 ± 0.0838	85.00	91.67	85.00	0.6930
LR	ProtBERT-BFD	96.79 ± 3.27	97.33 ± 2.91	97.03 ± 3.05	0.9400 ± 0.0617	95.83	90.00	93.89	0.8620
	ProtBERT	90.64 ± 2.42	82.33 ± 2.95	87.03 ± 2.02	0.7358 ± 0.0410	92.50	80.00	88.33	0.7347
	MembraneBERT	98.08 ± 3.53	97.00 ± 5.18	97.61 ± 4.25	0.9513 ± 0.0866	86.67	85.00	86.11	0.6989
FENN	ProtBERT-BFD	92.13 ± 7.08	91.79 ± 6.98	91.79 ± 6.98	0.7924 ± 0.0586	92.50	90.00	90.00	0.8043
	ProtBERT	85.95 ± 6.79	78.44 ± 7.51	82.37 ± 2.29	0.6480 ± 0.0402	100.00	50.00	87.22	0.7414
	MembraneBERT	95.37 ± 5.49	94.60 ± 6.73	95.43 ± 4.74	0.9073 ± 0.0936	60.00	28.33	85.00	0.6832
CNN	ProtBERT-BFD	85.64 ± 7.25	95.33 ± 3.85	89.85 ± 3.57	0.8072 ± 0.0642	95.00	95.00	95.00	0.8894
	ProtBERT	95.00 ± 3.58	81.16 ± 1.47	88.98 ± 4.95	0.7855 ± 0.0943	95.00	90.00	93.33	0.8500
	MembraneBERT	98.71 + 0.90	97.83 + 1.25	98.33 + 0.71	0.9662 + 0.0157	90.83	91.66	91.11	0.8070

Evidence of Catastrophic Forgetting See MembraneBERT in table above

Example TooT-BERT-ICAT

Aim

Predict specific substrates for inorganic ion transporters Evaluate PLM ProtBERT-BFD for this task Compare Logistic Regression with FFNN Compare frozen vs fine-tuned approach Does transfer learning handle the small dataset?

TABLE I: Four extracted datasets

Dataset	Size	Trainset	Testset	# Classes
UniProt-ICAT-100	4,112	3,289	823	12
UniProt-ICAT-60	1,429	1,143	286	11
SwissProt-ICAT-100	2,140	1,712	428	11
SwissProt-ICAT-60	1,098	878	220	11

The number of sequences and classes in each of the four datasets. Each dataset has been divided into a training set and test set with 80%-20% ratio randomly and stratified

TABLE II: Size of substrate classes for each dataset

Class	CHEBI	Substrate	UP-ICAT-100	UP-ICAT-60	SP-ICAT-10	SP-ICAT-60
0	CHEBI:24636	proton	1307	600	883	484
1	CHEBI:29108	calcium(2+)	868	210	350	154
2	CHEBI:29103	potassium(1+)	726	193	299	146
3	CHEBI:17996	chloride	458	129	177	75
4	CHEBI:29101	sodium(1+)	429	123	235	99
5	CHEBI:16189	sulfate	98	49	38	27
6	CHEBI:29105	zinc(2+)	80	51	67	47
7	CHEBI:28938	ammonium	55	28	36	23
8	CHEBI:17632	nitrate	28	18	27	18
9	CHEBI:29033	iron(2+)	24	16	16	13
10	CHEBI:35780	phosphate ion	22	12	12	12
11	CHEBI:49552	copper(1+)	17	9	7	6
Total			4,112	1,429	2,140	1.098

S. Ataei & G. Butler. Predicting the specific substrate for transmembrane transport proteins using BERT language model. CIBCB. 2022. doi:10.1109/CIBCB55180.2022.9863051

Example TooT-BERT-ICAT

Results

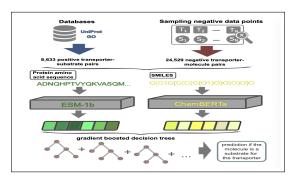
TABLE IV: Independent testset results comparison for Logistic Regression(LR), Feed-forward Neural Networks (FNN), and Fine-tuned BERT (FTB)

			Accuracy		Precision		Recall			F1-score			MCC			
Dataset	# Classes	LR	FNN	FTB	LR	FNN	FTB	LR	FNN	FTB	LR	FNN	FTB	LR	FNN	FTB
UniProt-ICAT-100	12	0.975	0.985	0.993	0.852	0.911	0.959	0.630	0.832	0.881	0.680	0.858	0.913	0.813	0.889	0.948
UniProt-ICAT-60	11	0.952	0.963	0.982	0.734	0.794	0.899	0.415	0.597	0.868	0.442	0.664	0.903	0.640	0.726	0.867
SwissProt-ICAT-100	11	0.971	0.981	0.991	0.839	0.895	0.951	0.509	0.748	0.879	0.548	0.783	0.907	0.785	0.861	0.936
SwissProt-ICAT-60	11	0.950	0.956	0.979	0.723	0.759	0.886	0.425	0.595	0.757	0.465	0.598	0.802	0.616	0.682	0.850

TABLE V: Detailed results for classification of UniProt-ICAT-100 using Fine-tuned ProtBERT

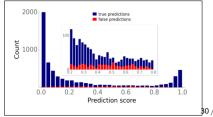
Substrate	Trainset	Validation	Testset	TP	FP	FN	TN	Accuracy	Precision	Recall	F1-Score	MCC
proton	837	209	261	245	17	16	545	0.960	0.935	0.939	0.937	0.908
calcium(2+)	555	139	174	157	12	17	637	0.965	0.929	0.902	0.916	0.893
potassium(1+)	465	116	145	136	15	9	663	0.971	0.901	0.938	0.919	0.901
chloride	293	73	92	86	9	6	722	0.982	0.905	0.935	0.920	0.910
sodium(1+)	274	69	86	75	14	11	723	0.970	0.843	0.872	0.857	0.840
sulfate	62	16	20	14	4	6	799	0.988	0.778	0.700	0.737	0.732
zinc(2+)	51	13	16	14	0	2	807	0.998	1.000	0.875	0.933	0.934
ammonium	35	9	11	-11	1	0	811	0.999	0.917	1.000	0.957	0.957
nitrate	18	4	6	4	0	2	817	0.998	1.000	0.667	0.800	0.816
iron(2+)	15	4	5	2	0	3	818	0.996	1.000	0.400	0.571	0.631
phosphate ion	15	3	4	3	1	-1	818	0.998	0.750	0.750	0.750	0.749
copper(1+)	- 11	3	3	3	0	0	820	1.000	1.000	1.000	1.000	1.000

SPOT using (seq, substrate) pairs

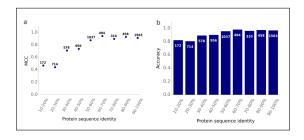


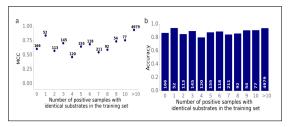
SPOT Discriminating Transporters from Non-Transporters

	Accuracy	ROC-AUC	MCC
ESM-1b + ECFP	91.5%	0.956	0.78
${\rm ESM1b}_{ts} + {\rm ECFP}$	90.0%	0.955	0.75
ESM-1b + ChemBERTa	92.4%	0.961	0.80
${\sf ESM\text{-}1b}_{ts} + {\sf ChemBERTa}$	90.6%	0.957	0.76



SPOT — Independence of Test Set?





Alexander Kroll et al (2023). A general substrate prediction model for transport proteins using machine and deep learning. biorxiv doi.org/10.1101/2023.10.31.564943

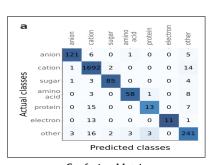
SPOT Predicting Seven Substrate Classes

Classes	No. of training data points	No. of test data points	No. of different ChEBI IDs
		•	
cation	6914	1709	87
anion	625	133	59
sugar	350	93	92
amino acid / oligopeptide	282	70	163
protein / mRNA	105	35	10
electron	77	25	1
other	978	268	945

Dataset

Class	Accuracy	MCC
anion	99.27%	0.93
cation	96.87%	0.92
sugar	99.49%	0.93
amino acid / oligopeptide	99.31%	0.88
protein / mRNA	98.89%	0.53
electron	99.4%	0.66
other	97.17%	0.86

Performance



Conclusions

PLM Foundation Models superceding other DL methods Ankh is open-source PLM of choice No single one-size-fits-all for task-specific transfer learning

Trade-Offs

PLM size

versus

cost of pre-training and fine-tuning

and

classification throughput

Open Question

Is fine-tuning both task-specific component and PLM worth the computation cost?

DL in bioinformatics is only just beginning!

Thank You!

Questions, Please?

Generative AI and Biology

Protein Design

Zhao, J.; Yan, W.; Yang, Y. DeepTP: A Deep Learning Model for Thermophilic Protein Prediction. Int. J. Mol. Sci. 2023, 24, 2217. https://doi.org/10.3390/ijms24032217

Madani, A., Krause, B., Greene, E.R. et al. *Large language models generate functional protein sequences across diverse families*. Nat Biotechnol (2023). https://doi.org/10.1038/s41587-022-01618-2

Kroll A, Engqvist MKM, Heckmann D, Lercher MJ (2021) Deep learning allows genome-scale prediction of Michaelis constants from structural features. PLoS Biol 19(10): e3001402. https://doi.org/10.1371/journal.pbio.3001402

Kroll, A., Ranjan, S., Engqvist, M.K.M. et al. *A general model to predict small molecule substrates of enzymes based on machine and deep learning.* Nat Commun 14, 2787 (2023). https://doi.org/10.1038/s41467-023-38347-2

Mehrsa Mardikoraem, Zirui Wang, Nathaniel Pascual and Daniel Woldring. *Generative models for protein sequence modeling: recent advances and future directions.* Briefings in Bioinformatics, 2023, 24(6), 1–19 https://doi.org/10.1093/bib/bbad358