COMP 333 Data Analytics

Descriptive Analytics

Greg Butler

Data Science Research Centre
and
Centre for Structural and Functional Genomics
and
Computer Science and Software Engineering
Concordia University, Montreal, Canada
gregb@cs.concordia.ca

Overview of Lecture

Descriptive Analytics is describing your data; that is, data from past activities

1. Five Numbers
2. Python pandas describe()
3. Plots: Bar Chart, Histogram, Box Plot
4. Pareto Diagrams
5. Violin Plot
6. Normalization and Z-scores
7. Comparing Two Attributes
8. Correlation is not Causality

Describing Data

Four Features to Describe Data Sets

Center: the point where about half of the observations are on either side.
Spread: the variability of the data.
Shape: described by symmetry, skewness, number of peaks, etc.
Unusual features: gaps where there are no observations and outliers.

Five Numbers of Robust Statistical Descriptors

Five Number Summary

- maximum
- third quartile Q_{3}
- median
- first quartile Q_{1}
- minimum

Descriptors

What Else to Describe?

- number of observations
- number of entries
- number of unique entries
- number of missing entries
- number of outliers
- number of extreme values

Python pandas describe

Describing a numeric series.

```
>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64
```

Describing a categorical series.

```
>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
freq 2
dtype: object
```


Python pandas describe

```
>>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']),
    'numeric': [1, 2, 3],
    'object': ['a', 'b', 'c']
    })
```

Describing all columns of a DataFrame regardless of data type.

\gg df.describe (include='all')			
categorical	numeric object		
count	3	3.0	3
unique	3	NaN	3
top	f	NaN	C
freq	1	NaN	1
mean	NaN	2.0	NaN
std	NaN	1.0	NaN
min	NaN	1.0	NaN
25%	NaN	1.5	NaN
50%	NaN	2.0	NaN
75%	NaN	2.5	NaN
max	NaN	3.0	NaN

Bar Chart

Bar Chart

Excuses for being late to class

Histogram

Histogram

An ordinary and a cumulative histogram of the same data. ■
The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1.

Box Plot

Box Plot

Box Plot

Box Plot

Pareto Diagram

Pareto Diagram

Order by decreasing frequency

Violin Plot

Violin Plot shows frequency too

Grouped violinplots with split violins

Python source code: [download source: grouped_violinplots.py]

```
import seaborn as sns
sns.set(style="whitegrid", palette="pastel", color_codes=True)
# Load the example tips dataset
tips = sns.load_dataset("tips")
# Draw a nested violinplot and split the violins for easier comparison
sns,violinplot(x="day", y="total_bill.", hue="smoker",
    split=True, inner="quart",
    palette={"Yes": "y", "No": "b"},
    data=tips)
```

sns. despine(left=True)

Normalization and Z-scores

Normalization of Numbers
means getting them on the same scale
so they can be compared apples to apples
eg use frequency rather than count
eg use Z-scores of a normal distribution to allow for different mean and variance

Comparing Two Attributes

Adapted from Frank E. Harrell Jr. on graphics:
http://biostat.mc.vanderbiltedu/twiki/pub/Main/StatGraphCourse/graphscourse.pdf

Two categorical variables

- Use frequency table
- One categorical variable and other continuous variable
- Box plots of continuous variable values for each category of categorical variable
- Side-by-side dot plots (means + measure of uncertainty, SE or confidence interval)
- Do not link means across categories!

Two continuous variables

- Scatter plot of raw data if sample size is not too large
- Prediction with confidence bands

Comparing Two Attributes

Compare categorical and categorical

Comparing Two Attributes

Compare categorical and continuous

Comparing Two Attributes

Compare continuous and continuous

Correlation is not Causality

These are different concepts
and
correlation does not imply causality

