
Concordia University
Department of Computer Science and Software Engineering

SOEN 341 — Software Process
Course Outline — Fall 2007 — Section H

Instructor: Greg Butler (gregb@cse)
Tutor: Bahman Zamani (b zamani@cse)

Web page: http://www.cse.concordia.ca/~gregb/home/soen341-f2007.html

Introduction

The purpose of SOEN 341 is to introduce the basic concepts of industrial software development,
especially the various approaches to the software development process, and to prepare you for
subsequent software engineering courses such as:
SOEN 342 — Software Requirements and Specifications
SOEN 343 — Software Design
SOEN 384 — Management and Quality Control in Software Development

Prerequisite Knowledge

You should have had some previous experience in programming, preferably object-oriented pro-
gramming using C++ or Java (COMP 249 or equivalent), some knowledge of data structures
and algorithms (COMP 352 or equivalent), and some knowledge of the principles of technical
documentation (ENCS 282 or SOEN 282 or equivalent).

Textbook:Craig Larman. Agile and Iterative Development: A Manager’s Guide. Addison-
Wesley. ISBN 0-13-111155-8, 2003.

Course Outline

Need for a software process. Software processes and life cycles. Models of systems and software.
Process modeling. Software development tools. Process components: requirements, analysis,
design, implementation, testing. Project management and quality control. The course will
discuss different alternative processes for software development, including the Waterfall model,
iterative/incremental models, the Rational Unified Process, and Extreme Programming. A
complete list of the lecture topics, along with course notes, is available on the course web page.



Computing Facilities

You will do practical work in a computer laboratory equipped with PCs that run Windows and
Linux operating systems. Programming environments for C++ and Java are available on both
platforms. The computer laboratory assigned to this course is H-929. It will be booked at the
same hours as your tutorial, as some of the tutorials might be held in the laboratory for the
purpose of tutoring on software tools to be used in the project. Even though you are allowed to
use other resources for the completion of the project, note that the final project demonstration
will have to occur on the downtown campus.

Project

The major practical component of the course will be the development of an object-oriented
program designed and implemented by a team. Each team will consist of approximately six
to nine students. Each team will implement an application whose description will be provided
during lecture and tutorial time in the first week of classes. It is very important to understand
that the role of this project is to demonstrate the importance and the application of a software
process. It is not to be approached as a regular programming project.

Evaluation

You will be evaluated as follows:

Quizzes (3) 10% + 15% + 15% = 40%
Homework Assignments (3) 5% + 5% + 5% = 15%
Team Project Deliverable 0 (team information) 0%
Team Project Deliverable 1 (incr. 1 + scope + plan) (code: 3%) + (document: 7%) = 10%
Team Project Deliverable 2 (incr. 2 + design) (code: 3%) + (document: 7%) = 10%
Team Project Deliverable 3 (incr. 3 + testing) (code: 10%) + (document: 5%) = 15%
Team Project Deliverable 4 (final project demo.) 5%
Individual Project Report 5%

Quizzes (10%+15%+15%) and assignments are individual work, and the project is team work,
where each team member shares the exact same grade as his/her team mates. The three home-
work assignments (5%+5%+5%) will be primarily theoretical and designed as exercises to help
you prepare for the quizzes. The project is providing the practical component in the form of
three project deliverables including an incremental delivery of the system (10%+10%+15%) and
a final project demonstration (5%). Finally, a short individual project report (5%) is required
at the end of the project to enquire on your experience as an individual in the project. Late
assignments or project deliverables will be assessed a 50% penalty for each late working day.
The exact schedule for assignment due dates and quizzes are available on the web page.



Project

The project for this semester is based on the game of Kakuro (http://en.wikipedia.org/wiki/Cross Sums).
There are three programs that make the complete application:

1. An interactive game player where the user can select a game and play it by entering
numbers into squares.

2. A game generator which returns a random game.

3. An advisor to guide the user playing a game.

The project is an incremental project involving three versions of these programs:

1. A minimal version which provides basic functionality and a workable interface.

2. A version which incorporates at least one difficult feature, such as infinite undo and redo,
real game generation, and encapsulated strategies.

3. A usable, robust, tested version providing the most important features that time allows.

For the third and last version, each group should also integrate the three programs into one
game application. It is suggested that team members take the roles of Implementor, Tester, and
Documenter, and share the role of devising the requirements and the design at all times.
It is required that team members rotate to a new program for each version, and rotate to a new
role for each version, so that by the end of the project you will have worked on each program
and performed each role.

Lectures

Week 1: introduction, development phases
Week 2: software process, extreme programming
Week 3: agile software development, build-and-fix model, waterfall model, incremental models
Week 4: prototyping, spiral model
Week 5: unified process
Week 6: unified process
Week 7: requirements, use case approach
Week 8: specifications
Week 9: design, architectural design, conceptual design, module interfaces, detailed design
Week 10: testing, testing phases, unit testing, integration testing, system testing
Week 11: implementation, coding standards
Week 12: [slack for catch-up in schedule]
Week 13: capability maturity model, CMM process areas


