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ABSTRACT
By providing lightweight and portable support for cloud native
applications, container environments have gained significant mo-
mentum lately. A container orchestrator such as Kubernetes can
enable the automatic deployment and maintenance of a large num-
ber of containerized applications. However, due to its critical role, a
container orchestrator also attracts a wide range of security threats
exploiting misconfigurations or implementation flaws. Moreover,
enforcing security policies at runtime against such security threats
becomes far more challenging, as the large scale of container en-
vironments implies high complexity, while the high dynamicity
demands a short response time. In this paper, we tackle this key
security challenge to container environments through a proactive
approach, namely, ProSPEC. Our approach leverages learning-based
prediction to conduct the computationally intensive steps (e.g., se-
curity verification) in advance, while keeping the runtime steps
(e.g., policy enforcement) lightweight. Consequently, ProSPEC can
ensure a practical response time (e.g., less than 10 ms in contrast to
600 ms with one of the most popular existing approaches) for large
container environments (up to 800 Pods).
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1 INTRODUCTION
Container environments are becoming increasingly popular for de-
livering microservices with increased scalability, reliability and ob-
servability [41]. In such environments, container orchestrators (e.g.,
Kubernetes [18]) are typically employed to ease the deployment
and maintenance of large amounts of containerized applications.1
However, the central role of such orchestrators also renders them
attractive to various security threats that exploit misconfigurations
or vulnerabilities to cause breaches of security policies. Further-
more, security is typically an afterthought in the deployment of
containerized applications and security policy breaches are usually
detected after the fact, which could result in irreversible damages
(e.g., denial of service or information leakage) [9, 11].

To that end, enforcing security policy at runtime (i.e., verifying
user requests against a given security policy and denying those
requests causing a breach) can prevent such irreversible damages
caused by attacks. However, runtime security policy enforcement
can be challenging for container environments due to their sheer
scale (which implies high complexity) combined with the very short
life cycle of containers (which demands short response times). Ev-
idently, applying Open Policy Agent (OPA)/Gatekeeper [5] (the
former is an open-source policy engine, and the latter the go-to
solution for using OPA for Kubernetes admission control [18]) for
runtime security policy enforcement in large container environ-
ments may face some practical challenges as follows.

• First, such tools may cause prohibitive runtime delay for a rel-
atively large container environment (e.g., OPA/Gatekeeper
can cause up to 600 ms delay in a Kubernetes cluster of 800
Pods, as shown in our experiments in Section 5.2).

• Second, the reactive nature of those solutions (i.e., all the ef-
forts are only started after a user request is already received)
implies a fundamental bottleneck that leaves little room for

1A study shows 91% of respondents use Kubernetes and 83% of them in production [8].
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further performance improvement to keep up with the ever-
increasing size and complexity of container environments.

• Third, existing proactive approaches to reduce response time,
such as verifying replicated states [5] (instead of actual sys-
tem states) may cause severe security issues. Specifically, the
small delay in replicating the states can cause a temporary
inconsistency between the actual and the replicated states,
which can be exploited by a malicious user to bypass security
policies, as we will show through an example in Section 2.2.

In this paper, we tackle those key challenges through a proactive
approach, namely, ProSPEC. Our key idea is to perform compu-
tationally intensive verification steps in advance (i.e., before the
actual events occur) to keep the runtime enforcement steps light-
weight with a practical response time. Specifically, we first learn a
predictive model from historical data (i.e., logs of past events) to
enable the prediction of future events. Then, we utilize this model
to predict imminent critical events (which may violate a security
policy) and proactively start the verification of that policy based on
those hypothetical events. Finally, once the actual events occur, we
enforce the security policy based on the pre-computed verification
results through efficient operations such as list searching. Conse-
quently, ProSPEC can make runtime decisions with negligible delay
even for large container environments.

In summary, our main contributions are as follows:

• To the best of our knowledge, this is the first work offering
proactive security policy enforcement at runtime for con-
tainers. ProSPEC can ensure security policy enforcement for
large container environments with a practical response time
(e.g., less than 10 ms for 800 Pods in contrast to 600 ms with
one of the most popular existing approaches).

• We study the dependency relationships among container
management events and build the first predictive model for
container events. Such a model may enable other proactive
security solutions (beyond security policy enforcement).

• ProSPEC can be easily integrated into legacy policy enforce-
ment engines without major modification as verification and
enforcement are decoupled in ProSPEC.

• ProSPEC is integrated with the de facto standard orchestra-
tor, Kubernetes [18], with the provision of porting it to other
orchestrators (e.g., Docker Swarm [15], OpenShift [22]).

The rest of this paper is organized as follows: Section 2 presents
the preliminaries and models. Section 3 details our approach. Sec-
tions 4 and 5 provide the implementation details and experimental
evaluation, respectively. Section 6 summarizes the related work and
Section 7 concludes the paper and considers future works.

2 BACKGROUND AND MOTIVATION
This section provides a background on containerization and security
policy compliance, presents the motivation and our threat model.

2.1 Background
Containerization. Cloud computing environments present nu-
merous advantages including scalability, reliability and observabil-
ity for application deployment. Frameworks such as OpenStack [1]

allow companies to deploy their own cloud infrastructure over vir-
tual machines (VMs) [41]. However, due to the lack of portability
and the significant overhead imposed by VMs (the operating sys-
tem), containerization has recently become a preferred option for
dynamic and quickly evolving environments.

As demonstrated by ETSI in [6] shown in Fig. 1, a container is
a bundle of applications and their dependencies running through
operating system (OS) level virtualization. Unlike VMs, containers
do not require hardware virtualization and run directly at the OS
level, thus resulting in much faster deployments and less resource
consumption. As a hypervisor manages VMs, a container orches-
trator (e.g., Kubernetes) indirectly manages containers (i.e., via a
container runtime environment such as Docker) through their en-
tire life cycle, including scheduling, deployment, patch and deletion.
Depending on the orchestrator, containers can be managed and
gathered in group (e.g., in Pods, in the case of Kubernetes).
Security Policy Compliance. In a container environment, secu-
rity policy compliance means to first verify requests made to the
orchestrator against a set of security policies, and then enforce the
decision based on the verification result (i.e., allow or deny). As
shown in Fig. 1, a policy compliance tool ensures the security by
verifying the requests and enforcing the decisions.

Figure 1: ETSI container environment architecture [6]

2.2 Motivating Example
To make our discussion more concrete, our motivating example
will be based on Kubernetes [18] as the container orchestrator and
OPA/Gatekeeper [5] as the policy compliance tool. A key limitation
of OPA/Gatekeeper lies in its reactive nature, i.e., it can only start
the data collection and policy verification after a user request has
already been received. Consequently, a user would have to experi-
ence both the Data Collection Delay (which grows linearly in the
amount of data required) and the Policy Verification Delay (which
depends on the number of policies and their complexity), which
could become prohibitive for large container environments.

As a remedy for such undesirable delays, OPA/Gatekeeper em-
ploys data replication by monitoring resource changes in the Ku-
bernetes cluster and keeping its own copy of the cluster state for
faster data collection and verification. However, the data replica-
tion causes an unavoidable delay that can lead to inconsistencies
between the actual state of a Kubernetes cluster and the state repli-
cated by OPA/Gatekeeper. As we will show next, such inconsisten-
cies can be exploited by adversaries to bypass security policies.



Specifically, our attack scenario is based on a real-world vulner-
ability in Kubernetes, CVE-2020-8554 [9]. This vulnerability allows
an adversary to set the externalIP field of a newly created Kuber-
netes Service to be identical to the IP address of an existing resource,
e.g., Pod (normally, OPA/Gatekeeper would only allow a new Ser-
vice to be set to an IP address not already used in a Kubernetes
cluster). Using this service, the attacker can then intercept traffic
directed to that resource (e.g., eavesdrop sensitive information). As
shown in Fig. 2, a Create Pod request (1) is made to the Kube-API
server. The Kubernetes admission webhook receives the request
and forwards it to the admission controller (OPA/Gatekeeper) for
verification (2). OPA/Gatekeeper compares the request against its
pre-defined security policy and allows the Create Pod request
(3). In (4), the Pod is created in the Kubernetes cluster with the IP
address 192.168.1.1. Shortly after, while OPA/Gatekeeper is repli-
cating the cluster state, themalicious user makes a Create Service
request to the Kube-API server (5) after 𝛼 time which is less than
the data replication delay (i.e., 𝛽). Therefore, OPA/Gatekeeper’s
replicated cluster state is not yet updated with the freshly created
Pod. When processing (6), OPA/Gatekeeper does not detect any
policy breach and allows the Service creation with an externalIP
equal to the existing IP address 192.168.1.1 (7). As a result, in the
actual cluster, a Service exists with the same externalIP address as
a Pod, giving it the ability to intercept that Pod’s traffic (8). Due
to this vulnerability (CVE-2021-43979 [13], which is discovered by
us), the data replication delay leads to security policy bypass.

Figure 2: Policy bypass due to data replication delay

In summary, the above-mentioned limitations of a reactive solu-
tion like OPA/Gatekeeper motivate us to depart from such a reactive
solution and propose instead a proactive approach that performs
the data collection and verification before user requests arrive.

2.3 Threat Model
In-scope Threats. The in-scope threats include both external at-
tackers and insiders (such as other users of the cluster) with mali-
cious intents. We assume that the container environment may have
implementation flaws, misconfigurations, or vulnerabilities that
may allow such adversaries to violate given security policies. As
ProSPEC focuses on Kubernetes API requests, we limit our scope
to attacks that involve sequences of operations directed through
the Kubernetes API server interface. Like most existing works on
security verification, we assume the integrity of ProSPEC and the
Kubernetes system (with its API requests, events, audit logs, and

database records), protected with existing trusted computing tech-
niques such as remote attestation [25, 31].
Out-of-scope Threats. As ProSPEC focuses on providing security
compliance at the front line of the cluster, i.e., Kubernetes control
plane, other related issues such as Docker container security and
detecting specific attacks or intrusions are out of the scope of this
paper. The out-of-scope threats also include attacks that can com-
pletely bypass the Kubernetes API server interface, and attacks that
do not involve any Kubernetes API requests. Moreover, as with
most works on security verification, we do not consider attackers
who can temper with (either through attacks or by using insider
privileges) the Kubernetes system or the ProSPEC solution itself.

3 PROSPEC APPROACH
Fig. 3 shows an overview of our approach, which contains twomajor
phases: offline and runtime. During the offline phase, ProSPEC builds
a predictive model that captures the (probabilistic) dependency re-
lationships among events in the container environment to enable
prediction of future events. During the runtime phase, ProSPEC first
conducts proactive verification against security policies (provided
by ProSPEC users, such as administrators) for predicted future
events by utilizing the built models, and then enforces those proac-
tive verification results when actual events occur. ProSPEC supports
a wide-range of policies that can be expressed using formal methods,
e.g., [35]. In the following, we elaborate on both phases.

3.1 The Offline Phase
In this section, we first informally define our predictive model and
then describe how ProSPEC builds this model.
Defining Predictive Model. Our predictive model is to capture
the probabilistic dependencies among management events in a con-
tainer environment; which will be used in subsequent steps of the
ProSPEC approach. This model is represented as a directed graph
where nodes indicate container events, edges indicate their transi-
tions, and labels on edges indicate the probabilities of a transition.
This model includes two types of dependencies between events
in a container environment: (i) inter-resource dependency: the de-
pendencies among its different resources, and (ii) intra-resource
dependency: the dependencies within one resource. For example,
Fig. 4a shows an example of inter-resource dependency relationship
in Kubernetes [18], a major container orchestrator, where a Pod
resource cannot be created unless a Namespace resource exists, and
Fig. 4b shows an example of intra-resource dependency relationship
where, for instance, a delete event on a Pod resource can only
be performed after that Pod is created. Note that similar manage-
ment events and their dependencies also exist for other container
environments beyond Kubernetes, as discussed in Section 4.2.
Building Predictive Models. To learn the aforementioned depen-
dencies and build predictive models, ProSPEC first collects and
processes historical container events (e.g., event logs) from the
orchestrator (e.g., Kubernetes), and then leverages probabilistic
learning methods (e.g., Bayesian network) to build the predictive
models. Those steps are detailed in the following and Algorithm 1.

Collecting and Processing Logs. This step is to collect and pro-
cess logs from a container environment and prepare the inputs for



Figure 3: Overview of the ProSPEC approach

(a) Inter-resource (b) Intra-resource
Figure 4: An excerpt of event dependencies in Kubernetes

Algorithm 1 ProSPEC offline phase
1: Input: Raw event logs
2: Output: Predictive model
3: procedure BuildModel(RawEventLogs)
4: for each 𝑙𝑖𝑛𝑒 ∈ RawEventLogs do
5: Extract and add 𝑒𝑣𝑒𝑛𝑡 to 𝑒𝑣𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ;
6: Build and split the 𝑒𝑣𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ;
7: for 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∈ 𝑒𝑣𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ; do
8: for 𝑒𝑣𝑒𝑛𝑡 ∈ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ; do
9: Add 𝑒𝑣𝑒𝑛𝑡 as a node in 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ;
10: if 𝑒𝑣𝑒𝑛𝑡 is not last in 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ; then
11: Add 𝑒𝑣𝑒𝑛𝑡 → 𝑛𝑒𝑥𝑡 𝑒𝑣𝑒𝑛𝑡 as a transition in 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ;
12: for each 𝑛𝑜𝑑𝑒 ∈ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 do
13: for each 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒 do
14: if 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒 is reachable from 𝑛𝑜𝑑𝑒 then
15: Add the transition to 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ;
16: Run Bayesian Learning on 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 with 𝑒𝑣𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ;

learning predictive models (in the next step). First, ProSPEC col-
lects event logs at the orchestrator level (e.g., from Kubernetes). To
that end, based on the available sources of logs in the orchestrator,
ProSPEC collects those logs. Second, to enable learning from col-
lected logs, ProSPEC processes the log entries, identifies the event
types and builds meaningful sequences of events. To that end, it
may need separating and removing system-initiated events from
management events, and identifying event types and resources
from API calls, as detailed in Section 4.2 for Kubernetes.

Learning Predictive Models. This step is to learn predictive models
(including nodes, edges, and labels of edges) from the sequences of
events. Each predictive model is built in three steps:

• First, ProSPEC identifies the nodes and edges of the model
from the sequences of events. To that end, it extracts the
unique event types from the sequences and identifies them
as the nodes of the model. Afterwards, it extracts all imme-
diate transitions between event-pairs from sequences and
identifies them as edges between those event nodes. Fig. 5a
shows an excerpt such nodes and edges for Kubernetes.

• Subsequently, to further include the non-immediate tran-
sitions (i.e., transitions from one event to another through
one or more intermediate transitions), ProSPEC utilizes a

(a) Structure based on
immediate transitions

(b) Final predictive model based on both imme-
diate and non-immediate transitions

Figure 5: ProSPEC predictive models

Breadth-First Search (BFS) algorithm [27] to determine each
node’s ability to reach non-adjacent nodes and if so, includes
these transitions as additional edges in the model obtained
from the previous step. Fig. 5b shows an example of such
model with its additional edges.

• Finally, ProSPEC learns the labels of the edges from the
sequences of events. To that end, it establishes probabilis-
tic dependencies by leveraging existing Bayesian network
learning techniques [36] where the conditional probabilities
indicate the likelihood for a (immediate or non-immediate)
transition to occur, and those probabilities are used as the
labels of the corresponding edges representing the transi-
tions in our model. In the end, ProSPEC builds the predictive
model that will be utilized during the runtime phase, as
demonstrated in Fig. 5b.

Example 2. Fig. 6 shows an example of applying ProSPEC’s of-
fline phase on a subset of logs. In (1) and (2), the log collection
and processing module collects and extracts the events "Create
Pod, Delete Pod, Create Service, Create Pod, Create Pod,
Create Service, Patch Service, Create Pod, Patch Service".
Then, in (3), it identifies three sequences: "Create Pod, Delete
Pod, Create Service", "Create Pod, Create Service, Patch
Service" and "Create Pod, Patch Service". Next, sequences are
built in (4), and in (5), ProSPEC identifies the unique four nodes
of the model: Create Pod, Delete Pod, Create Service, and
Patch Service. In (6), it identifies five edges from the immedi-
ate transitions: (Create Pod, Delete Pod), (Delete Pod, Create
Service), (Create Pod, Create Service), (Create Service,
Patch Service), and (Create Pod, Patch Service). In (7), us-
ing the BFS algorithm, it finds a non-immediate transition: (Delete
Pod, Patch Service) through Create Service, and adds the corre-
sponding edge. Finally, in (8), it learns the conditional probabilities
for transitions given the event sequences identified in (4).

3.2 The Runtime Phase
This section details how ProSPEC intercepts events, conducts proac-
tive verification, and enforces security policies at runtime. Algo-
rithm 2 summarizes the runtime phase of ProSPEC.

Interception. ProSPEC intercepts runtime events requested by
users when such events are sent to a container orchestrator (e.g.,



Figure 6: An example of offline learning

Kubernetes), and provides the details of those events to the follow-
ing runtime steps. To that end, it initially blocks the execution of
an event to determine if the requested event is critical (which may
potentially breach a security policy). If the event is critical, then
ProSPEC keeps the blocking till it completes the policy enforcement
step. If the event is not critical, then ProSPEC releases the block-
ing to allow Kubernetes to execute the event, and then ProSPEC
conducts the proactive verification step for this non-critical event.

Proactive Verification. ProSPEC conducts proactive verification
for future events that are predicted based on the intercepted event.
Precisely, it first identifies the highly probable (which have a pre-
diction probability higher than a chosen threshold) future critical
events from the current event using the predictive model. Second,
for such predicted events, it collects the existing resource data re-
lated to each security policy from the orchestrator. Finally, it builds
a watchlist (e.g., a blacklist of parameters that may lead to a policy
breach) by verifying the collected resource data against each policy.
As ProSPEC blocks critical events until pre-computation is over
(which still causes less delay to users than an intercept-and-check
solution, as our experiments show in Section 5), it can eliminate
the kind of attack windows demonstrated in Section 2.2.

Policy Enforcement. ProSPEC enforces security policies at run-
time based on the watchlists. To that end, if an intercepted event is
determined to be critical w.r.t. a security policy, then ProSPEC first
checks the requested parameter(s) of that critical event against the
watchlist(s) of the policy. Second, based on whether the requested
parameters are present in or absent from the watchlist(s), ProSPEC
takes the enforcement decision of allow or deny, according to the
watchlist rule (e.g., whitelist or blacklist). Note that in cases where
the watchlist is not correctly built for an event (e.g., wrong event
prediction, incomplete predictive model, etc.), ProSPEC would sim-
ply fall back to the intercept-and-check mode (i.e., it will perform
the verification at runtime) which will be evaluated in Section 5.
Example 1. Fig. 7 shows an example of our runtime phase. For this
example, we consider the same scenario as in Section 2.2, where
CVE-2020-8554 [9] can be exploited to perform aman-in-the-middle
attack and data theft. To prevent the threat before the vulnerabil-
ity can be patched, suppose a security policy is specified as: cre-
ating/patching Services should not be allowed to use an externalIP

Algorithm 2 ProSPEC runtime phase
1: Input: Intercepted request;
2: procedure Runtime(Request)
3: Parse the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ;
4: Extract the relevant fields and type the 𝑒𝑣𝑒𝑛𝑡 accordingly;
5: if 𝑒𝑣𝑒𝑛𝑡 is critical then
6: Verify the watchlist and return a decision;
7: else
8: Get the 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of critical event from the model;
9: if 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > policy threshold then
10: Start pre-computation;

Figure 7: ProSPEC preventing CVE-2020-8554

address identical to any existing IPs. The critical events for this pol-
icy are: Create Service and Patch Service. The probabilistic
predictive model is built offline and is the same as shown in Fig. 5b.

At runtime, for the first intercepted event Create Pod with
its IP address, 192.168.1.1, ProSPEC predicts the next critical
event, Create Service, using the predictive model, and adds the IP
address 192.168.1.1 to the watchlist (blacklist) as it is now used
for the Pod. For the second intercepted event, Create Service
with an externalIP, 192.168.1.1, ProSPEC denies the request as
this requested IP is in the watchlist (a policy breach). Similarly, the
third event will be allowed as its Service externalIP, 192.168.0.8,
is not in the watchlist, whereas the fourth event will be denied as it
modifies the externalIP to 192.168.1.1, IP that is in the watchlist.
Note that ProSPEC avoids inconsistencies between the watchlist
and the actual state of the cluster (as shown in Section 2.2) since
the second request is blocked until the pre-computation is done.

4 IMPLEMENTATION AND INTEGRATION
This section first details the implementation of ProSPEC, then de-
scribes its integration with Kubernetes, and finally discusses the
challenges tackled during these steps.

4.1 ProSPEC Implementation
Fig. 8 shows the high-level architecture of ProSPEC illustrating how
it manages its inputs, and the two major modules: offline learning
and runtime enforcement. We elaborate on those in the following.
Management of the ProSPEC Inputs. ProSPEC takes several in-
puts (e.g., configurations, logs, policies, critical events, threshold
values, and watchlists definitions) from a container environment as



Figure 8: The architecture of our ProSPEC implementation

well as its administrators. To manage those inputs, ProSPEC main-
tains a database using SQLite [30] for its portability and simplic-
ity with four different tables, PolicySettings, PolicyThreshold,
PolicyWatchlist, and Model as follows.

• The PolicySettings table stores the configuration of each
policy and contains a policy description attribute, the cor-
responding action attribute (e.g., deny, warn, and allow), as
well as a Boolean proactive attribute for enabling or disabling
the proactive feature for that policy.

• The PolicyThreshold table stores the critical events and
their threshold defined for each policy, and contains a pol-
icy foreign key referring to the Policy primary key of the
PolicySettings table, a critical event attribute with an
event considered critical for that policy, and a threshold at-
tribute containing the threshold value for that critical event.

• The PolicyWatchlist table stores the actual watchlists con-
tent pre-computed by ProSPEC for each policy, and contains
a policy foreign key referring to the Policy primary key of
the PolicySettings table.

• Finally, the Model table stores the predictive models for each
policy, and contains a policy foreign key referring to the Pol-
icy primary key of the PolicySettings table, pairs (current
event, future event) representing a possible transition, as
well as the probability of that transition.

Implementation of the Offline Learning Module. The three
main components of this module include log collector, log
processor, and predictive model learner, as detailed below.

• The log collector and log processor components
are responsible for collecting event logs from a container
environment and preparing them for the learning tool.
To that purpose, ProSPEC first enables the Kubernetes
audit logs feature (see Section 4.2). Afterwards, to pro-
cess the audit log file and extract only the required in-
formation from the raw JSON audit logs, it leverages
Logstash [21], a popular log processor. Moreover, it extracts
the fields receivedRequestTimestamp, user[username],
objectRef[resource] and verb from the logs and stores
them in a CSV file, where each line represents a log entry.
Furthermore, using the Python data analysis toolkit pandas
v1.2.4 [40] and our own code, it processes each of those lines
with event typing that maps the pair (verb, resource) to a

string verb_resource (event type). Finally, ProSPEC splits
events into sequences in a way that it avoids any cycle (or
repeated events in a sequence) and ends with a critical event
(if any in that sequence), as the predictive model is a directed
acyclic graph. More precisely, it ensures each sequence al-
ways begins with a non-critical event and cuts the current
sequence after it sees one or more critical events in a row,
or a repetition of the existing events.

• The predictive model learner component is to learn
the predictive model, which is represented as a Bayesian
network. The event sequences are used as described in Sec-
tion 3.1. ProSPEC follows a standard iterative implementa-
tion [27] of the BFS algorithm using a queue to check the
reachability of nodes. It also leverages the BayesianModel
and MaximumLikelihood classes of the Python library
for learning and inference in Bayesian networks, pgmpy
v0.1.14 [24], to learn the probabilities. The obtained model
is stored in the Model table in our database.

Implementation of the Runtime Phase. The three main com-
ponents of this module are detailed below.

• The interceptor component aims at intercepting runtime
event requests to a container orchestrator (e.g., Kubernetes).
To that end, ProSPEC leverages the Kubernetes admission
controller mechanism to intercept the requests sent to the
Kube-API server. The choice to use an admission controller
ensures the portability of our solution and its independence
from a specific orchestrator, since equivalent mechanisms
exist in other orchestrators (as discussed in Section 4.2). The
interceptor component runs as a local web server using
the micro web framework Flask [29], and is registered as an
admission controller in Kubernetes. The so-built webhook
processes requests received from the Kubernetes API server
to extract useful data and places the events in a FIFO queue.

• The proactive verifier component is to incrementally
build the watchlist for a security policy. Particularly, it takes
the first intercepted event in the FIFO queue and queries in
the ProSPEC database as follows:
SELECT Policy FROM PolicyThreshold
INNER JOIN Model ON Model.FutureEvent
= PolicyThreshold.CriticalEvent WHERE
((Model.CurrentEvent = CurrentEvent) AND (Model.
Probability >= PolicyThreshold.Threshold)).
For the policies that are selected in this way, this component
collects the needed data to build or update the watchlist. For
each event that requires pre-computation, the component
receives the corresponding policy(ies) and starts collecting
the required data defined with the policies using HTTP(S) re-
quests to the cluster. For instance, to gather the IP addresses
of Pods required in Section 3.2, the proactive verifier
component would query the API server with the following
URI: https://localhost:6443/api/v1/pods (following the Kuber-
netes API reference [19]). Collected data in the JSON format
is further processed to extract the needed features (e.g., Pods
IP addresses). Then the proactive verifier component
writes the collected features to the PolicyWatchlist table.

https://localhost:6443/api/v1/pods


• The policy enforcer component is for watchlist ver-
ification and decision enforcement; which integrates
OPA/Gatekeeper [5] and will be detailed in the next section.
Note that it is always possible to implement ProSPEC inde-
pendently from OPA/Gatekeeper, as a registered admission
controller that verifies the watchlists and enforces the poli-
cies. However, integrating ProSPEC with OPA/Gatekeeper
presents several advantages, including preserving the fea-
tures offered by OPA/Gatekeeper while bringing advantages
of a proactive solution to existing policies.

4.2 ProSPEC Integration with Kubernetes
We first present background information about Kubernetes and
then detail the integration of ProSPEC with Kubernetes.
Kubernetes Background. Here, we provide a background on Ku-
bernetes that will later be used in discussing ProSPEC integration.

• Kubernetes Basics. Kubernetes [18] is a container orchestra-
tor that runs, manages, and coordinates the deployments of
containerized applications. In Kubernetes, a cluster contains
a master Node responsible for controlling and managing a
set of worker Nodes containing multiple Pods that run the
applications. Any operation on the cluster that queries or
modifies the state of Kubernetes resources (e.g., Pods, Ser-
vices, etc.) is first received by the Kube-API server, which
applies them by communicating with the worker Nodes. In
the following, we describe the admission controller mecha-
nism and the event logs in Kubernetes, which will later be
utilized in the integration of ProSPEC.

• Admission Controller. An admission controller in Kubernetes
aims at intercepting the requests to the Kube-API server and
performing validation, mutation, or both in order to pro-
tect clusters against malicious user activities. Particularly,
OPA/Gatekeeper [5] is a cloud-native project that leverages
an admission controller (namely, Gatekeeper) and the Open
Policy Agent (OPA) (a general-purpose policy engine that
decouples decision-making from policy enforcement) to val-
idate user requests to the Kube-API server with respect to
pre-defined policies.When a request is made to the Kube-API
server, Gatekeeper uses OPA as a library to verify the inter-
cepted request against a set of pre-defined policies. Based on
the response from OPA, Gatekeeper enforces the decision
(i.e., allows or denies the request).

• Event Logs. There are three sources for capturing Kubernetes
logs: (i) management operation (e.g., Kubernetes command-
line interface history), (ii) event object (e.g., kubectl get
events command) with the life span of an hour, and (iii)
audit logs containing detailed events and attributes (e.g.,
resource-name, resource-type, operation). There are 71 types
of resources in Kubernetes v1.20.2, and for each of them,
there are up to eight possible operations. Table 1 shows an
example of Kubernetes events for sample resources.

Integration with Kubernetes. Fig. 9 illustrates the integration
of ProSPEC with Kubernetes. Particularly, Fig. 9a provides a high-
level overview of the integration including the deployment of a

Table 1: An excerpt of Kubernetes events

Kubernetes
resources

Operations

Namespace create, delete, get, list, patch, update, watch
Pod create, delete, delete collection, get, list, patch, up-

date, watch
Service create, delete, delete collection, get, list, patch, up-

date, watch

Kubernetes testbed, and Fig. 9b highlights the key integration as-
pects including how particularly ProSPEC is integrated with the
Kube-API server and OPA/Gatekeeper, as detailed below.

• First, Fig. 9a shows the deployment of the Kubernetes testbed
with ProSPEC. The physical hardware of our cloud is com-
posed of one physical rack-mount server with 2x Intel(R)
Xeon(R) Gold 5120 CPU@2.20GHz and 128GB of DDR4-2933
memory running Debian 10. The container environment is
deployed over 11 VMs managed by VirtualBox v6.1, where
one VM (eight vCPUs and 32GB RAM) is hosting the Kuber-
netes master Node, and ten other VMs (four vCPUs and 8GB
RAM each) are used as worker Nodes. Each VM is running
Lubuntu 20.04 and we use Python 3.8 for all programming
tasks. Additionally, we use Kubernetes v1.20.2 through the
kubectl CLI and the kubeadm tool for creating the cluster,
and Docker v20.10. The standard and recommended installa-
tion steps [17] are followed to deploy the cluster.

• Second, Fig. 9b shows the integration of ProSPEC with
OPA/Gatekeeper on the Kubernetes deployment. ProSPEC
collects necessary data as well as intercepts current run-
time events with the help of the Kube-API server. After-
wards, based on the watchlist contents, ProSPEC creates
a constraint parameter for OPA/Gatekeeper. Additionally,
the policy template is defined and applied in advance. The
proper enforcement is performed through ProSPEC by apply-
ing a policy constraint including the watchlist content. This
choice of integration presents several advantages: (i) Dif-
ferent policies can be quickly leveraged/removed by apply-
ing/deleting the corresponding constraints. (ii) Widely-used
OPA/Gatekeeper’s features are preserved while bringing
ProSPEC’s proactive advantages. (iii) ProSPEC remains as
much decoupled as possible from Kubernetes.

Adapting with Other Container Orchestrators. Although our
implementation is to fit with Kubernetes, ProSPEC can be adapted
to other container orchestrators (e.g., Docker Swarm [15], Open-
Shift [22]). The container-specific concepts onwhich ProSPEC relies
on are not too specific to Kubernetes and are also implemented in
Docker Swarm and OpenShift. Table 2 gives examples of similitude
between different container orchestrator concepts. Even though
the concept of admission control is partially absent from Docker
Swarm, it is still possible to enable fine-grain control by leveraging a
third-party solution such as OPA [14]. The usage of API in all these
orchestrators greatly facilitates the access to in-cluster resources.
Therefore, the adaption to those orchestrators can be possible with
a minimal effort (that will be explored in future work).



Figure 9: Showing both (a) high-level overview and (b) detailed view of the integration of ProSPEC with Kubernetes

Table 2: An excerpt of equivalent terminologies and con-
cepts among three main container orchestrators

Kubernetes [18] Docker Swarm [15] OpenShift [22]
Cluster Swarm Cluster
Pod Task Pod
Event (Docker) Event (OpenShift) Event
Namespace Stack Project
Admission Control Third-party Plug-in Admission Plug-in

4.3 Challenges
We describe the challenges that were faced and addressed during
our implementation and integration of ProSPEC as follows.
Enabling Kubernetes Audit Logs for Model Learning. After
exploring all available options of event logs in Kubernetes (as dis-
cussed in Section 4.2), we choose Kubernetes audit logs to train
our model and learn dependencies among events. Those audit logs
represent the best source of information for monitoring the events
in the cluster since they provide enough granularity and details
for us to obtain the information needed for some policies (e.g.,
the relationship between a Pod and the Service exposing it). How-
ever, working with Kubernetes audit logs requires some efforts as
follows. First, the audit log option is disabled by default in Kuber-
netes, and enabling it requires setting the -audit-log-path flag in
the kube-apiserver.yaml file. Second, a directory with sufficient
write permissions must also be specified. Third, as audit logs are
verbose by default, to limit the logging to specific resources (e.g.,
Pods, Services) and verbs (e.g., Create, Delete, Patch, Update), we
need to enable audit log filtering by specifying an audit policy file.
Finally, the cluster must be restarted after enabling the audit logs
and then Kubernetes will start to append all the received requests
to a log file in JSON format in the specified folder. More details on
Kubernetes audit logs can be found in [20].
Accessing Kubernetes API. The Kubernetes API can only be ac-
cessed from inside the cluster network, or by the kubectl CLI.
However, as OPA/Gatekeeper is running inside a container and
ProSPEC is running outside the cluster, both have no direct access
to the Kubernetes API and must be given another way to reach it
in order to read the cluster state for policy verification. To over-
come that issue, we modify the OPA/Gatekeeper container image
and deploy a sidecar container running a Kubernetes API proxy,
kube-proxy. Similarly, we run kube-proxy in the master VM to
give ProSPEC an access to the Kubernetes API.

Intercepting Events at Runtime. As ProSPEC aims at reducing
the policy verification and enforcement time, we need to find a
solution to minimize the delay between the time when user re-
quests made to the cluster reach the Kubernetes API and the time
when those requests can be intercepted. To that end, we register
ProSPEC as a Kubernetes admission controller such that it can in-
tercept the requests as early as other admission controllers such as
OPA/Gatekeeper. As Kubernetes admission controllers must use the
TLS protocol in their communication, we sign ProSPEC certificate
using the Kubernetes root certificate. More details on admission
controller registration in Kubernetes are found in [16].
FeedingWatchlist Contents to OPA/Gatekeeper Constraints.
We use OPA/Gatekeeper for watchlist verification and policy en-
forcement in our implementation (as in Section 4.2). However,
OPA/Gatekeeper does not offer the possibility to simply pass policy
parameters (e.g., watchlist content) as inputs. To overcome that is-
sue, we develop a method for encoding our watchlist content in the
YAML format of a standard constraint file of OPA/Gatekeeper. We
can then feed such encoded watchlists to OPA/Gatekeeper through
aCustomResourceDefinition (CRD) pre-defined byOPA/Gatekeeper
(e.g., command kubectl apply -f constraint.yaml).
Learning Model Structure. To learn the structure of our predic-
tive model, we first investigated regular Directed Acyclic Graph
(DAG) structure learning approaches such as MMHC [39] or
Constraint-Based estimation [36]. However, they could not serve
our purpose, as they are not able to capture the chronological or-
der between events in sequences and subsequently led to wrong
edge direction problem. To overcome this challenge, ProSPEC per-
forms structure learning by first deriving the direct (immediate)
dependencies between two events from the audit logs per sequence,
then applying a Breadth-first search (BFS) algorithm to derive the
conditional edge between nodes, and finally using the Maximum
Likelihood Estimation (MLE) for parameter learning with the con-
ditional predictive model (as shown in Fig. 5b).
Measuring Response Time. In our experiments, the response
time measurement is performed at the admission controller level
(i.e., OPA/Gatekeeper) to avoid external biases, as discussed in
Section 5. However, as OPA/Gatekeeper runs in a container, it is
impractical to access the process and attach a debugger from outside
the cluster. To overcome this challenge and ensure the accuracy
of our measurement, we modify the OPA/Gatekeeper source code
(note such modification is only needed for our experiments and



not required for deploying ProSPEC) to include a metrics logging
feature and we rebuild the container image. This way, the response
time is available in the easily accessible container logs.
MinimizingOtherNetworkingEffects in EfficiencyMeasure-
ment. As one of the main objectives of our experiments is to mea-
sure the response time, we want to avoid any perturbations that
would affect these measures, such as network congestion. To that
end, the physical network between Nodes is simulated through
VirtualBox internal network interfaces. In Kubernetes, the network
model is managed through a Container Network Interface (CNI) plu-
gin. We select Calico [7] for our Kubernetes cluster as it is referred
as one of the best network overlays in terms of performances [4].
The recommended deployment for the cluster with 50 Nodes or
less is applied as specified in the documentation except that we set
the IP_AUTODETECTION_METHOD parameter to match the internal
network interface, to avoid BGP failure.
Avoiding Inconsistencies among Cgroups. Control groups
(cgroups) is a Linux Kernel feature that allows control and iso-
lation of hardware resources used by processes, typically used for
containers. However, inconsistencies might arise between Docker
containers cgroups and Kubernetes cgroups [12]. As a solution,
we set up the Docker cgroups-driver to systemd.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Settings
Environment. The experimental environment is set up on our
Kubernetes testbed discussed in Section 4.2. For our experiments,
ProSPEC is running on the master VM and OPA/Gatekeeper inside
a container on a worker Node. To simulate real-world environ-
ments [8], the Kubernetes cluster size is varied with up to 800 Pods
and 800 Ingress rules, and the size of the input requests varies be-
tween a single critical resource and a set of 100 critical resources
(i.e., Kubernetes Services for our sample policies) in a batch.
Security Policies. For our experiments, we use two sample secu-
rity policies based on real-world use-cases [9, 10]: Policy 1 (pre-
sented in our motivating example in Section 2.2) is inspired by a
real-world vulnerability CVE-2020-8554 [9], and Policy 2 is designed
to prevent common misconfigurations in Kubernetes [10]. Policy 1.
This policy prevents a malicious user from intercepting traffic to
other resources by creating Services with an externalIP identical
to the IP address of an existing Pod in the cluster. To enforce this
policy, ProSPEC dynamically maintains a blacklist of the IPs of
existing Pods in the cluster, and prevents Services from exposing
such existing IPs. Policy 2. It prevents a common Kubernetes mis-
configuration called Ingress rules conflicts [10] in which deploying
multiple Ingress rules to manage external access to Services can
potentially lead to service failure and/or data exposure. To enforce
this policy, ProSPEC dynamically maintains a blacklist containing
all Ingresses hostname rules in the cluster to prevent any Ingress
rules conflict from happening.

5.2 Experimental Results
In the following, we evaluate the performance of ProSPEC in terms
of response time, impact of wrong predictions, impact of threshold,
offline learning time and rate of correct predictions.

Impact of Cluster Size on Response Time. The first set of ex-
periments shown in Fig. 10 measures the response time of ProSPEC.
The response time is measured as the duration between the time
ProSPEC receives a critical request and the time ProSPEC returns an
enforcement decision to Kubernetes. As specified in Section 4.3, the
response time is measured directly at the decision engine level (i.e.,
OPA/Gatekeeper) to avoid any overhead due to external factors.

Particularly, Fig. 10a shows the comparison of the response time
between ProSPEC and OPA/Gatekeeper to enforce Policy 1 when
we vary the size of the cluster (# of Pods) for both a single request
of one resource and a batch request of 100 resources. As shown
in the figure, for ProSPEC, we observe a near-constant response
time (lower than 15 ms). On the other hand, it can be seen that
the response time for OPA/Gatekeeper grows almost linearly in
the size of the cluster. This is mostly due to the reactive nature of
OPA/Gatekeeper, i.e., it performs the time-consuming operation of
gathering the IP addresses of all the existing Pods at runtime. For
the largest size of cluster and for one resource, OPA/Gatekeeper
takes up to 580 ms, whereas ProSPEC takes only 15 ms (which is
close to 40 times faster). The zoomed inset shows the ProSPEC
response times on a more precise scale for a single request and a
batch request, measured at 7 ms and 10 ms, respectively.

Fig. 10b shows the comparison of the response time between
ProSPEC and OPA/Gatekeeper to enforce Policy 2 when we vary
the size of the cluster (# of Ingress rules, as dictated by this policy)
for both a single resource and a batch request of 100 resources.
Although the response times of both ProSPEC and OPA/Gatekeeper
grow almost linearly, ProSPEC still outperforms OPA/Gatekeeper
in all cases (e.g., for the largest cluster, 15 ms by ProSPEC vs. 29
ms by OPA/Gatekeeper). Additionally, as discussed in Section 2.2,
the delay caused by OPA/Gatekeeper (mainly due to its replication
step) leads to inconsistencies between the replicated state and the
actual state of the cluster (which may be exploited for security
policy bypass). Whereas, ProSPEC not only reduces the delay by up
to 50% but also avoids the need for state replication and its security
implications. Note that the response time for Policy 1 is relatively
longer than that for Policy 2, because Pod objects are much more
complex and their Kubernetes descriptions contain more details.

Those figures also show the impact of two types requests (a single
request for one resource, or a batch request for 100 resources) on the
response time. In the case of Policy 1, the additional delay induced
by the batch request is negligible with respect to the response time.
In the case of Policy 2, the additional 4 ms delay to the response
time due to processing the batch request represents an overhead
of about 50%. In both cases, we can see that the impact of batch
request on OPA/Gatekeeper and ProSPEC is similar, and ProSPEC
outperforms OPA/Gatekeeper for both types of requests.
Impact of Wrong Predictions on Response Time. The second
set of experiments is to measure the impact of wrong predictions
by our predictive model on the response time of ProSPEC. For
this purpose, we consider the case where a critical event occurs
without being predicted by ProSPEC, which has an impact on the
response time as ProSPEC would fall back to the intercept-and-
check mode in this case (as described in Section 3). We measure the
overall response time (which includes both the pre-computation
time measured at ProSPEC level and the verification time measured



(a) Impact of # of Pods on Policy 1 (b) Impact of # of Ingress rules on Policy 2 (c) Impact of wrong predictions on Policy 1
Figure 10: Impact of the size of cluster and wrong predictions rate on the response time

at OPA/Gatekeeper level). For this experiment, we vary the rates of
wrong predictions in the model and use Policy 1 for enforcement.
We simulate 10,000 correctly predicted events and vary the rate of
wrong predictions from 5% to 40% (note a rate of wrong predictions
of more than 40% is unlikely in practice) by injecting unexpected
events randomly into the event sequences.

Fig. 10c shows the average overall response time (in pre-
computation and verification for enforcing Policy 1) for different
(simulated) wrong predictions rates. As a baseline, in Fig. 10a (with-
out simulated errors), the response time is around 12 ms for 800
Pods. In contrast, Fig. 10c shows that, even with a 40% error rate, the
response time of ProSPEC stays below 140 ms for 800 Pods, which
is better than the performance of OPA/Gatekeeper in the same envi-
ronment (580 ms, see Fig. 10a). As the error rate is likely much lower
in reality (see Fig. 12b), we can conclude that wrong predictions
will not significantly affect the effectiveness of ProSPEC.
Impact of Threshold on Response Time. The third set of ex-
periments is to measure the impact of different threshold values
(as described in Section 3) on the response time as well as on the
pre-computation efficiency of ProSPEC. For this experiment, we
vary the value of the critical events threshold from 0 to 1 to measure
its impact on enforcing Policy 1 for 200 Pods and single requests (i.e.,
one resource per request). The pre-compute usefulness is measured
as the ratio of the number of pre-computations that are useful (in
the sense that the predicted events eventually happen) to the total
number of pre-computations. The no pre-compute usefulness is the
ratio of the number of times we make the correct decision to not
pre-compute (in the sense that the event eventually does not hap-
pen) over the total number of times we do not pre-compute. In this
experiment, we deliberately avoid traditional accuracy metrics (e.g.,
precision, recall), as use of those metrics might be misinterpreted
as the accuracy of ProSPEC security; whereas this experiment mea-
sures the usefulness of its pre-computation step.

Fig. 11a and Fig. 11b show the response time of ProSPEC and the
aforementioned usefulness metrics as functions of the threshold.
Fig. 11a shows the average response time stays almost constant
for threshold values below 0.62 or above 0.8, respectively (0.62 and
0.8 are the lowest and highest transition probabilities to a critical
event existing in the used model, as in Fig. 5b). For threshold values
above 0.8, the average response time is the highest at more than
200 ms, since we never pre-compute and have to perform the verifi-
cation at runtime under such threshold values. For threshold values

(a) Impact of threshold on re-
sponse time

(b) Impact of threshold on pre-
computation efficiency

Figure 11: Impact of threshold (dashed lines show the min-
imum (0.62) and maximum (0.8) transition probabilities to
a critical event in the predictive model) with 200 Pods and
enforcing Policy 1

below 0.62, the response time peaks at more than 100 ms, since
we always pre-compute but often unnecessarily (for non-critical
events). Between threshold values of 0.62 and 0.8, we observe the
lowest response time. Precisely, a threshold value between 0.65 and
0.78 reduces the average response to a minimum of 27 ms.

Fig. 11b shows the pre-computation efficiency under different
threshold values. For the threshold values below 0.62, the usefulness
of pre-computation decreases to around 40%, because that range
of threshold values will always trigger pre-computation for every
event (the lowest transition probability in the used model is 0.62, as
shown in Fig. 5b). On the other hand, the no pre-compute usefulness
stays at 0% as we always pre-compute. Once the threshold values
pass 0.62, we can observe a sharp increase in both the pre-compute
usefulness and no pre-compute usefulness. The pre-compute useful-
ness increases as pre-computation is mostly for the probable next
events under such threshold values. The no pre-compute useful-
ness increases more sharply as we do not pre-compute for events
with low transition probabilities under such threshold values. For
the specific model and policy used in this experiment, a thresh-
old value of 0.8 allows us to reach 100% usefulness, meaning we
neither waste nor miss any pre-computation operation. Above the
threshold value of 0.8, the pre-compute usefulness drops to 0% as
in the given model there is no transition with higher probabilities
and hence no pre-computation is triggered. On the other hand, the



(a) Measured time for different
learning steps: sequence building
and model learning

(b) The correct predictions rates of
our model for different thresholds
and # of sequences

Figure 12: Learning time and rate of correct predictions of
our predictive model (dashed vertical line shows peak rate)

no pre-compute usefulness drops to around 20% as we miss neces-
sary pre-computations under such threshold values. Finally, we can
identify an optimal threshold value of 0.78 under which Fig. 11a
shows the lowest response time, and Fig. 11b shows the maximum
overall efficiency (in terms of both the pre-compute usefulness and
no pre-compute usefulness). Thus, an optimal threshold value can
be determined based on the given policy and training data.
Offline Learning Time. The fourth set of experiments is to mea-
sure the offline learning time, which includes the total time to
build the event sequences and to learn the predictive model using
the Bayesian network library pgmpy [24]. The log processing task
by Logstash is not included in this experiment as in practice it is
typically performed in parallel, with the audit log collection.

Fig. 12a shows the time required by the predictive model building
module of ProSPEC to sequence the logs and build a predictive
model while the number of event sequences varies from 2,000 to
10,000. We can see that the time required to perform both of those
offline learning steps shows an upward linear trend. The linear
trend is less pronounced for the predictive model learning than for
the sequence building, as the time needed for the former is much
less than that is needed for the latter. For instance, the time required
for model learning increases almost linearly from 248 ms to 337
ms with the increasing number of sequences, whereas the time
required for sequence building is increasing from 801 ms to 3,950
ms under similar numbers of sequences. This has a practical impli-
cation since the more expensive sequence building only needs to be
performed once for each event sequence, while the less expensive
model learning may need to be repetitively performed (e.g., when
new event sequences are added to the training data). Finally, the
overall time reaches about 4 seconds for 10,000 event sequences,
which is reasonable especially considering this is an offline step
performed only periodically. The following experiment shows the
impact of the training data size on the rate of correct predictions.
Rate of Correct Predictions at Runtime. The fifth set of exper-
iments is to assess the relation between the rate of correct pre-
dictions, threshold values and size of the training set. During the
ProSPEC runtime phase, the chosen threshold for the critical events
dictates if a pre-computation will be triggered or not. As the model
accuracy will rely on whether we correctly predict critical events

or not, it is thus important to show that the chosen threshold has
an impact on the overall rate of correct predictions of the model.
Note that the best accuracy and corresponding threshold may vary
based on different predictive models. The rate of correct predictions
is measured for different datasets by varying the number of event
sequence from 2,000 to 10,000. 80% of each dataset is used during
the training and the remaining is used for testing. For each thresh-
old value, we define the rate of correct predictions as the number
of successful predictions over the number of total predictions.

Fig. 12b shows the rate of correct predictions as a function of
threshold values for different datasets. The best rate for the model
(in Fig. 5b) is 98.4% for a threshold value of 0.78 and a training
dataset of 4,000 sequences. However, small differences between
different training sets are observed; specifically, it shows that a
training set larger than 2,000 does not significantly improve the
rate of correct predictions. There is a correlation between this result
and the response time or pre-computation efficiency in Figs. 11a,
and 11b. Indeed, for the threshold values between 0.62 and 0.8, we
also observe an increase in the rate of correct predictions.

6 RELATEDWORK
This section reviews related existing works.
Container Security Verification. There are several works (e.g.,
[23, 28, 32]) on container security, particularly aiming at verifying
the security of container images (e.g., [23]) and checking their
integrity (e.g., [28, 32]). However, those works focus on a single
security aspect such as developing vulnerability-free container
images or integrity attestation, and do not propose a solution for
the verification and enforcement of security polices at runtime. For
instance, [23] is a vulnerability-centric approach to identify and
assess vulnerabilities in Docker containers images. Both [28, 32]
propose solutions for containers integrity attestation covering the
entire life cycle of the containers and their underlying images.
Kubernetes Security. According to [37], the security best prac-
tices for Kubernetes are as follows: (i) API-based authentication and
authorization request through authentication plugin and policies,
(ii) network-specific and Pod-specific policies, restricting network
communications and applying least privilege context to Pods, re-
spectively, (iii) continuous security patches for the cluster, to keep
it updated with latest security fixes, (iv) logging/monitoring the
cluster, and (v) continuous security compliance. Most of the ex-
isting works (e.g., [2, 3, 38]) propose reactive solutions that can
only detect security policy violations after they occur, which may
expose the system to large attack windows and thus higher security
risks. For example, Sysdig [3] provides a system-call level security
attack detection approach while Falco [2] offers an online anom-
aly detection tool for containerized applications. KubAnomaly [38]
is a learning-based anomaly detection system, providing runtime
monitoring capabilities in Kubernetes. Also, OPA is a security pol-
icy engine and, Gatekeeper as its sidecar, is an enforcement tool
designed for Kubernetes [5]. ProSPEC differs from those works as
it proactively prevents policy violations.
Security Policy Compliance. There are several proactive secu-
rity compliance verification works (e.g., [1, 26, 33, 34]) for non-
container environments (e.g., OpenStack [1] clouds). For instance,
Weatherman [26] and Congress [1] verify security policies in clouds



using graph-based and Datalog-based models, respectively. More-
over in [41], a proactive protection approach for potential security
breaches in cloud is proposed. Unlike our automated learning of pre-
dictive model, those works rely on manual inputs of future plans.
LeaPS [34] and Proactivizer [35] are proactive security auditing
solutions for cloud environments. In contrast to this work, they
are not specifically designed to tackle complexity and challenges
of container environments such as supporting container-specific
events, capturing dependencies among diverse types of resources,
and deriving a predictive model from those dependencies.

In summary, ProSPEC mainly differs from the existing works
as follows. First, ProSPEC provides a proactive solution for con-
tainers to prevent security compliance breaches. Second, it auto-
matically captures dependencies among events in containers and
learns a predictive model to anticipate future critical events. Fi-
nally, it is integrated with a popular policy enforcement framework,
OPA/Gatekeeper, while offering the benefit of a proactive solution.

7 CONCLUSION
In this paper, we proposed ProSPEC, a proactive security policy en-
forcement solution for container environments. We leveraged learn-
ing techniques to derive a predictive model that captures depen-
dencies among events in container environments. ProSPEC utilized
this model to predict future critical events and efficiently prevent
security policy violations for large container environments with
a practical response time. Additionally, we implemented ProSPEC
and integrated it with Kubernetes, a popular container orchestrator.
Limitations and Future Work. First, ProSPEC neither retrain
and tune the model nor adjust the thresholds based on historical
compliance and changes in user behavior. Our future work will
support dynamic online learning of predictive model. Second, in
ProSPEC, identification of critical events, security policies, as well
as event typing are still manually performed. As future work, this
process can be automated by leveraging supervised machine learn-
ing approaches. Third, in addition to Kubernetes, in the future, we
will integrate ProSPEC with other container orchestrators, such as
Docker Swarm [15] and OpenShift [22]. Finally, ProSPEC is cur-
rently at the deployment phase, that can be extended as a proactive
security solution for containers after their deployment.
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