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Reconstruction of Reflectance Spectra Using Robust
Nonnegative Matrix Factorization

A. Ben Hamza and David J. Brady

Abstract—In this correspondence, we present a robust statistics-based
nonnegative matrix factorization (RNMF) approach to recover the mea-
surements in reflectance spectroscopy. The proposed algorithm is based on
the minimization of a robust cost function and yields two equations up-
dated alternatively. Unlike other linear representations, such as principal
component analysis, the RNMF technique is resistant to outliers and gen-
erates nonnegative-basis functions, which balance the logical attractiveness
of measurement functions against their physical feasibility. Experimental
results on a spectral library of reflectance spectra are presented to illustrate
the much improved performance of the RNMF approach.

Index Terms—Nonnegative matrix factorization, reflectance spectra, ro-
bust statistics.

I. INTRODUCTION

Reflectance spectroscopy is the study of light as a function of wave-
length that has been emitted, reflected, or scattered from a solid, liquid,
or gas. These functions, also called spectra, provide useful information
about the chemical composition of a material, and are a powerful tool
for identifying the elements of a material by examining the spectrum
of their radiation [1]. Collection and analysis of spectra typically in-
volves a source of light (or other electromagnetic radiation), an ele-
ment to separate the light into its component wavelengths, and a de-
tector to sense the presence of light after separation of wavelengths.
Reflectance spectroscopy can be used to derive significant information
about mineralogy and with little or no sample preparation. It may be
used in applications when other methods would be too time consuming.
For example, imaging spectrometers are already acquiring millions of
spatially gridded spectra over an area from which mineralogical maps
are being made. The reflectance spectroscopy of minerals will be the
focus of this correspondence, but the results may apply to any other
material.

In this correspondence, we propose a robust statistics-based
approach to nonnegative matrix factorization of a reflectance spec-
tral library. The approach is formulated as a robust optimization
problem whose solution is achieved using the method of steepest
descent and yields two equations updated alternatively. Unlike the
Karhunen–Loeve (K–L) method [2], the nonnegative matrix factoriza-
tion technique [4], [5] generates nonnegative basis functions, which
balances the logical attractiveness of measurement functions against
their physical feasibility.

The rest of this correspondence is organized as follows. The next
section is devoted to the problem formulation, a brief introduction to
K–L approximation, and also a description of the nonnegative matrix
factorization technique. In Section III, we propose a robust nonnegative
matrix factorization (RNMF) approach to recover reflectance spectra.
This approach is based on the minimization of a robust statistics-based
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energy function and yields two equations based on additive rules that
are updated alternatively. In Section IV, we provide numerical simula-
tions to show the power of the RNMF technique in the reconstruction of
reflectance spectra, and we also provide a comparative study with other
related methods proposed in the literature. Finally, Section V provides
some conclusions.

II. SENSING AND APPROXIMATION

A. Karhunen–Loeve Approximation

A basic linear technique in dimensionality reduction is K–L decom-
position, also known as principal component analysis (PCA), which
calculates a set of basis vectors that can be used to approximate high-di-
mensional data optimally in the least-squares sense [2]. The number of
basis vectors is much smaller than the number of dimensions, so en-
coding the data as linear combinations of the basis vectors transforms it
to a lower dimensional space. This dimension reduction can be used to
improve for explanation, visualization, and features extraction. PCA is
an explanatory technique to learn about datasets. The objective of PCA
to reduce the dimensionality of the data set while retaining as much as
possible the variation in the data set. Principal components are linear
transformations of the original set of variables and are uncorrelated and
ordered so that the first few components carry most of the variations in
the original data set. The first principal component has the geometric
interpretation that it is a new coordinate axis that maximizes the vari-
ation of the projections of the data points on the new coordinate axis.
Given a data set of signals S = ffff j : j = 1; . . . ; ng where each fff j is
an m-dimensional vector, the PCA is a linear projection technique

yyyj = ET
d (fff j � fff); 8j = 1; . . . ; n

where yyyj is a d-dimensional projected data vector (usually d� m), fff j
is the original data vector, fff is its sample mean i.e., fff = ( n

j=1
fff j)=n,

andET
d is a d�mmatrix that contains the PCA projection vectors. The

d-projection vectors that maximize the variance of the principal axes
yyyj are given by the eigenvectors of the matrix � = SST . The matrix
commonly used in finding such eigenvectors is the covariance matrix,
which would coincide with the matrix � in the case of a null sample
mean [3].

Reconstruction techniques must balance the logical attractiveness
of measurement functions against their physical feasibility. In imaging
and spectrometry, all measurements at the optical–electronic are
strictly positive photon counts. Unfortunately, the K–L decomposition
does not generate strictly positive basis functions. This means that it
may not be possible to directly sample principal components or that
such measurement may require more complex embedded bipolar elec-
tronic processing. With a view to avoiding this problem, we consider
the use of nonnegative matrix factorization to generate a nonnegative
measurement basis. This approach is described in the next subsection.

B. Nonnegative Matrix Factorization

One major problem with PCA is that the basis vectors may have both
positive and negative components, and the data are represented as linear
combinations of these vectors with positive and negative coefficients.
The optimality of PCA can be traced back to construction cancellation
of the signs. In many applications, the negative components contradict
physical realities. For example, the pixels in a grayscale image have
nonnegative intensities, so an image with negative intensities cannot
be reasonably interpreted. To address this problem, a recent approach
called nonnegative matrix factorization (NMF) was proposed to search
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for a representative basis with only nonnegative vectors [4], [5]. In other
words, the idea of NMF may be interpreted as factorizing a nonnegative
data matrix into two nonnegative matrices. The NMF approach can be
formulated as follows. Given a nonnegative data matrix of signals S of
size m� n, where m is the length of each signal and n is the number
of signals (i.e., each column of S is a signal), we can approximately
factorize S into nonnegative matrices W and H with sizes m� r and
r� n, respectively, that is S �WH . The desired number r is usually
chosen to be smaller thanm orn, so that the rank ofW andH is smaller
than S, and therefore this yields a compressed version of the original
data matrix S. The matrix W contains the NMF basis vectors, and the
matrixH contains the associated coefficients (nonnegative weights). In
vector form, we can write S � WH as fff j � Whhhj , where fff j and hhhj
are the columns of S andH , respectively, and j = 1; . . . ; n. Therefore,
each signal fff j is approximated by a linear combination of the columns
ofW , weighted by the components ofhhhj . Therefore,W can be viewed
as containing a basis that is optimized for the linear approximation of
the spectra in S.

To measure the quality of the approximation factorizationS �WH ,
a cost function between S and WH needs to be optimized subject to
nonnegativity constraints onW andH . This is done by minimizing the
least-squares cost function given by

kS �WHk2 =
ij

(Sij � (WH)ij)
2
: (1)

The minimization of (1) yields the following multiplicative update rules
at the tth iteration [5]:

W
(t+1)
ik =W

(t)
ik

(SHT )
(t)

ik

(WHHT )
(t)
ik

and

H
(t+1)
kj =H

(t)
kj

(WTS)
(t)

kj

(WTWH)
(t)
kj

(2)

where the matrices W are H are initialized as nonnegative random
matrices, and the updates are done alternatively, that is after updating
one row of H , we need to update the corresponding column of W . In
other words, we should not update the whole matrix H first followed
by an update of the matrix W . The NMF algorithm is therefore an
iterative optimization algorithm, which modifies at each iteration the
nonnegative basis functions (i.e., columns of W ) and encodings (i.e.,
Hkj ) until convergence. Given a signal fff j = Whhhj , where fff j and
hhhj are the columns of S and H , respectively, the reconstructed spec-
trum f̂ff j is given by f̂ff j = Wĥhhj , where ĥhhj is obtained by minimizing
kWhhhj � fff jk

2 subject to hhhj � 0, which is referred to as linear least
squares with nonnegativity constraints.

III. PROPOSED METHOD

The goal of the proposed nonnegative matrix factorization method
is to obtain basis vectors that are not influenced by outliers. Unfortu-
nately, the least squares method given by (1) and (2) produces estimates
that are sensitive to outliers. In recent years, a great deal of attention has
been focused on robust statistics-based methods [12], [13]. These ro-
bust techniques have been successfully applied to a variety of imaging
and computer vision applications [14]–[17] and produce results that are
resistant to the presence of outliers. The idea behind robust statistics
methods is to replace the least-squares criterion in (1) by another crite-
rion that is less sensitive to the presence of outliers. Recently Samson
et al. [10] introduced a robust hypersurface cost function � defined as

� (kS �WHk) = 1 + kS �WHk2 � 1 (3)

Fig. 1. Illustration of the hypersurface cost function.

which has two main attractive properties: i) it is quadratic when its ar-
gument is small and linear when its argument is large as illustrated in
Fig. 1 and ii) its influence function '0 is differentiable and bounded.
The influence function is a tool to describe the robustness properties of
an estimator, and intuitively it measures the asymptotic bias caused by
an infinitesimal contamination of the observations [12]. Unlike Huber
influence function which is not differentiable [12], the smoothness of
the hypersurface influence function is of great importance since it im-
plies the continuity of its first derivative which in turn implies the con-
tinuity of the confidence intervals in the data points. This motivates us
in introducing the RNMF approach, which is a result of minimizing
the hypersurface cost function given by (3) subject to nonnegativity
constraints on W and H . The solution of this minimization problem
is achieved using the steepest descent method and by updating alterna-
tively two iterative equations as demonstrated in the next result.

Proposition 1: The minimization of the hypersurface cost function
subject to nonnegativity constraints on W and H yields the following
additive update rules:

W
(t+1)
ik =W

(t)
ik � �

(t)
ik

(WHHT )
(t)

ik
� (SHT )

(t)

ik

1 + kS �WHk

H
(t+1)
kj =H

(t)
kj � �

(t)
kj

(WTWH)
(t)

kj
� (WTS)

(t)

kj

1 + kS �WHk
;

where�ik and �kj are the step sizes chosen at each iteration via Armijo
rule for inexact line search.

Proof: To minimize the function '(W;H) defined as

'(W;H) =
1

2
1 + kS �WHk2 � 1

=
1

2
1 +

ij

(Sij � (WH)ij)
2 � 1

we use an alternating method of steepest descent, that is the direction
for which the function ' will decrease the fastest. Let W (t) and H(t)

denote the input values of the function '(W;H) at the tth iteration. At
each iteration, the function is updated alternatively as follows:

W
(t+1)
ik =W

(t)
ik � �

(t)
ik

@'(W;H)

@W
(t)
ik

(4)

H
(t+1)
kj =H

(t)
kj � �

(t)
kj

@'(W;H)

@H
(t)
kj

(5)

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on August 09,2010 at 22:34:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 9, SEPTEMBER 2006 3639

Fig. 2. (a) Image spectra and (b) samples of image spectra.

Fig. 3. PCA results: (a) top three principal components and (b) reconstruction of spectrum #218 using 50 principal components.

where the matrices W (0) are H(0) are initialized as nonnegative
random matrices, and �ik , �kj are scalars which determine the size of
the step taken in the gradient direction, and are chosen at each iteration
via Armijo rule for inexact line search [11]. The partial derivatives of
'(W;H) with respect to Wik and Hkj are given by

@'(W;H)

@Wik

= �
j
Hkj (Sij � (WH)ij)

1 + kS �WHk

= �
(SHT )ik + (WHHT )ik

1 + kS �WHk
(6)

@'(W;H)

@Hkj

= � i
Wik (Sij � (WH)ij)

1 + kS �WHk

= �
(WTS)kj + (WTWH)kj

1 + kS �WHk
(7)

After substitution we obtain the additive update rules. This completes
the proof.

The goal of robust nonnegative matrix factorization is to determine
meaningful basis functions for signals that are inherently nonnegative,
and resistant to outliers. The idea is to approximate the original data
by using a small number of basis functions combined with nonnega-
tive coefficients, that is a nonnegative signal can be optimally encoded
as a nonnegative additive combination of nonnegative basis functions.
Hence, the RNMF algorithm is an iterative minimization algorithm,
which modifies at each iteration the nonnegative basis functions (i.e.,
columns of W ) and encodings (i.e., Hkj ) until convergence.

IV. EXPERIMENTAL RESULTS

In this section, we apply K–L decomposition [2], nonnegative matrix
factorization [4], [5], nonnegative sparse coding (NNSC) [8], nonneg-

ative matrix factorization with sparseness constraints (NMFSC) [9],
constrained nonnegative matrix factorization [19], and the proposed
robust nonnegative matrix factorization method to a database of re-
flectance spectra. Denote by S = ffff j : j = 1; . . . ; ng an m � n

matrix of spectra, where each fff j (i.e., each column of S) is an m-di-
mensional vector representing the spectrum reflectance of m samples,
and n is the number of spectra. Fig. 2(a) shows a 256 � 500 matrix
of spectra S, which will be referred to as image spectra, and Fig. 2(b)
depicts some samples of this image spectra. These spectra were col-
lected from U.S. Geological Survey (USGS) Digital Spectral Library.
The library includes samples of minerals, rocks, soils, physically con-
structed as well as mathematically computed mixtures, vegetation, mi-
croorganisms, and man-made materials. Each spectrum is a plot of
the reflectance versus the wavelength as illustrated in Fig. 2(b), which
displays three sample spectra of S with index number (i.e., column
number) 85, 258, and 472.

A. K–L Decomposition of Reflectance Spectra

To test the K–L decomposition on the spectral data, we apply the
PCA analysis on the USGS spectral library, which consists of 500
spectra. The results are illustrated in Fig. 3, where Fig. 3(a) shows
the top three principal components of the reflectance spectra S. The
reconstructed spectrum from 50 principal components is depicted in
Fig. 3(b).

B. Nonnegative Matrix Factorization of Reflectance Spectra

The PCA technique is easy to implement, but the eigenvectors are not
strictly positive basis functions and luck physical/intuitive meanings as
illustrated in Fig. 3(a). The PCA factorization imposes no other con-
straints than the orthogonality, and hence allows the entries ofW andH
to be of arbitrary sign. Many basis images, for example, eigenfaces in
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Fig. 4. NMF results: (a) first three NMF basis vectors and (b) reconstruction of spectrum #218 using 50 basis vectors.

Fig. 5. NNSC results: (a) first three NNSC basis vectors and (b) reconstruction of spectrum #218 using 50 basis vectors.

the case of face recognition, lack intuitive meaning; and a linear combi-
nation of them generally involves complex cancellations between pos-
itive and negative numbers [18]. The NMF allows only positive co-
efficients and thus nonsubtractive combinations. The NMF technique
has been used with success in a variety of applications including text
mining [6], and the identification/classification of nonimaging space
objects [7].

Fig. 4(a) shows the first three basis vectors wwwj of S using nonnega-
tive matrix factorization. Fig. 4(b) depicts the reconstructed spectrum
from 50 basis vectors.

C. Nonnegative Sparse Coding of Reflectance Spectra

The goal of NNSC is to find a decomposition in which the hidden
components (i.e., hhhj ) are sparse, meaning that they have probability
densities that are highly peaked at zero and have heavy tails [8]. This
basically means that any given input vector can be well represented
using only a few significantly nonzero hidden coefficients. This can
formulated as a minimization problem, where the cost function to be
minimized is given by C(W;H) = kS�WHk2+�

ij
Hij , subject

to nonnegativity constraints on W and H . The parameter � is given
a priori or may be estimated, and it controls the tradeoff between the
accurate reconstruction and the sparseness.

Fig. 5(a) shows the first three basis vectors wwwj of S using nonneg-
ative sparse coding. Fig. 5(b) depicts the reconstructed spectrum from
50 basis vectors.

D. Nonnegative Matrix Factorization With Sparseness Constraints

The goal of NMFSC is to find a decomposition that will result in
part-based representation [9]. This is done by incorporating sparseness
constraints on the encoding and basis functions, that is we minimize
the cost function kS � WHk2 subject to the sparseness constraints
sparsness(wwwj) = Sw and sparsness(hhhj) = Sh for all columns wwwj of

W and rows hhhj of H . The sparseness function of a vector xxx 2 n is
defined in terms of L1 and L2 norms as

sparsness(xxx) =
p
n� kxxxk1=kxxxk2p

n� 1
:

Fig. 6(a) shows the first three basis vectors wwwj of S using NMFSC.
Fig. 6(b)–(d) depicts the reconstructed spectrum from 50 basis vectors
using different sparseness constraints as suggested in [9].

E. Constrained Nonnegative Matrix Factorization

The constrained nonnegative matrix factorization (cNMF) is a
recent algorithm that was proposed for blindly recovering constituent
source spectra from magnetic resonance chemical shift imaging of
human brain [19]. This algorithm is formulated as

minimize kS �WHk2 subject to H � 0:

Fig. 7(a) shows the first three basis vectors wwwj of S using cNMF.
Fig. 7(b) depicts the reconstructed spectrum from 50 basis vectors.

F. Robust Nonnegative Matrix Factorization of Reflectance Spectra

As discussed in the previous section, the robust nonnegative ma-
trix factorization technique is resistant to outliers, and generates non-
negative basis functions which balances the logical attractiveness of
measurement functions against their physical feasibility. The results of
RNMF on reflectance spectra are depicted in Fig. 8, where Fig. 8(a)
shows the first three basis vectors wwwj of S using robust nonnegative
matrix factorization. Fig. 8(b) depicts the reconstructed spectrum from
50 basis vectors. This reconstructed spectrum, compared with the re-
sults obtained in the previous experiments, shows that the RNMF ap-
proach performs the best. The better performance evident from the
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Fig. 6. NMFSC reconstruction of spectrum #218 using 50 basis vectors: (a) first three NMFSC basis vectors and (b) spectrum reconstruction with S = 0:85,
and unconstrained S . (c) spectrum reconstruction with S = S = 0:5, and (d) spectrum reconstruction with S = 0:8 and unconstrained S .

Fig. 7. cNMF results: (a) first three cNMF basis vectors and (b) reconstruction of spectrum #218 using 50 basis vectors.

Fig. 8. RNMF results: (a) first three RNMF basis vectors and (b) reconstruction of spectrum #218 using 50 basis vectors.

RNMF approach as depicted in Fig. 8(b) is in fact consistent with a
variety of spectra used for experimentation. In addition, the relative
error versus the iteration number as illustrated in Fig. 9 clearly demon-

strates the convergence of the RNMF method using as a stopping crite-
rion k(WH)(k+1) � (WH)(k)k2=k(WH)(k)k2 < �, where � is suf-
ficiently small, and k denotes the kth iteration.
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Fig. 9. RNMF convergence: Relative error versus Iteration number.

V. CONCLUSION

In this paper, we proposed a robust approach to nonnegative matrix
factorization of a spectral library. The proposed method is formulated
as an energy minimization problem whose solution is achieved by up-
dating alternatively two equations. Unlike the K–L method, the robust
nonnegative matrix factorization technique is based on a robust cost
function, resistant to outliers, and generates nonnegative basis func-
tions which balances the logical attractiveness of measurement func-
tions against their physical feasibility. We have successfully tested the
robust nonnegative factorization algorithm on a library of reflectance
spectra, and the experimental results clearly show that the proposed
technique outperforms the current reconstruction methods including
PCA, NNSC, NMFSC, NMF, and cNMF.
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Low-Complexity Equalization of Time-Varying
Channels With Precoding

Zijian Tang, Student Member, IEEE, and
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Abstract—This correspondence deals with time-varying (TV)
single-input multiple-output (SIMO) channels, which are both frequency
selective (due to high data rate) and time selective (due to mobility). A
complex exponential basis expansion model (CE-BEM) is used to model the
channel. We consider a block transmission system, where on the transmit
side a precoder is employed to enable the maximum available diversity for
a CE-BEM channel. After direct decoding on the receive side, the resulting
channel resembles a finite-impulse-response (FIR) filter on both block and
symbol level. We therefore propose an equalizer that bears a structure
analogous to the effective channel. In comparison with a standard block
minimum mean-square error decision-feedback equalizer (BMMSE-DFE)
that involves the inversion of a large-size matrix, the proposed parametric
equalizer renders a similar performance but at a lower computational
cost if there are multiple outputs present. Another contribution of this
correspondence is a semiblind algorithm to estimate this equalizer when
the channel state information is not available: the equalizer taps and
the information symbol estimates are refined recursively by means of
normalized least-mean-squares (NLMS) adaptation.

Index Terms—Basis expansion model (BEM), diversity, time-varying
(TV) channel.

I. INTRODUCTION

In high-data-rate mobile communication systems, the relative ve-
locity between the transmitter and the receiver gives rise to a Doppler
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