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Nonrigid Image Registration Using
an Entropic Similarity

Mohammed Khader and A. Ben Hamza, Senior Member, IEEE

Abstract—In this paper, we propose a nonrigid image registra-
tion technique by optimizing a generalized information-theoretic
similarity measure using the quasi-Newton method as an optimiza-
tion scheme and cubic B-splines for modeling the nonrigid defor-
mation field between the fixed and moving 3-D image pairs. To
achieve a compromise between the nonrigid registration accuracy
and the associated computational cost, we implement a three-level
hierarchical multiresolution approach such that the image resolu-
tion is increased in a coarse to fine fashion. Experimental results
are provided to demonstrate the registration accuracy of our ap-
proach. The feasibility of the proposed method is demonstrated
on a 3-D magnetic resonance data volume and also on clinically
acquired 4-D CT image datasets.

Index Terms—Image registration, nonrigid, Tsallis entropy.

I. INTRODUCTION

NONRIGID image registration is of paramount importance
in the field of medical imaging and has sparked a flurry of

research interest in many other applications of image analysis
such as remote sensing, movie editing, and archeology [1]. In
recent years, various techniques have been proposed in the liter-
ature to tackle the nonrigid image registration problem [1]–[3].
Most of these techniques may be classified into two broad cat-
egories: feature-based and intensity-based methods. Feature-
based approaches determine the registration at the feature loca-
tions, and an interpolation method is required at other locations.
The registration accuracy for feature-based algorithms depends
on the accuracy of the feature detector and involves detecting
surface landmarks, edges and points [4]–[8]. On the other hand,
intensity-based approaches employ matching techniques that in-
volve the use of distance measures, such as the normalized cross
correlation or the sum of squared differences [1], [2]. A general
framework for intensity-based registration methods relies on
information-theoretic similarity measures. One such similarity
measure is the mutual information (MI), which was proposed
independently by Viola and Wells [9] and by Maes et al. [10].
The MI measure has been shown to be effective in the devel-
opment of the intensity-based image registration because of its
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ability to register images from different modalities [11], [12].
Moreover, registration algorithms that maximize MI over rigid
and affine transformations have reported impressive registration
results [12]. Rueckert et al. [13] presented MI-based schemes
for matching multimodal image pairs using B-splines to rep-
resent the deformation field on a regular grid. Most accurate
methods for nonrigid registration are inspired by models from
physics, either from elasticity [14], [15] or fluid mechanics [16],
[17], but they are considered computationally expensive. Hence,
several methods have been proposed based on various heuris-
tics to approximate the underlying physical reality by alterna-
tive mathematical models [18]. Likar and Pernus [19] proposed
a hierarchical image subdivision strategy by decomposing the
nonrigid registration problem into an elastic interpolation of var-
ious local rigid registrations of subimages of decreasing size.
This algorithm is applicable to both intra- and intermodal cases
as it maximizes the local MI among subimages. Although MI
has been successfully applied to nonrigid image registration, it
is worth noting that MI-based registration methods might have
a limited performance, once the initial misalignment of the two
images is large or equally the overlay region of the two im-
ages is relatively small [20]. Moreover, MI is sensitive to the
changes that occur in the distributions (overlap statistics) as a
result of changes in the region of overlap. To circumvent these
limitations, a number of information-theoretic methods have
been proposed to improve the robustness of MI-based registra-
tion, including the normalized MI (NMI) approach [21]. The
NMI-based approach is a robust similarity measure that allows
for fully automated intermodal image registration algorithms.
Wang and Vemuri [22] introduced the cross-cumulative resid-
ual entropy (CCRE), which is a measure of entropy defined
in terms of cumulative distribution functions. In this approach,
the CCRE between two images to be registered is maximized
over the space of smooth and unknown nonrigid transforma-
tions. The reported results showed a better performance than
MI-based methods. In [23], Loeckx et al. proposed the condi-
tional MI (cMI) as a new similarity measure for nonrigid image
registration. This measure was calculated as the expected value
of the cMI between the image intensities given the spatial dis-
tribution. Recently, Myronenko and Song [24], [25] proposed
to minimize a residual complexity (RC) instead of MI. This ap-
proach deals with complex spatially varying intensity distortions
and produces accurate registration results.

In recent years, there has been a concerted research effort
in statistical physics to explore the properties of Tsallis en-
tropy, leading to a statistical mechanics that satisfies many of
the properties of the standard theory [26]. Wachowiak et al. [27]
introduced a generalized MI measure based on Tsallis entropy
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for 2-D–3-D multimodal biomedical image registration, and
showed that their metric often produces fewer misregistrations
compared to the MI approach. However, no results on nonrigid
image registration were reported. Extending entropic methods
to nonrigid image registration is the main focus of this paper.
In the proposed approach, we model the nonrigid transforma-
tion of image coordinates using cubic B-splines [28]. Because
of their attractive characteristics, such as inherent control of
smoothness, separability in multiple dimensions, and computa-
tional efficiency, B-splines are used widely in the literature to
model nonrigid deformations [13], [22]–[24], [29].

In this paper, we propose a nonrigid image registration
method by optimizing the Jensen–Tsallis (JT) similarity mea-
sure using the quasi-Newton L-BFGS-B method [31] as an opti-
mization scheme and cubic B-splines for modeling the nonrigid
deformation field between the fixed and moving 3-D image
pairs. The analytical gradient of the JT similarity is derived
so that we can achieve an efficient and accurate nonrigid reg-
istration. In order to achieve a compromise between the non-
rigid registration accuracy and the associated computational
cost, we implement a three-level hierarchical multiresolution
approach such that the image resolution is increased, along
with the resolution of the control mesh, in a coarse to fine
fashion. Experimental results are provided to demonstrate the
registration accuracy of the proposed approach in comparison
to RC and NMI approaches. The feasibility of the proposed
algorithm is demonstrated on medical images from MRI with
different protocols and also on clinically acquired 4-D CT image
datasets.

The rest of the paper is organized as follows. In Section II,
we describe in detail the proposed method, including the JT di-
vergence and its main properties, the problem formulation, the
deformation model, the estimation of the JT similarity and its
derivative, as well as the summary of our proposed algorithm.
Section III provides experimental results on a medical imaging
dataset that demonstrate the effectiveness and superior perfor-
mance of our method compared to RC and NMI approaches.
And finally, in Section IV, we conclude and point out future
work directions.

II. PROPOSED METHOD

In this section, we present the details of our proposed nonrigid
image registration approach. First, we introduce the JT similar-
ity measure that calculates how well the fixed and deformed
image match. Then, we describe the transformation model that
defines the space in which the best solution is found. Next, we
present the optimization and derivative of the analytic gradi-
ent of the JT cost function with respect to nonrigid transforma-
tion parameters. Finally, we summarize our nonrigid registration
algorithm.

A. JT Similarity

Shannon’s entropy of a discrete probability distribution p =
(p1 , p2 , . . . , pk ) is defined as H(p) = −

∑k
j=1 pj log(pj ). A

Fig. 1. Tsallis entropy Hα (p) of a Bernoulli distribution p = (p, 1 − p) for
different values of α.

generalization of Shannon entropy is Tsallis entropy given by

Hα (p) =
1

1 − α

⎛

⎝
k∑

j=1

pα
j − 1

⎞

⎠ = −
k∑

j=1

pα
j logα (pj ) (1)

where logα is the α-logarithm function defined as logα (x) =
(1 − α)−1(x1−α − 1) for x > 0, and α ∈ (0, 1) ∪ (1,∞) is an
exponential order also referred to as entropic index. This gen-
eralized entropy is widely used in statistical physics applica-
tions [26].

If we consider that a physical system can be decomposed
in two statistical independent subsystems with probability dis-
tributions p and q, then it can be shown that the joint Tsallis
entropy is pseudoadditive

Hα (p, q) = Hα (p) + Hα (q) + (1 − α)Hα (p)Hα (q) (2)

whereas the joint Shannon’s entropy is additive: H(p, q) =
H(p) + H(q). Pseudoadditivity implies that Tsallis entropy
has a nonextensive property for statistical independent systems.
Further, standard thermodynamics is extensive because of the
short-range nature of the interaction between subsystems of a
composite system. In other words, when a system is composed
of two statistically independent subsystems, then Shannon en-
tropy of the composite system is just the sum of entropies of the
individual systems, and hence the correlations between the sub-
systems are not accounted for. However, Tsallis entropy does
take into account these correlations due to its pseudoadditivity
property. Fig. 1 depicts Tsallis entropy of a Bernoulli distribu-
tion p = (p, 1 − p), for different values of the entropic index. As
illustrated in Fig. 1, the measure of uncertainty is at a maximum
when Shannon’s entropy is used, and for α ≥ 1 it decreases as
the parameter α increases. Furthermore, Tsallis entropy attains
a maximum uncertainty when its exponential order α is equal
to zero.
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Definition 1: Let p1 ,p2 , . . . ,pn be n probability distribu-
tions. The JT divergence is defined as

Dω
α (p1 , . . . ,pn ) = Hα

(
n∑

i=1

ωipi

)

−
n∑

i=1

ωiHα (pi) (3)

where Hα (p) is Tsallis entropy, and ω = (ω1 , ω2 , . . . , ωn ) is a
weight vector such that

∑n
i=1 ωi = 1 and ωi ≥ 0 .

Using the Jensen inequality, it is easy to check that the JT
divergence [30] is nonnegative for α > 0. It is also symmetric
and vanishes if and only if all the probability distributions are
equal, for all α > 0.

The following result establishes the convexity of the JT di-
vergence of a set of probability distributions [32].

Proposition 1: For α ∈ [1,2], the JT divergence Dω
α is a

convex function of p1 ,p2 , . . . ,pn .
In the sequel, we will restrict α ∈ [1,2], unless specified oth-

erwise. In addition to its convexity property, the JT divergence
is an adapted measure of disparity among n probability distri-
butions as shown in the next result [33].

Proposition 2: The JT divergence Dω
α achieves its maximum

value when p1 ,p2 , . . . ,pn are degenerate distributions, that is
pi = (δij ), where δij = 1 if i = j and 0 otherwise.

Proposition 3: The upper bound of the JT divergence is given
by Dω

α (p1 , . . . ,pn ) ≤ Hα (ω).
Proof: Since the JT divergence is a convex function of

p1 , . . . ,pn , it achieves its maximum value when Tsallis entropy
of the ω-weighted average of degenerate probability distribu-
tions, achieves its maximum value as well. Assigning weights ωi

to the degenerate distributions δ1 , δ2 , . . . , δn , where δi = (δij ),
the following upper bound

Dω
α (p1 , . . . ,pn ) ≤ Hα

⎛

⎝
n∑

j=1

ωiδi

⎞

⎠ = Hα (ω)

is achieved. �
Since Hα (ω) attains its maximum value when the weights

are uniformly distributed (i.e., ωi = 1/n,∀i), it follows that a
tight upper bound of the JT divergence is given by

Dω
α (p1 , . . . ,pn ) ≤ Hα (1/n, . . . , 1/n) = logα n. (4)

If we are measuring the similarity, Sω
α (p1 , . . . ,pn ), between

densities, then Sω
α (p1 , . . . ,pn ) should satisfy the conditions

Sω
α (p1 , . . . ,pn ) ≥ 0

Sω
α (p1 , . . . ,pn ) = max

where max is the maximum similarity possible on the scale of
measurement being used, and often this will be unity. Therefore,
using (4) we may define the JT similarity measure as follows:

Sω
α (p1 , . . . ,pn ) =

�(Dω
α (p1 , . . . ,pn )) − �(logα n)

�(0) − �(logα n)
(5)

where � is a monotonous decreasing function such that
�(logα n) < �(0). For simplicity, we choose �(x) = 1 − x as a
monotonous decreasing function and by substituting this func-

Fig. 2. (a) Fixed image I ; (b) moving image J ; (c) deformation field Φ

tion into (5), the JT similarity measure becomes

Sω
α (p1 , . . . ,pn ) = 1 − Dω

α (p1 , . . . ,pn )
logα n

. (6)

It is worth pointing out that the main purpose of introducing
the JT similarity measure Sω

α is to use the limited memory
quasi-Newton minimization method, which efficiently solves
nonlinear and large-scale minimization problems.

B. Problem Statement

In the sequel, we will use the JT similarity measure, given
by (6), as a matching criterion to solve the image alignment
problem. Let I and J be two misaligned images to be registered,
where I is the fixed image and J is the moving image. The
moving image J is obtained by applying a deformation field Φ
to the fixed image I , as depicted in Fig. 2. The deformation field
Φ is described by a transformation function g(x;μ) : VJ → VI ,
where VJ and VI are continuous domains on which J and I
are defined, and μ is a set of transformation parameters to be
determined. The image alignment or registration problem may
be formulated as an optimization problem

μ̂ = arg min
μ

Sω
α

(
I(x), J(g(x;μ))

)
. (7)

To align the transformed moving image J(g(x;μ)) to the fixed
image I , we seek the set of transformation parameters μ that
minimize the JT cost function Sω

α

(
I(x), J(g(x;μ))

)
.

C. Transformation Model

Several transformation models have been proposed over the
years to represent a nonrigid deformation field. In this paper,
we model the transformation g(x;μ) using the free-form defor-
mation (FFD) [29], which is based on cubic B-splines, and μ
represents the parameter vector of deformation coefficients. Let
Φ denote a nx × ny × nz mesh of control points ϕi,j,k with a
uniform spacing Δ. Then, the 3-D transformation at any point
x = [x, y, z]T in the moving image is interpolated using a linear
combination of cubic B-spline convolution kernels as follows:

g(x;μ) =
∑

ijk

ηijkβ(3)
(

x − ϕijk

Δ

)

(8)

where β(3)(x) = β(3)(x)β(3)(y)β(3)(z) is a separable cubic
B-spline convolution kernel, and ηijk are the deformation co-
efficients associated to the control points ϕijk . The degree of
nonrigidity can be adopted to a specific registration problem
by varying the mesh spacing or the resolution of the mesh Φ
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Fig. 3. JT similarity Sα (p, q) between two Bernoulli distributions p =
(p, 1 − p) and q = (1 − p, p) for different values of α.

of control points. The parameter vector μ = (ηijk ) represents
the vector of deformation coefficients associated to the control
points ϕijk , where the indices i, j, k denote the coordinates of
the control points on the mesh grid.

D. Optimization of the JT Similarity

We adopt a limited memory quasi-Newton method for solv-
ing the optimization problem given by (7). The calculation of
the analytical gradient of the JT cost (similarity) function is
necessary to not only avoid discretization errors but also to
achieve an efficient and robust minimization scheme. Denote
by X = {x1 , x2 , . . . , xn} and Y = {y1 , y2 , . . . , yn} the sets of
pixel intensity values of the fixed image I(x) and the deformed
moving image J(g(x;μ)), respectively. Let X and Y be two
random variables taking values in X and Y . Then, we define the
conditional intensity probability distributions pi as follows:

pi = pi

(
J(g(x;μ))|I(x)

)
= (pij )j=1,...,n , ∀i = 1, . . . , n

where pij = P (Y = yj |X = xi) = p (j|i;μ) , j = 1, . . . , n.
Note that in pij the parameter vector μ is omitted for notational
simplicity.

It is worth pointing out that if the images I and J are ex-
actly matched, then pi = (δij ) and by Proposition 2, the JT
divergence is, therefore, maximized and consequently the JT
similarity measure is minimized. By substituting (1) into (3),
we obtain

Dω
α (p1 , . . . ,pn ) =

1
1 − α

[
n∑

j=1

( n∑

i=1

ωipij

)α −
n∑

i=1

ωi

n∑

j=1

pα
ij

]

.

(9)
Fig. 3 illustrates the JT similarity between two Bernoulli dis-

tributions p = (p, 1 − p) and q = (1 − p, p) for different values
of the entropic index. As shown in Fig. 3, the highest similar-
ity corresponds to the entropic index α = 2. In the sequel, we
choose an entropic index α = 2. Thus, the JT divergence is

reduced to

Dω
2 (p1 , . . . ,pn ) = −

n∑

j=1

(
n∑

i=1

ωipij

)2

+
n∑

i=1

ωi

n∑

j=1

p2
ij

(10)
and the JT similarity becomes

Sω
2 (p1 , . . . ,pn ) = 1 − Dω

2 (p1 , . . . ,pn )
log2 n

. (11)

The calculation of the registration function is as follows.
First, we calculate the conditional intensity probability distri-
butions pi , i = 1, . . . , n between the fixed and deformed mov-
ing images. Then, we compute Dω

2 (p1 , . . . ,pn ) according to
the formula given by (10). Finally, we compute the similarity
Sω

2 (p1 , . . . ,pn ) given by (11), which represents our registra-
tion function. Note that we are using conditional (not marginal)
probabilities to compute the JT similarity metric. Moreover, it
is important to point out that n denotes the number of pixel
values in the fixed image and also in the moving image. Thus,
the number of conditional probabilities is also equal to n. In
addition, both indices i and j in (10) run from 1 to n.

1) Conditional Intensity Probability Estimation: In a typical
registration problem, direct access to the marginal and joint
probability densities is not available and hence the densities
must be estimated from the image data. Parzen windows (also
known as kernel density estimators) can be used for this purpose.
In this scheme, the densities are constructed by taking intensity
samples from the image and super-positioning kernel functions
centered on the elements of these samples. A variety of functions
can be used as smoothing kernels with the requirement that they
are smooth, symmetric, have zero mean and integrate to one. For
example, boxcar, Gaussian, and B-spline functions are suitable
candidates. We propose to use the B-spline Parzen window to
estimate the conditional intensity probability of the interpolated
moving image given the fixed image. The advantage of using a
B-spline kernel over a Gaussian kernel is that the B-spline kernel
has a finite support region which is computationally attractive,
as each intensity sample only affects a small number of bins and
hence does not require an N × N loop to compute the metric
value. Let β(0) be a zero-order spline Parzen window and β(3)

be a cubic spline Parzen window, then the smoothed conditional
probability of J(g(x;μ)) given I(x) is expressed as follows:

p(j|i;μ) =
p (j, i;μ)

pI (i)
(12)

where

p (j, i;μ) = ξ
∑

x∈V

β(0)
(

i − I(x) − f 0
I

ΔbI

)

· β(3)
(

j − J(g(x;μ)) − f 0
J

ΔbJ

)

. (13)

The normalization factor ξ ensures sum to one of the proba-
bilities, and I(x) and J(g(x;μ)) are samples of the fixed and
interpolated moving images, respectively. These samples are
normalized by the minimum intensity value, f 0

I , f 0
J , and inten-

sity range of each bin, ΔbI and ΔbJ , respectively.
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The marginal probability of the fixed image is independent of
the transformation parameters, and can be computed as follows:

pI (i) = ξ
∑

x∈V

β(0)
(

i − I(x) − f 0
I

ΔbI

)

. (14)

Since the fixed image probability density function does not
contribute to the cost function derivative, it does not need to
be smooth. Hence, a zero order B-spline kernel is used.

By taking the derivative of the conditional probability with
respect to μ, we get

∂p(j|i;μ)
∂μ

=
γ

pI (i)ΔbJ

∑

x∈V

β(0)
(

i − I(x) − f 0
I

ΔbI

)

· β ′(3)
(

j − J(g(x;μ)) − f 0
J

ΔbJ

)

·
(

∂J(t)
∂t

∣
∣
∣
∣
t=g(x;μ)

)
∂g(x;μ)

∂μ
(15)

where ∂J(t)/∂t is the image gradient, and β
′(3) is the derivative

of the cubic spline kernel

β
′(3)(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0 u ≤ −2

2u + 2 +
1
2
u2 −2 < u ≤ −1

−2u − 3
2
u2 −1 < u ≤ 0

−2u +
3
2
u2 0 < u ≤ 1

2u − 2 − 1
2
u2 1 < u ≤ 2

0.0 u > 2

(16)

E. Derivative of the JT Similarity

Now, taking the derivative of the JT divergence with respect
to μ yields

∂Dω
2 (p1 , . . . ,pn )

∂μ
=

∂
(
−

∑n
j=1

( ∑n
i=1 ωipij

)2)

∂μ

+
∂

(∑n
i=1 ωi

∑n
j=1 p2

i

)

∂μ
(17)

where

∂
(
−

∑n
j=1

( ∑n
i=1 ωipij

)2)

∂μ

= −2
n∑

j=1

(
n∑

i=1

ωipij

)
∂
(∑n

i=1 ωipij

)

∂μ

= −2
n∑

j=1

(
n∑

i=1

ωipij

) (
n∑

i=1

ωi
∂pij

∂μ

)

(18)

and

∂
(∑n

i=1 ωi

∑n
j=1 p2

ij

)

∂μ
=

n∑

i=1

ωi

n∑

j=1

∂p2
ij

∂μ

= 2
n∑

i=1

ωi

n∑

j=1

pij
∂pij

∂μ
.

Therefore

∂Dω
2 (p1 , . . . ,pn )

∂μ
= −2

n∑

j=1

(
n∑

i=1

ωipij

) (
n∑

i=1

ωi
∂pij

∂μ

)

+ 2
n∑

i=1

ωi

n∑

j=1

pij
∂pij

∂μ
. (19)

Consequently, the JT similarity measure and its derivative are
given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Sω
2 (p1 , . . . ,pn ) = 1 − Dω

2 (p1 , . . . ,pn )
log2 n

∂Sω
2 (p1 , . . . ,pn )

∂μ
= −∂Dω

2 (p1 , . . . ,pn )
∂μ

× 1
log2 n

.

(20)

F. Summary of the Proposed Algorithm

The proposed algorithm is implemented by changing the de-
formation in the moving image until the discrepancy between
the moving and fixed images is minimized. The main algo-
rithmic steps of our nonrigid image registration approach are
summarized in Algorithm 1. First, the algorithm initializes the
deformation field Φ by creating a uniform B-spline control grid
with predefined spacing knots. Next, a three-level hierarchical
multiresolution scheme is used to achieve the best compromise
between the registration accuracy and the associated computa-
tional cost. As the hierarchical level increases the resolution of
the control mesh is increased, along with the image resolution,
in a coarse to fine fashion. In each hierarchical level, a limited-
memory, quasi-Newton minimization scheme is used to find
the optimum set of transformation parameters that reduce the
JT cost function until the difference between the cost function
values in two consecutive iterations is less than ε = 0.01. The
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resolution of the optimum set of transformation parameters, at
a courser level, is increased to be used as starting point for the
next hierarchical level.

III. EXPERIMENTAL RESULTS

We tested the performance of the proposed approach on
a medical imaging dataset that was obtained from the brain-
web database at the Montreal Neurological Institute [34]. This
dataset contains a full 3-D simulated brain magnetic reso-
nance (MR) data volumes from several protocols, including T1-
weighted (MR–T1), T2-weighted (MR–T2), and proton density
(MR–PD) with a variety of slice thicknesses, noise levels, and
levels of intensity nonuniformity. All the corresponding slices
from different protocols are originally aligned with each other.
The images used in our experiments have 181 × 217 × 181 vox-
els with a 1-mm voxel size in each dimension. To validate the
nonrigid registration accuracy of the proposed method, we first
applied both geometric and intensity distortions to the fixed
image in order to generate moving image. Then, we aligned
the moving image with the fixed image. We also compared the
image registration results of our approach to RC and NMI ap-
proaches, which are implemented in the Medical Image Regis-
tration Toolbox [24] and in the Image Registration Toolkit [13],
respectively. In all the experiments, we used an entropic index
α = 2 and the normalized histogram of the fixed image as the
weight vector ω for the JT similarity measure.

For the implementation of RC and NMI methods, we es-
sentially model the nonrigid deformation field as a FFD based
on B-splines and then we employ an iterative gradient descent
scheme as an optimization algorithm. In all the experiments,
the moving image is generated by applying a random perturba-
tion to the corresponding fixed image using a thin-plate spline
interpolation (TPS) such that the mean nonrigid displacement
of the pixels, caused by the relative displacement between the
fixed and generated moving images, is the ground truth defor-
mation field μg . Moreover, it is important to mention that none
of the three methods (NMI, RC, and proposed approach) uses
TPS interpolation as its transformation model. Therefore, using
TPS interpolation for generating moving image is not unfairly
advantageous to any of these methods.

A. Registration Functions

An ideal registration function that measures the similarity be-
tween two images should be smooth and convex with respect
to different transformation parameters. Also, the global mini-
mum of the registration function should be close to the correct
transformation parameters that align two images perfectly [35].
Moreover, the capture range around the global minimum should
be as large as possible, and the number of local minima of the
registration function should be as small as possible. These crite-
ria will be used to evaluate the registration functions generated
by NMI, RC, and the proposed approach. The registration func-
tion of our algorithm can be generated by computing the JT
similarity between two images under all possible transforma-
tions. Similarly, the registration functions of NMI and RC can
be obtained.

The registration functions of NMI, RC, and the proposed
approach with respect to different rotation and translation pa-
rameters are shown in Fig. 4. We can observe that the regis-
tration functions of the proposed approach are much smoother
than those of NMI and RC. In addition, the capture range in the
registration function of our method is considerably large. In par-
ticular, the change of the registration function with respect to
rotations is smoothly extended relatively far from the global
minimum, indicating a better performance of the proposed
approach.

B. Monomodality Test

In the first experiment, we distorted the fixed image MR–
T1 with a known nonrigid transformation field, or the so-called
ground truth deformation μg . Then, we applied the proposed ap-
proach, RC and NMI algorithms. And finally, we compared the
obtained deformations fields with the ground truth. Fig. 5 shows
the results obtained from this experiment. Note that the regis-
tered moving images obtained by the proposed method and the
RC approach are visually more similar in shape to the moving
image than the image produced by the NMI approach. Moreover,
the estimated transformation field resulted from our approach
is more similar to the ground truth than of those obtained using
RC and NMI approaches. To measure the registration accuracy
of the proposed method, we computed the mean μ̂MSE and stan-
dard deviation σ̂MSE of the MSE between the ground truth and
estimated displacement vectors. Table I displays the MSE statis-
tics of the estimated nonrigid deformation, when compared to
the ground truth. The first column shows the mean ground truth
deformation, which represents the magnitude of the displace-
ment vector that is used to generate the moving images in each
experiment. For each row twenty different transformation fields
with this mean are generated and applied to the fixed image in
order to generate the corresponding moving images. The second
and third columns display the average and standard deviation
of MSE for the generated 20 pairs of fixed-moving images. The
results obtained using the proposed approach are considerably
small compared to those of RC and NMI methods.

In the second experiment, we used similar steps as in the
first experiment, but this time we generated the moving image
by distorting the fixed image with both intensity and geometric
distortions. The intensity distortion is generated by corrupting
the fixed image as follows [24]:

1) I(x, y)=Iγ (x, y) + υ
xy

MN

+
1
K

K∑

k=1

exp
(

−‖ [x; y] − ΨK ‖2

2σ2

)

2) Rescale I to [0, 1],
where the first term represents the gamma correction on I af-
ter geometric distortion, the second term models a smoothly
varying global intensity field, and the third term models locally
varying intensity field with a mixture of K Gaussian densities. In
this experiment, we chose a distortion level 2 with parameters as
follows: υ = 0.4,K = 1,ΨK were randomly selected from the
interval [1, ν] (ν is the size of the image domain), σ = 30, and
γ is selected randomly from [0.9, 1.2]. The registered images
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Fig. 4. Registration functions of our approach, RC, and NMI in aligning MRI–T1 images. From top to bottom: (a), (d), and (g) rotation only; (b), (e), and (h)
translation along x-axis; (c), (f), and (i) translation along y-axis.

shown in Fig. 6 demonstrate that the proposed algorithm out-
performs the RC approach, in the presence of spatially varying
intensity distortion. The result obtained by the NMI approach
shows a poor performance. Moreover, the estimated deforma-
tion field obtained by our approach shows superior accuracy in
comparison to RC and NMI methods.

C. Multimodality Test

The images used in this experiment are corresponding slices
from MR–T1 and MR–T2 image pair, and they are originally
aligned with each other. In this experiment, we registered the
geometrically deformed MR–T1 image onto MR–T2 image us-
ing our approach and the NMI method. We omitted the result
of the RC approach because it is not applicable to multimodal
images. Fig. 7 shows the accuracy of our method in registering

images from different modalities. As can be seen, the regis-
tered image using the NMI approach still has a considerable
amount of misregistration. However, most of the visible amount
of misalignment in the moving image has been removed after
applying the proposed approach. In addition, the nonrigid trans-
formation estimated by the proposed method looks very similar
to the ground truth, indicating a much better performance of our
approach.

D. Statistical Significance Test

We used a paired t-test to determine if the difference in MSE
for the pairs of registration methods is statistically significant.
Table II shows the p-values of the differences of MSE between
each pair of registration methods after applying paired t-test.
At 95% level of confidence, it is evident from Table II that the
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Fig. 5. Geometric distortion experiment : (a) MR–T1 image; (b) distorted
MR–T1 image with geometric distortion; (c) ground truth deformation field;
(d)–(f) registered images using our approach RC, and NMI, respectively; (g)–(i)
estimated transformation using our approach RC, and NMI, respectively.

TABLE I
MSE STATISTICS OF THE ESTIMATED NONRIGID DEFORMATION

MSE resulting from our approach is significantly lower than
the MSEs resulting from RC and NMI methods, indicating the
better performance of the proposed approach.

E. Real-Life Data Set: 3-D Thoracic CT Images

We also validated the proposed method, RC and NMI ap-
proaches on real-life clinically acquired 4-D CT image datasets
[36]. These publicly available datasets consist of thoracic 4-D
CT images acquired as part of the standard planning process for
the treatment of esophageal cancer at the University of Texas
M. D. Anderson Cancer Center in Houston. Each 4-D CT scan
consists of a time-varying stack of ten 3-D images of the entire
thorax and upper abdomen, and were acquired at 2.5-mm slice
spacing with a General Electric Discovery ST PET/CT scan-
ner (GE Medical Systems, Waukesha, WI). The utmost inhale
and exhale phases of the 4-D CT sets were used for nonrigid
registration evaluation. For each patient dataset, an expert in
thoracic imaging manually delineated and registered pulmonary
land mark features such as vessel bifurcations between the fixed
and moving image pairs as shown in Fig. 8. A total number of

Fig. 6. Geometric and intensity distortion experiment: (a) MR–T1 image;
(b) distorted MR–T1 image with geometric and intensity distortion; (c) ground
truth deformation field; (d)–(f) registered images using our approach, RC, and
NMI, respectively; (g)–(i) estimated transformation using our approach, RC,
and NMI, respectively.

Fig. 7. Multimodality experiment: (a) MR–T2 image; (b) distorted MR–T1
image with geometric distortion; (c) ground truth deformation field; (d) and
(e) registered images using our approach, and NMI, respectively; (f) estimated
transformation using our approach.

four cases are used in this evaluation with a minimum of 1 166
registered landmarks features in each case as shown in Table III.

The deformable registration accuracy was evaluated by cal-
culating the point registration errors as a 3-D Euclidean dis-
tance between the manually determined landmark position in
the exhale image and that calculated by applying the regis-
tration methods to the corresponding feature location in the
inhale image. The mean registration errors and correspond-
ing standard deviations were calculated for all cases before
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TABLE II
COMPARISON BETWEEN THE REGISTRATION METHODS USING STATISTICAL SIGNIFICANT TEST (p-VALUES)

TABLE III
CT-IMAGE AND REFERENCE LANDMARK PROPERTIES

Fig. 8. 4-D CT scan of a lung taken during a single breath cycle: fixed (top row)
and moving (bottom row) represent component phase 3-D volumes from a 4-D
set for patient case number one. (a)–(c) display a 3-D volume of the maximum
inhale phase in transverse, coronal, and sagittal orientation, respectively; (d)–(f)
display a 3-D volume of the maximum exhale phase in transverse, coronal, and
sagittal orientation, respectively.

registration, to represent the initial misregistration, and after
applying our algorithm, RC and NMI methods. As shown in
Fig. 9, it is evident that the proposed method achieved lower
3-D registration errors than RC and NMI approaches. For the
four patient cases, mean(standard deviation) 3-D errors ranged
from 1.17(1.05) to 2.30(1.65) mm for the proposed method,
1.27(1.36) to 2.48(1.89) for the RC method, and 1.92(1.52) to
4.97(3.87) for the NMI approach. For the cumulative valida-
tion landmark set of 5494 landmark pairs, the mean(standard
deviation) registration errors were 1.49(1.26), 1.64(1.43) and
2.88(2.20) for the proposed method, RC and NMI approaches,
respectively.

Fig. 9. 3-D volume registration accuracy. Mean and standard deviation of
3-D registration errors are depicted for each case before registration and after
applying the proposed method, RC and NMI approaches. All values are in units
of millimeters.

IV. CONCLUSION

An entropic framework for nonrigid image registration is pro-
posed in this paper. The experimental results on (MR-)T1–T1
and (MR-)T1–T2 registrations indicate the feasibility of the pro-
posed approach and a much better performance compared to RC
and NMI methods, not only in terms of registration accuracy in
the presence of intensity and geometric distortion but also in
terms of nonrigidly registering images of different protocols
and modalities. The feasibility of the proposed algorithm is also
demonstrated on clinically acquired 4-D CT image datasets.
Future work will focus on extending our approach to non-
rigid multimodal image registration using MR-CT and MR-PET
images.
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