
maximum a posteriori (MAP) estimator using a
Markov or a maximum entropy random field
model for a prior distribution may be viewed
as a minimizer of a variational problem.

Using notions from robust statistics, a variational filter re-
ferred to as a Huber gradient descent flow is proposed. It
is a result of optimizing a Huber functional subject to
some noise constraints and takes a hybrid form of a total
variation diffusion for large gradient magnitudes and of a
linear diffusion for small gradient magnitudes. Using the
gained insight, and as a further extension, we propose an
information-theoretic gradient descent flow which is a re-
sult of minimizing a functional that is a hybrid between a
negentropy variational integral and a total variation. Il-
lustrating examples demonstrate a much improved per-
formance of the approach in the presence of Gaussian and
heavy tailed noise.

In this article, we present a variational approach to
MAP estimation with a more qualitative and tutorial em-
phasis. The key idea behind this approach is to use geo-
metric insight in helping construct regularizing
functionals and avoiding a subjective choice of a prior in
MAP estimation. Using tools from robust statistics and
information theory, we show that we can extend this strat-
egy and develop two gradient descent flows for image
denoising with a demonstrated performance.

Introduction
Linear filtering techniques abound in many image pro-
cessing applications and their popularity mainly stems
from their mathematical simplicity and their efficiency in
the presence of additive Gaussian noise. A mean filter, for
example, is the optimal filter for Gaussian noise in the
sense of minimum mean square error. Linear filters, how-
ever, tend to blur sharp edges, destroy lines and other fine
image details, fail to effectively remove heavy tailed noise,
and perform poorly in the presence of signal-dependent
noise. This led to a search for nonlinear filtering alterna-
tives. The research effort on nonlinear median-based fil-
tering, for example, has resulted in remarkable results and
has highlighted some new promising research avenues
[1]. On account of its simplicity, its edge preservation
property and its robustness to impulsive noise, the stan-
dard median filter remains among the favorites for image
processing applications [1]. The median filter, however,
often tends to remove fine details in the image, such as
thin lines and corners [1]. In recent years, a variety of me-
dian-type filters such as stack filters and weighted median
filters [1] have been developed to overcome this draw-
back. In spite of an improved performance, the solutions
would clearly benefit from the regularizing power of a
prior on the underlying information of interest.
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Among Bayesian image estimation methods which en-
joy such regularizations, the MAP estimator with a
Markov or a maximum entropy random field prior
[2]-[4] has proven to be a powerful approach to image
restoration. The limitation in using MAP estimation is
the difficulty of systematically and reliably choosing a
prior distribution and its corresponding optimizing en-
ergy function and in some cases of the resulting computa-
tional complexity.

In recent years, variational methods and partial dif-
ferential equation (PDE) based methods [5], [6] have
been introduced to explicitly account for intrinsic ge-
ometry to address a variety of problems including im-
age segmentation, mathematical morphology, and
image denoising [7], [8]. The latter
will be the focus of the present arti-
cle. The problem of denoising has
been addressed using a number of
different techniques including
wavelets [9], order-statistics-based
filters [1], PDE-based algorithms
[7], [8], and variational approaches
[10]-[12]. In particular, a large
number of PDE-based methods
have particularly been proposed to
tack le the problem of image
denoising [7] with a good preserva-
tion of edges. Much of the appeal of
PDE-based methods lies in the
availability of a vast arsenal of math-
ematical tools which at the very
least act as a key guide in achieving
numerical accuracy as well as stabil-
ity. PDEs or gradient descent flows
are generally a result of variational
problems using the Euler-Lagrange
pr inc ip le [13] . One popula r
variational technique used in image
denoising is the total variation
based approach. It was developed in
[6] to overcome the basic limita-
tions of all smooth regularization
algorithms, and a variety of numeri-

cal methods have also recently been developed for
solving total variation minimization problems [6],
[14].

Image Analysis: Two Perspectives
Problem Statement
In all real applications, measurements are perturbed by
noise. In the course of acquiring, transmitting, or pro-
cessing a digital image, for example, the noise-induced
degradation may be dependent or independent of data.
The noise is usually described by its probabilistic model,
e.g., Gaussian noise is characterized by two moments.
Application-dependent, a degradation often yields a re-
sulting signal/image observation model, and the most
commonly used is the additive one

u u0 = + η, (1)

where the observed image u0 includes the original sig-
nal u and the independent and identically distributed
(i.i.d) noise process η. Fig. 1 depicts an image contami-
nated by three types of noise: Gaussian, Laplacian, and
impulsive.

Image denoising refers to the process of recovering an
image contaminated by noise (see Fig. 2). The challenge
of the problem of interest lies in faithfully recovering the
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� 1. Image denoising problem: (a) original image, (b) Gaussian noise, (c) Laplacian
noise, and (d) impulsive noise.

Linear filtering techniques
abound in many image
processing applications and their
popularity mainly stems from
their mathematical simplicity
and their efficiency in the
presence
of additive Gaussian noise.



underlying signal/image u from u0 , and furthering the es-
timation by making use of any prior knowledge/assump-
tions about the noise process η. This goal is graphically
and succinctly described in Fig. 2.

Model-Based Approach
In a probabilistic setting, the image denoising problem
is usually solved in a discrete domain, and in this case an
image is expressed by a random matrix u uij= ( ) of gray
levels. To account for prior probabilistic information we
may have for u, a technique of choice is that of a maxi-
mum a posteriori estimation. Denoting by p u( )the prior
distribution for the unknown image u, the MAP estima-
tor is given by

$ max{log ( | ) log ( )}u p u u p u
u

= +arg 0 , (2)

where p u u( | )0 denotes the conditional probability of u0
given u.

A general model for the prior distribution p u( ) is that
of a Markov random field (MRF) which is characterized
by its Gibbs distribution given by [2]

p u
Z

u
( ) exp

( )
= −








1 F

λ
,

where Z is a partition function and λ is a constant known
as the temperature in the terminology of physical sys-
tems. F is called the energy function and has the form
F

C
( ) ( )u V ucc

=
∈∑ , where C denotes a set of cliques (i.e.,

set of connected pixels) for the MRF, andVc is a potential
function defined on a clique. We may define the cliques to
be adjacent pairs of horizontal and vertical pixels. Note
that for large λ, the prior probability becomes flat, and
for small λ, the prior probability exhibits sharp modes.

MRFs have been extensively used in computer vision
particularly for image restoration, and it has been estab-
lished that Gibbs distributions and MRFs are equivalent
(e.g., see [2]). In other words, if a problem is defined in
terms of local potentials then there is a simple way of for-
mulating the problem in terms of MRFs. If the noise pro-
cess η is i.i.d. Gaussian, then we have

p u u K
u u

( | ) exp
| |

0
0

2

22
= −

−









σ
,

where K is a normalizing positive constant, σ 2 is the
noise variance, and||⋅ stands for the Euclidean norm or for
the absolute value in the case of a scalar. Thus, the MAP
estimator in (2) yields

$ min ( ) | |u u u u
u

= + −







arg F
λ
2 0

2 .
(3)

Image estimation using MRF priors has proven to be a
powerful approach to restoration and reconstruction of
high-quality images. Its major drawback, besides its com-

putational load, is the difficulty in systematically selecting
a practical and reliable prior distribution. The Gibbs prior
parameter λ is also of particular importance since it con-
trols the balance of influence of the Gibbs prior and that
of the likelihood. If λ is too small, the prior will tend to
have an over-smoothing effect on the solution. Con-
versely, if it is too large, the MAP estimator may be unsta-
ble and it reduces to the maximum likelihood solution as
λ goes to infinity. Another difficulty in using a MAP
estimator is the nonuniqueness of the solution when the
energy function F is not convex.

A Variational/Nonparametric Approach
to MAP Estimation
Unknown prevailing statistics or underlying signal/im-
age/noise models often make a “target” desired perfor-
mance quantitatively less well defined. Specifically, it
may be qualitative in nature (e.g., preserve high gradi-
ents in a geometric setting or determine a worst case
noise distribution in a statistical estimation setting
with a number of interpretations) and may not neces-
sarily be tractably assessed by an objective and optimal
performance measure. The formulation of such quali-
tative goals is typically carried out by way of adapted
functionals which upon being optimized, achieve the
stated goal, e.g., a monotonically decreasing functional
of gradient modifying a diffusion [5]. This approach is
the so-called variational approach. It is commonly for-
mulated in a continuous domain which enjoys a large
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Image estimation using MRF
priors has proven to be a
powerful approach to restoration
and reconstruction of
high-quality images.

η

u + u + η

Prior Denoising

û

� 2. Block diagram of image denoising process.



arsenal of analytical tools, and hence offers a greater
flexibility. An image is defined as a real-valued function
u:Ω →R, and Ω is a nonempty, bounded, open set inR 2

(usually Ω is a rectangle in R). Throughout, x = ( , )x x1 2
denotes a pixel location in Ω, and ||||⋅ denotes the
L2 -norm. While the ultimate overall objective in the
aforementioned formulation may coincide with that of
a probabilistic formulation, namely the recovery of an
underlying desired signal u, it is herein often implicit
and embedded in an energy functional to be optimized.
Generally, the construction of an energy functional is
based on some characteristic quantity specified by the
task at hand (gradient for segmentation, Laplacian for
smoothing, etc.). This energy functional is oftentimes
coupled to a regularizing force/energy to rule out a
great number of solutions and to also avoid any degen-
erate solution.

When considering the signal model (1), our goal may
be succinctly stated as one of estimating the underlying
image u based on an observation u0 and/or any potential
knowledge of the noise statistics to further regularize the
solution. This yields the following fidelity-constrained
optimization problem:

min
u

(u)

u u

F

s.t. − =0
2 2σ (4)

where F is a given functional which often defines, as
noted above, the particular emphasis on the features of
the achievable solution. In other words, we want to find
an optimal solution that yields the smallest value of the
objective functional among all solutions that satisfy the

constraints. Using Lagrange’s theorem, the minimizer of
(4) is given by

$ min ( )u u u u
u

= + −







arg F
λ
2 0

2 ,
(5)

where λ is a nonnegative parameter chosen so that the
constraint u u0

2 2− = σ is satisfied. In practice, the pa-
rameter λ is often estimated or chosen a priori.

Equations (3) and (5) show a close connection between
image recovery via MAP estimation and image recovery
via optimization of variational integrals. One may in fact
reexpress (3) in an integral form similar to that of (5).

A critical issue, however, is the choice of the variational
integral F , which, as discussed later, is often driven by
geometric arguments. Among the better known
functionals (also called variational integrals) in image
denoising are the Dirichlet and the total variation
integrals defined, respectively, as

D( ) | | ( ) | |u u dx TV u u dx= ∇ = ∇∫ ∫
1
2

2

Ω Ω
and ,

where ∇u denotes the gradient of the image u.
A generalization of these functionals is the variational

integral given by

F( ) (| |)u F u dx= ∇∫Ω
, (6)

where F:R R+ → is a given smooth function called a
variational integrand or Lagrangian [13]. Using (6), we
hence define a functional

L F( ) ( )

(| |) | |

u u u u

F u u u dx

= + −

= ∇ + −



∫

λ

λ
2

2

0
2

0
2

Ω
,

(7)

which by the formulation in (5) becomes

$ min ( )u u
u X

=
∈

arg L , (8)

where X is an appropriate image space of smooth functions.

Numerical Solution:
Gradient Descent Flows
To solve the optimization problem (8), a variety of itera-
tive methods such as gradient descent [6], or fixed point
method [15], may be applied.

The first-order necessary condition to be satisfied by
any minimizer of the functionalL given by (7) is its vanish-
ing first variation (or vanishing gradient). Using the fun-
damental lemma of the calculus of variations, this
vanishing first variation yields an Euler-Lagrange equation
as a necessary condition to be satisfied by minimizers ofL.
In mathematical terms, the Euler-Lagrange equation is
given by
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Image filtering refers to the
process of recovering an image
contaminated by noise.
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−
′ ∇
∇

∇






 + − =div in

F u
u

u u u
(| |)
| |

( ) ,λ 0 0 Ω,
(9)

where “div” stands for the divergence operator. An image
u satisfying (9) is called an extremal ofL.

Using the Euler-Lagrange variational principle, the
minimizer of (8) may be interpreted as the steady state so-
lution to the following nonlinear elliptic PDE called gra-
dient descent flow

u g u u u ut = ∇ ∇ − − × +div in( (| |) ) ( ),λ 0 Ω R ,

where g z F z z( ) ( ) /= ′ , with z >0, and assumed homoge-
neous Neumann boundary conditions.

Illustrative Cases
The following examples illustrate the close connection
between optimization problems of variational integrals
and boundary value problems for partial differential
equations in a no noise constraint case (i.e., setting
λ =0).

Heat Equation
u ut = ∆ is the gradient descent flow for the Dirichlet
variational integral D( )u .

It is important to point out that the Dirichlet func-
tional tends to smooth out sharp jumps because it con-
trols the second derivative of image intensity i.e., its
“spatial acceleration,” and it diffuses the intensity values

isotropically. Fig. 4(b) shows this
blurring effect on a clean image de-
picted in Fig. 4(a).

Perona-Malik Equation
It has been shown in [16] that the
Perona-Malik (PM) diffusion
u g u ut = ∇ ∇div( (| |) ) is the gradient
descent flow for the variational inte-
gral

Fc cu F u dx( ) (| |)= ∇∫Ω
,

with sample Lagrangians
F z c z cc

1 2 2 21( ) log( / )= + or
F z c z cc

2 2 2 21( ) ( ( / ))= − −exp , see
Fig. 3, where z ∈ +R and c is a tuning
positive constant.

A minimizat ion of such
functionals encourages the smooth-
ing of homogenuous/small gradient
regions and the preservation of
edges/high gradient regions. Note
that ill-posedness of this formulation
was addressed in a number of papers
(e.g., see [16]). A result of applying
the PM flow with Fc

1 to the original
image in Fig. 4(a) is illustrated in Fig. 4(c). It is worth
noting how the diffusion takes place throughout the ho-
mogeneous regions and not across the edges.

Curvature Flow
u u ut = ∇ ∇div( /| |) corresponds to the total variation
integral.

While limiting spurious oscillations, TV optimization
preserves sharp jumps as is often encountered in “blocky”
signals/images. Fig. 4(d) illustrates the output of the TV
flow.
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(c) (d)

� 4. Filtering results: (a) original image, (b) heat flow, (c) Perona-Mailk flow, and (d) TV flow.
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Robust Variational Approach
Robustness for Unknown Statistics
In robust estimation, for example, a case where even the
noise statistics are not precisely known [17], [9] arises. In
this case, a reasonable strategy would be to assume that
the noise is a member of some set, or of some class of
parametric families, and to pick the worst case density
(least favorable, in some sense) member of that set, and
obtain the best signal reconstruction for it. Huber’s
ε-contaminated normal set Pε is defined as [17]

P Sε ε ε= − + ∈{( ) : }1 Φ H H ,

whereΦ is the standard normal distribution,S is the set of
all probability distributions symmetric with respect to the
origin and ε ∈[ , ]0 1 is the known fraction of “contamina-
tion.” Huber found that the least favorable distribution in
Pε which maximizes the asymptotic variance (or, equiva-
lently, minimizes the Fisher information) is Gaussian in
the center and Laplacian in the tails. The transition be-
tween the two depends on the fraction of contamination
ε, i.e., larger fractions correspond to smaller switching
points and vice versa.

For the setPε of ε-contaminated normal distributions,
the least favorable distribution has a density function
f z zH k( ) (( ) / exp( ( ))= − −1 2ε π ρ (e.g., see [17]), where

ρk is the Huber M-estimator cost function (see Fig. 5)
given by

ρk z

z z k

k z k
( )

| |

| |
=

≤

−










2

2
2

2

if

otherwise.

Here k is a positive constant deter-
mined by the fraction of contamina-
tion ε [17].

Motivated by the robustness of
the Huber M-filter in a probabilistic
setting [1] and its resilience to im-
puls ive noise, we propose a
variational filter which, when ac-
counting for these properties, leads
to the following energy functional:

Rk ku u dx( ) (| |) .= ∇∫ ρ
Ω

Note that the Huber variational integral is a hybrid of the
Dirichlet variational integral (ρk u u(| |) | | /∇ ∝ ∇ 2 2 as k→ ∞)
and of the total variation integral (ρk u u(| |) | |∇ ∝ ∇ as k→ 0).

Using the Euler-Lagrange variational principle, a
Huber gradient descent flow is obtained as

u g u u u ut k= ∇ ∇ − − × +div in( (| |) ) ( ),λ 0 Ω R ,

where gk is the Huber M-estimator weight function

g z
z

z

z k
k
z

k
k( )
( ) | |

| |
=

′
=

≤





ρ 1 if

otherwise.

For large k, this flow yields an isotropic diffusion (heat
equation when λ =0), and for small k, it corresponds to total
variation gradient descent flow (curvature flow when λ =0).

It is worth pointing out that in the case of no noise
constraint (i.e., setting λ =0), the Huber gradient descent
flow yields a robust anisotropic diffusion [18] obtained
by replacing the diffusion functions proposed in [5] with
robust M-estimator weight functions [17], [1].

PM Equation:
An Estimation-Theoretic Perspective
In a similar spirit as above, one may proceed to justify the
PM equation from a specific statistical model. Assuming
an image u uij= ( )as a random matrix with i.i.d. elements,
the output of the Log-Cauchy filter [21] is defined as a
solution to the maximum log-likelihood estimation prob-
lem for a Cauchy distribution with dispersion c and esti-
mation parameter θ. In other words, the output of a
Log-Cauchy filter is the solution to the following robust
estimation problem [21]:

( )min log ( ) min ( ),
, ,θ θ

θ θ
i j ij ci j ijc u F u∑ ∑+ − = −2 2

where the cost function Fc coincides with the Lagrangian
function which yields the PM equation. Hence, in the
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(a) (b)

� 6. Log-Cauchy filtering: (a) impulsive noise and (b) filtered image.

The performance of a filter
clearly depends on the filter
type, the properties of
signals/images, and the
characteristics of the noise.



probabilistic setting the PM flow corresponds to the
Log-Cauchy filter. Fig. 6 illustrates the performance of
the Log-Cauchy filter in removing impulsive noise.

Information-Based Functionals
Information Theoretic Approach
In the previous section, we proposed a least favorable
distribution as a result of exercising our ignorance in de-
scribing that of an image gradient within a domain. An-
other effective way is to adopt a criterion which bounds
such a case, namely that of entropy. The maximum en-
tropy criterion is indeed an important principle in statis-
tics for modeling the prior probability p u( )of a process u
and has been used with success in numerous image pro-
cessing applications [3]. The term is often associated
with qualifying the selection of a distribution subject to
some moments constraints (e.g., mean, variance, etc.),
that is, the available information is described by way of
moments of some known functions m ur ( ) with
r s=1, ,K . Coupling the finiteness of m ur ( ), for exam-
ple, with the maximum entropy condition of the data
suggests a most random model p u( ) with the corre-
sponding moments constraints as a most adapted model
(equivalently minimizing negentropy see [19]).

min ( )log ( )

( )

( ) ( ) ,

u

r r

p u p u du

p u du

m u p u du r

∫
∫
∫

=

= =

s.t. 1

1µ , , .K s (10)

Using Lagrange’s theorem, the solution of (10) is given
by

{ }p u
Z

m urr

s
r( ) exp ( )= −

=∑1
1
λ ,

(11)

where λ r s are the Lagrange multipliers, and Z is a parti-
tion function. The resulting model p u( )given by (11) may
hence be used as a prior in a MAP estimation formulation.

Entropic Gradient Descent Flow
Motivated by the good performance of the maximum en-
tropy principle in image/signal analysis applications and
inspired by its rationale, we may naturally adapt it to de-
scribe the distribution of a gradient throughout an image.
Specifically, the large gradients should coincide with tail
events of this distribution, while the small and medium
ones representing the smooth regions, form the mass of
the distribution. Towards that end, we write

H( ) (| |) | |log| | .u H u dx u u dx= ∇ = ∇ ∇∫ ∫Ω Ω

Calling upon the Euler-Lagrange variational principle
again, the following entropic gradient descent flow results:
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u
u

u
u u ut =

+ ∇
∇

∇






 − − × +div in

1
0

log| |
| |

( ),λ Ω R ,

with homogeneous Neumann boundary conditions. In
addition, this energy spread of the gradient energy may be
related to that sought by the total variation method,
which in contrast allows for additional higher gradients.

Improved Entropic Gradient Descent Flow
To summarize and for a comparison, we show in Fig. 7 the
behavior of the variational integrands we have discussed in
this article. It can be readily shown [20] that a differentia-
ble hybrid functional between the negentropy variational
integral and the total variation may be defined as

~( )
( ) | |

( ) ( )
H

H
u

u u e
TV u e

=
∇ ≤

−




if
meas otherwise,2 Ω

yielding an improved gradient de-
scent flow. The quantity meas( )Ω
denotes the Lebesgue measure of
the image domain Ω, and
e = exp( )1 . Fig. 8 depicts the
Lagrangian corresponding to the
improved entropic flow.

Physical Basis of Diffusion
In contrast to the macroscopic
scale which reflects the large num-
ber of particles process typically
modeled by a PDE and where
large scale regularization is
ill-posed, a microscopic scale ap-
proach may also be adopted.

The physical notion of diffu-
sion pertains to the net transport
of particles across a unit surface be-
ing proportional to the gradient of
the material density normal to the
unit area. A similar interpretation
may be given to a diffusion of an
image by modeling the motion of
pixels along a Brownian (or ran-
dom walk on a discrete lattice) tra-
jectory (see Fig. 9). Invoking the
microscopic scale of diffusion by
way of modeling the particles tra-
jectories helps clarify the dynamics
which are often important to pro-
pose a creative solution.

A probabilistic view of the
above evolution equations may
hence be achieved with a careful
interpretation of an image (a
two-dimensional function) as a
density of particles (image pix-
els). Specifically, a diffusion ap-
plied to an image is tantamount to
evolving a probability density
function of a process for which a
particle trajectory (i.e., micro-
scopic scale) is captured by a sto-
chastic differential equation
(SDE) [22]. The corresponding
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(c)

(e)

(b)

(d)

(f)

� 10. Outputs of polygonal flows.



macroscopic process is modeled by a
PDE and which for the linear case is
the heat equation. This interpreta-
tion is not only intuitive, but also
provides a powerful framework for
possibly novel diffusions with
unique properties. In [22], a nonlin-
ear diffusion was developed for in-
vestigating the PM equation in this
light, and thereby resolving a long
standing problem of unknown stop-
ping time for unconstrained nonlin-
ear diffusion equations. A similar
approach was used in developing po-
lygonal flows important in preserv-
ing man-made shapes in images
[24].

In Fig. 10, the top row shows two
simple images with polygonal struc-
tures, namely rectangles and dia-
monds, corrupted by additive
Gaussian noise. The middle row shows
the results of applying the geometric
heat flow (also known as curve short-
ening flow) [23], which acts on the im-
age level curves, to the noisy images.
The geometric blurring (i.e., the
rounding effects) caused by the geo-
metric heat flow can be overcome by
using information on the orientation
of the salient image lines. It follows
that modified geometric heat flows can
be designed for specific structures, and
the corresponding results are illus-
trated in the bottom row of Fig. 10. It
is important to note that the geometric
diffusion is slowed down along impor-
tant structures (i.e the rectangles and
diamonds shapes) [24].

Experimental Results
This section presents simulation re-
sults where Huber, entropic, total variation, and im-
proved entropic gradient descent flows are applied to
enhance images corrupted by Gaussian and Laplacian
noise.

The performance of a filter clearly depends on the filter
type, the properties of signals/images, and the character-
istics of the noise. The choice of criteria by which to mea-
sure the performance of a filter presents certain difficulties
and only gives a partial picture of reality. To assess the per-
formance of the proposed denoising methods, a mean
square error (MSE) between the filtered and the original
image is evaluated and used as a quantitative measure of
performance of the proposed techniques. The regulariza-
tion parameter (or Lagrange multiplier) λ for the pro-
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� 11. Filtering results for Gaussian noise: (a) original image, (b) noisy image, (c) Huber,
(d) entropic, (e) total variation, and (f) improved entropic.

Table 1. MSE Computations for Gaussian noise.

PDE
MSE

SNR = 4.79 SNR = 3.52 SNR = 2.34

Huber 234.1499 233.7337 230.0263

Entropic 205.0146 207.1040 205.3454

TV 247.4875 263.0437 402.0660

Improved
Entropic 121.2550 137.9356 166.4490



posed gradient descent flows is cho-
sen to be proportional to sig-
nal-to-noise ratio (SNR) in all the
experiments.

To evaluate the performance of the
proposed gradient descent flows in
the presence of Gaussian noise, the
image shown in Fig. 11(a) has been
corrupted by Gaussian white noise
with SNR = 479. db. Fig. 11 displays
the results of filtering the noisy image
shown in Fig. 11(b) by Huber with
optimal k =1345. , entropic, total vari-
ation and improved entropic gradient
descent flows. Qualitatively, we ob-
serve that the proposed techniques
are able to suppress Gaussian noise
while preserving important features
in the image. The resulting MSE
computations are depicted in Table 1.

The Laplacian noise is somewhat
heavier than the Gaussian noise.
Moreover, the Laplace distribution is
similar to Huber’s least favorable dis-
tribution [17] at least in the tails. To
demonstrate the application of the
proposed gradient descent flows to
image denoising, qualitative and
quantitative comparisons are per-
formed to show a much improved
performance of these techniques. Fig.
12(b) shows a noisy image contami-
nated by Laplacian white noise with
SNR =391. db. The MSE’s results
obtained by applying the proposed
techniques to the noisy image are
shown in Table 2. Note that from
Fig. 12 it is clear that the improved
entropic gradient descent flow out-
performs the other flows in remov-
ing Laplacian noise. Comparison of
these images clearly indicates that
the improved entropic gradient de-
scent flow preserves well the image

structures while removing heavy tailed noise.
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