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Abstract. We propose a nonextensive information-theoretic mea-
sure called Jensen-Tsallis divergence, which may be defined be-
tween any arbitrary number of probability distributions, and we ana-
lyze its main theoretical properties. Using the theory of majorization,
we also derive its upper bounds performance. To gain further insight
into the robustness and the application of the Jensen-Tsallis diver-
gence measure in imaging, we provide some numerical experiments
to show the power of this entopic measure in image edge
detection. © 2006 SPIE and IS&T. �DOI: 10.1117/1.2177638�

1 Introduction
Information-theoretic divergence measures1 have been suc-
cessfully applied in many areas including but not limited to
statistical pattern recognition, neural networks, signal/
image processing, speech processing, graph theory, com-
puter vision, and optoelectronic systems.2 Kulback-Liebler
�or directed� divergence,3 one of Shannon’s entropy-based
measures, has had success in many applications including
image retrieval and indexing,4 and performance analysis of
image stochastic models.5 A generalization of the directed
divergence is the so-called �-divergence,6 which is defined
in terms of Rényi entropy.7 The �-divergence measure has
been applied in image registration and alignment as well as
a variety of other problems.6 Another entropy-based mea-
sure is called the Jensen-Shannon divergence.8,9 This dis-
similarity measure may be defined between any number of
probability distributions, and due to this generalization, it
may be used as a coherence measure between any number
of distributions.

Inspired by the successful application of the mutual in-
formation measure,10,11 and looking to address its limita-
tions in often difficult imagery, we recently proposed an
information-theoretic approach to ISAR image
registration.12 The objective of the proposed technique was
to estimate the target motion during the imaging time, and
was accomplished using a generalized Rényi’s entropy-
based similarity measure called the Jensen-Rényi
divergence.12 This divergence in fact measures the statisti-
cal dependence between an arbitrary number of consecutive
ISAR image frames, which would be maximal if the images
were geometrically aligned. In contrast to using mutual
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information,10,11 one is able through the Jensen-Rényi di-
vergence to adjust the weights, and also the exponential
order of Rényi entropy to control the measurement sensi-
tivity of the joint histogram, that is, the relative contribu-
tions of the histograms together with their order.12 This
flexibility ultimately results in better registration accuracy.
The most fundamental and appealing characteristics of this
divergence measure are its convexity and symmetry. In ad-
dition to its generality in involving an arbitrary number of
probability distributions with possibly different weights,
the Jensen-Rényi divergence enjoys appealing mathemati-
cal properties such as convexity and symmetry, affording
great flexibility in a number of applications. Recently, it has
been applied successfully to medical image segmentation13

and detection of borders between coding and noncoding
DNA regions.14

In this work, we propose a nonextensive information-
theoretic divergence called Jensen-Tsallis divergence.
Then, we investigate some of the main theoretical proper-
ties of the proposed measure as well as their implications.
In particular, we derive its upper bounds, which are very
useful for normalization purposes. Using the theory of
majorization,15 we also derive the maximum value of this
divergence measure.

The remainder of this work is organized as follows. In
the next section, we briefly recall some facts about Tsallis
entropy prior to introducing the Jensen-Tsallis divergence.
Section 3 is devoted to the theoretical properties of this
divergence measure. Subject to some conditions, its con-
vexity is subsequently established. By exploiting these
properties and using the theory of majorization, we derive
in Sec. 4 the maximum value of the Jensen-Tsallis diver-
gence. Then, we derive the maximum value of the Jensen-
Tsallis divergence for a weighted distribution. And finally,
in Sec. 5, some experimental results are provided to show
the much improved performance of the Jensen-Tsallis di-
vergence in image edge detection.

2 Jensen-Tsallis Divergence Measure
Let X= �x1 ,x2 , . . . ,xk� be a finite set with a probability dis-
tribution p= �p1 , p2 , . . . , pk�, where k�1. Shannon’s en-
tropy is defined as H�p�=−� j=1

k pj log�pj�, and it is a mea-
sure of uncertainty, dispersion, information, and

randomness. The maximum uncertainty or equivalently
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minimum information is achieved by the uniform distribu-
tion. Hence, we can think of the entropy as a measure of
uniformity of a probability distribution. Consequently,
when uncertainty is higher, it becomes more difficult to
predict the outcome of a draw from a probability distribu-
tion. A generalization of Shannon entropy is Rényi
entropy,7 given by

R��p� =
1

1 − �
log�

j=1

k

pj
�, � � �0,1� � �1, � � . �1�

Another important generalization of Shannon entropy is
Tsallis entropy,16–18 given by

H��p� =
1

1 − �
��

j=1

k

pj
� − 1� = − �

j=1

k

pj
� log��pj� , �2�

where log� is the �-logarithm function defined as log��x�
= �1−��−1�x1−�−1� for x�0. This generalized entropy was
first introduced by Havrda and Charvát in Ref. 16, who
were primarily interested in providing another measure of
entropy. Tsallis, however, appears to have been principally
responsible for investigating and popularizing the wide-
spread physics applications of this entropy, which is re-
ferred to as Tsallis entropy.17 Recently, in statistical physics
there has been a concerted research effort to explore the
properties of Tsallis entropy, leading to a statistical me-
chanics that satisfies many of the properties of the standard
theory.17 It is worth noting that for �� �0,1�, Rényi and
Tsallis entropies are both concave functions; and for ��1,
Tsallis entropy is also concave, but Rényi entropy is neither
concave nor convex. Furthermore, both entropies tend to
Shannon entropy H�p� as �→1, and are related by

H��p� =
1

1 − �
�exp	�1 − ��R��p�� − 1� .

For x ,y�0, the �-logarithm function satisfies the follow-
ing property

log��xy� = log��x� + log��y� + �� − 1�log��x�log��y� . �3�

If we consider that a physical system can be decomposed in
two statistical independent subsystems with probability dis-
tributions p and q, then using Eq. �3� it can be shown that
the joint Tsallis entropy is pseudo-additive

H��p,q� = H��p� + H��q� + �1 − ��H��p�H��q� ,

whereas the joint Shannon and Rényi entropies satisfy the
additivity property: H�p ,q�=H�p�+H�q�, and R��p ,q�
=R��p�+R��q�.

The pseudo-additivity property implies that Tsallis en-
tropy has a nonextensive property for statistical indepen-
dent systems, whereas Shannon and Rényi entropies have
the extensive property �i.e., additivity�. Furthermore, stan-
dard thermodynamics are extensive because of the short-
range nature of the interaction between subsystems of a
composite system. In other words, when a system is com-
posed of two statistically independent subsystems, then the
Boltzman-Gibbs entropy of the composite system is just the

sum of entropies of the individual systems, and hence the
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correlations between the subsystems are not accounted for.
Tsallis entropy, however, does take into account these cor-
relations due to its pseudo-additivity property. Furthermore,
many objects in nature interact through long-range interac-
tions such as gravitational or unscreened Coulomb forces.
Therefore, the property of additivity is very often violated,
and consequently the use of a nonextensive entropy is more
suitable for real-world applications. Figure 1 depicts Tsallis
entropy of a Bernoulli distribution p= �p ,1− p�, with differ-
ent values of the parameter �. As illustrated in Fig. 1, the
measure of uncertainty is at a minimum when Shannon
entropy is used, and for ��1, it decreases as the parameter
� increases. Furthermore, Tsallis entropy attains a maxi-
mum uncertainty when its exponential order � is equal to
zero.

Definition 2.1. Let p1 ,p2 , . . . ,pn be n probability distribu-
tions. The Jensen-Tsallis divergence is defined as

D�
��p1, . . . ,pn� = H���

i=1

n

�i pi� − �
i=1

n

�iH��pi� ,

where H��p� is Tsallis entropy, and �= ��1 ,�2 , . . . ,�n� is a
weight vector such that �i=1

n �i=1 and �i�0.
Using the Jensen inequality, it is easy to check that the

Jensen-Tsallis divergence is nonnegative for ��0. It is
also symmetric and vanishes if and only if the probability
distributions p1 ,p2 , . . . ,pn are equal for all ��0. Note that
the Jensen-Shannon divergence8 is a limiting case of the
Jensen-Tsallis divergence when �→1.

Unlike other entropy-based divergence measures such as
the Kullback-Leibler divergence, the Jensen-Tsallis diver-
gence has the advantage of being symmetric and generaliz-
able to any arbitrary number of probability distributions or
datasets, with a possibility of assigning weights to these
distributions. Figure 2 shows 3-D representations and con-
tour plots of the Jensen-Tsallis divergence with equal
weights between two Bernoulli distributions p= �p ,1− p�

Fig. 1 Tsallis entropy H��p� of a Bernoulli distribution p= �p ,1−p�
for different values of �.
and q= �q ,1−q� for �� �0,1� and also for �� �1, � �.
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3 Properties of the Jensen-Tsallis Divergence
The following result establishes the convexity of the
Jensen-Tsallis divergence of a set of probability
distributions.18

Proposition 1. For �� 	1,2�, the Jensen-Tsallis diver-
gence D�

� is a convex function of p1 ,p2 , . . . ,pn.
In the sequel, we restrict �� 	1,2� unless specified oth-

erwise. In addition to its convexity property, the Jensen-
Tsallis divergence is an adapted measure of disparity
among n probability distributions as shown in the next re-
sult.

Proposition 2. The Jensen-Tsallis divergence D�
� achieves

its maximum value when p1 ,p2 , . . . ,pn are degenerate dis-
tributions, that is, pi= ��ij�, where �ij =1 if i= j and 0 oth-
erwise.

Proof. The domain of the Jensen-Tsallis divergence is a
convex polytope, in which the vertices are degenerate prob-

Fig. 2 Surface/contour plots of Jensen-Tsallis
= �p ,1−p� and q= �q ,1−q�, and with equal we
=1.2.
ability distributions. That is, the maximum value of the
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Jensen-Tsallis divergence occurs at one of the extreme
points that are the degenerate distributions.

4 Performance Bounds of the Jensen-Tsallis
Divergence

4.1 Maximum Value of the Jensen-Tsallis
Divergence

Since the Jensen-Tsallis divergence is a convex function of
p1 , . . . ,pn, it achieves its maximum value when the Tsallis
entropy function of the �-weighted average of degenerate
probability distributions achieves its maximum value as
well. Assigning weights �i to the degenerate distributions
�1 ,�2 , . . . ,�n, where �i= ��ij�1�j�k, the following upper
bound

D�
��p1, . . . ,pn� � H���

i=1

n

�i�i� , �4�

which easily falls out of the Jensen-Tsallis divergence, may

gence between two Bernoulli distributions p
1=�2=1/2. First row: �=0.3. Second row: �
diver
ights �
be used as a starting point. Without loss of generality, con-
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sider the Jensen-Tsallis divergence with equal weights �i
=1/n for all i, and denote it simply by D�, to write

D��p1, . . . ,pn� � H�
�
i=1

n

��i/n��
=

1

1 − �
��

j=1

k 
�
i=1

n

��ij/n���

− 1

=

1

1 − �

�

j=1

k

�aj/n�� − 1�
=

1

1 − �
� 1

n��
j=1

k

aj
� − 1�

=
1

�1 − ��n��
j=1

k

aj
� −

1

1 − �

=
H��a�

n� +
1

�1 − ��n� −
1

1 − �

=
H��a�

n� +
1 − n�

�1 − ��n� , �5�

where

a = �a1,a2, . . . ,ak� such that aj = �
i=1

n

�ij . �6�

Since �1, �2,¼,�n are degenerate distributions, it follows
that � j=1

k aj =n. From Eq. �5�, it is clear that the maximum
value of D� is also a maximum value of H��a�.

To maximize H��a�, the concept of majorization will be
used.15 Let �x	1� ,x	2� , . . . ,x	k�� denote the nonincreasing ar-
rangement of the components of a vector x
= �x1 ,x2 , . . . ,xk�.

Definition 4.1. Let a and b�Nk. a is said to be majorized
by b, written a�b, if

�� j=1

k
a	j� = � j=1

k
b	j�

� j=1

�
a	j� � � j=1

�
b	j�, l = 1,2, . . . ,k − 1.

It can be easily shown that H� is a Schur-concave function,
and therefore H��a��H��b� whenever a�b.

The following result establishes the maximum value of
the Jensen-Tsallis divergence.

Proposition 3. Let p1 , . . . ,pn be n probability distribu-
tions. If n�r�mod k�, 0�r	k, then

D��p1, . . . ,pn� �
C

� +
1 − �qk + r��

� , �7�

�qk + r� �1 − ���qk + r�
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where

C = − r�q + 1��log��q + 1� − �k − r�q�log��q�, and

q = �n − r�/k .

Proof. It is clear that the vector

is majorized by the vector a defined in Eq. �6�. Therefore,
H��a��H��q�. This completes the proof using Eq. �5�.

Corollary 1. If n�0 (mod k), then

D��p1, . . . ,pn� � − k1−� log��q� +
1 − q�k�

�1 − ��q�k� ,

where k is the number of components of each probability
distribution.

4.2 Jensen-Tsallis Divergence and Mixture Models
Mixture probability distributions provide a multimodal dis-
tribution that model the data with greater flexibility and
effectiveness, and are used extensively in signal/image pro-
cessing and computer vision. It is therefore of great interest
to evaluate the Jensen-Tsallis divergence between two
probability distributions p and q with weights �
 ,1−
�,
where 
� 	0,1�. If we denote by r the weighted probability
distribution defined by

r = �1 − 
/2�p + �
/2�q ,

then the Jensen-Tsallis divergence can be expressed as a
function of 
 as follows

D��
� = H��r� −
H�	�1 − 
�p + 
q� + H��p�

2
.

Proposition 4. The Jensen-Tsallis divergence D��
�
achieves its maximum value when 
=1.

Proof. Let p= �pi�i=1
k and q= �qi�i=1

k be two distinct prob-
ability distributions. The Jensen-Tsallis divergence can then
be written as

D��
� =
1

1 − �
��

i=1

k 
pi +



2
�qi − pi���

− 1

−

1

2�1 − ����
i=1

k

	pi + 
�qi − pi��� − 1

−

1

2�1 − ����
i=1

k

pi
� − 1� .

Using calculus, we can show that 
=0 is a critical point of

the Jensen-Tsallis divergence D��
�, i.e., the first derivative
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D���
� vanishes at 
=0. Furthermore, it can be verified that
the second derivative D���
� is always positive. Hence, the
first derivative D���
� is an increasing function of 
, and
therefore D���
��0 for all 
� 	0,1�. Consequently, D��
�
is an increasing function of 
. This concludes the proof.

Figure 3 depicts the Jensen-Tsallis divergence as a func-
tion of 
 when p= �.35, .12, .53�, q= �.25, .34, .41�, and �
=1.2.

5 Application to Image Edge Detection

5.1 Description of the Proposed Method
Edge detection is a fundamental problem in image
processing.9 The use of the Jensen-Tsallis divergence in
image edge detection can be formulated as follows. An im-
age sliding window W is split into two equal and adjacent
subwindows W1 and W2. For each position of the sliding
window, the histograms p1 and p2 of the subwindows W1
and W2 are computed, as well as the Jensen-Tsallis diver-
gence between p1 and p2. We repeat this procedure for sev-
eral orientations of the sliding window to ensure detection
in all directions, and we then select the maximum diver-
gence at each pixel of a given image. Consequently, we
construct a divergence mapping matrix where the largest
values in linear neighborhoods are identified. These largest
pixel values correspond to edge points. It is worth noting
that the window W can be split into any finite number of
equal and adjacent subwindows, since the Jensen-Tsallis
divergence is defined between any number of probability
distributions. In the simulations, we consider without loss
of generality the Jensen-Tsallis divergence between the his-
tograms of two equal and adjacent subwindows that form
the entire sliding window. To illustrate the behavior of the
Jensen-Tsallis divergence, consider an image that consists
of two regions A and B with respective histograms pa and
pb, the former histogram on the left and the latter on the
right, with a vertical boundary between them as illustrated
in Fig. 4. The window W slides from left to right, so that it
passes gradually from region A to region B. Under a hy-
pothesis of statistical homogeneity, the histograms p1 and

Fig. 3 Jensen-Tsallis divergence as a function of 
.
p2 are constant and are equal when W is located in the same
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region, and hence the Jensen-Tsallis divergence between p1
and p2 vanishes. If the sliding window is located over an
edge, one of the two subwindows will have some of its
parts in the two regions A and B. Without loss of generality,
we consider a subwindow W2. Again, under the hypothesis
of homogeneity, the parts of W2 located in regions A and B
have partial histograms pa and pb, with weights propor-
tional to the sizes of the subregions A�W2 and B�W2,
respectively. More precisely, if 
� 	0,1� represents the
fraction of W2 included in region B, then p2= �1−
�pa

+
pb, giving rise, consequently, to a histogram that varies
with respect to the position of W. Since the subwindow W1
is located in region A, then it follows that p1=pa and there-
fore p= �1−
 /2�pa+ �
 /2�pb. The corresponding Jensen-
Tsallis divergence can then be expressed as a function of 


D��
� = H��p� −
H�	�1 − 
�pa + 
pb� + H��pa�

2
,

where p= �1−
 /2�pa+ �
 /2�pb, and �� 	1,2�.
It is worth noting that according to Proposition 4, the

maximum value of D��
� is achieved when 
=1.

5.2 Experimental Results
We conducted a number of experiments using the proposed
information-theoretic measure in image edge detection. The
performance of the proposed algorithm using the Jensen-
Tsallis divergence for various values of � is illustrated in
Fig. 5. The results clearly indicate that our proposed signa-
ture performs better when the Tsallis entropic exponent �
belongs to the interval 	1, 2�, which validates the theoreti-
cal properties given in the previous sections. This better
performance is in fact consistent with a variety of images
used for experimentation. In particular, we performed addi-
tional simulations on images with more complicated struc-
tures, including textured images. These images are shown
in Fig. 6 along with their corresponding histograms. The
image edge detection results depicted in Figs. 7–10 show
clearly that the proposed approach outperforms the Canny
edge detector and the Jensen-Shannon divergence method.
In all the numerical examples presented in this section, we

Fig. 4 Vertical edge between two image regions A and B.
estimated an optimal threshold based on the histogram of
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Fig. 5 Edge detection results using Jensen-Tsallis divergence for
various values of �.
Fig. 6 Histograms of the test image
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Fig. 7 Image edge detection results. Clockwise from upper left:
original image, proposed technique with �=1.5, Jensen-Shannon
method, and Canny edge detector.
s used for experimentation.

Jan–Mar 2006/Vol. 15(1)6



Ben Hamza: Nonextensive information-theoretic measure¼
each image used for experimentation. To generate the edge
map using the proposed approach, the algorithm takes
about 45 sec on a Pentium 4 mobile processor �1.6 GHz,
1 GB of RAM� for a 512�512 image, but it is slower
compared to the Canny edge detector. We also used four
sliding window orientations: horizontal, vertical, and both
diagonals.

On the other hand, our proposed technique overcomes
the limitations of conventional gradient-based methods, in-
cluding the Canny edge detector, which requires a smooth-
ing operation to alleviate the effect of high spatial fre-
quency in estimating the gradient. This smoothing step,
however, tends to distort the edges.

6 Conclusions
We propose a nonextensive information-theoretic diver-
gence called Jensen-Tsallis divergence, and we apply it to

Fig. 8 Image edge detection results. Clockwise from upper left:
original image, proposed technique with �=1.5, Jensen-Shannon
method, and Canny edge detector.

Fig. 9 Image edge detection results. Clockwise from upper left:
original image, proposed technique with �=1.5, Jensen-Shannon

method, and Canny edge detector.
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image edge detection. We consider the application to image
segmentation a preliminary investigation. An important is-
sue for further research in this direction is development of
robust edge linking algorithms to be included in conjunc-
tion with the image edge detection based on the Jensen-
Tsallis divergence measure. The proposed information-
theoretic measure is very promising due to its simplicity
and its potential applications, which may include medical
image registration, clustering, classification, indexing, and
retrieval. We are currently applying the Jensen-Tsallis di-
vergence to register geographical digital elevation images.
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