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We present a bandlet-based framework for video inpainting in order to complete missing parts of a video
sequence. The framework applies spatio-temporal geometric flows extracted by bandlets to reconstruct
the missing data. First, a priority-based exemplar scheme enhanced by a bandlet-based patch fusion gen-
erates a preliminary inpainting result. Then, the inpainting task is completed by a 3D volume regulariza-
tion algorithm which takes advantage of bandlet bases in exploiting the anisotropic regularities. The
method does not need extra processes in order to satisfy visual consistency. The experimental results
demonstrate the effectiveness of our proposed video completion technique.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Missing parts in still images and video sequences may be caused
by damages or deliberately undesired object removal from the
images or the video frames. The image/video inpainting problem
has attracted a great attention in the past few years due to its pow-
erful ability in fixing and restoring damaged saptial/spatio-tempo-
ral data. In this paper, we focus on video inpainting as a technique
to recover missing data in some specified regions of videos. Due to
the large dimensionality of video data coupled with its saptio-tem-
poral consistency which must be preserved, video inpainting can be
considered as a challenging task even though large amount of data
can be highly desirable to fill-in the missing regions.

One can refer to [1] for detailed mathematical interpolation
models specialized in image inpainting. The pioneering work in
digital inpainting [2] employs non-linear partial differential equa-
tions (PDEs) as an interpolation platform to perform image and vi-
deo frame inpainting. The concepts of PDEs and interpolation in
inpainting have been employed in many techniques, including
[3] which derives a third-order PDE based on Taylor expansion to
propagate the border isophotes to the missing regions. An explicit
extension of the technique introduced in [2] is presented in [4]
which applies Navier-Stoke equations. This approach applies ideas
from classical fluid dynamics to continuously propagate isophote
lines of the image from the exterior into the inpainting zone. As an-
other technique, the proposed video inpainting scheme in [5] ben-
efits from discrete p-Laplacian regularization on a weighted graph.
Despite their promising results, the PDE and interpolation based
methods perform frame-by-frame completion that neglects the
continuity across consecutive frames unless PDEs are adapted in
a 3D scheme [6]. Moreover, these methods are appropriate only
for narrow and small missing regions.

The concept of priority in image inpainting introduced in [7] has
been adopted in various video inpainting approaches. In these
techniques, a correct order of filling-in process leads to a high per-
formance in the completion task. Important properties, such as
availability, trackability and motion vectors of the pixels, and geo-
metric properties contribute to the calculation of the priority of the
missing regions to be filled-in first. For instance, the method intro-
duced in [8] performs moving object segmentation to separate the
background and foreground of the video. Hence, the search space is
reduced for completion of partially occluded moving objects [9]. In
this method a motion confidence value is used to find the priority
of the filling-in area in order to maintain the temporal consistency
in the foreground completion task. For the background completion
step, the image inpainting technique introduced in [7] is adopted.
Modifications based on analysis of continuities on stationary and
non-stationary videos are carried out to find the best priority in
[10]. Then, in [11] the technique is further improved for various
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camera motions by keeping the track of similar regions. The prior-
ity is determined based on the trackability of the pixels in the
method introduced in [12]. The highest priority fragment around
the boundary of the missing region is completed using a graph-
cut fragment updating instead of copying just a similar texture
from the undamaged region. In [13] a priority-based method con-
siders the video completion task as a global search optimization in
order to find the best match. The whole video is considered as a
volume and a multi-scale scheme is employed to reduce the com-
putation time. Motion layer segmentation is the key step in the
method proposed in [14]. Each separate layer is completed using
the image inpainting method, and then all the layers are combined
in order to restore the final video. A two phase sampling and align-
ment video inpainting technique is introduced in [15]. The method
predicts motion data in the foreground, then missing moving fore-
ground pixels are reconstructed by spatio-temporal alignment of
the sampled data. Then, the background inpainting is done by 3D
tensor voting as an extension of the still image repairing technique
introduced in [16]. The methods in [17,18] proposed to inpaint vid-
eos by transferring sampled motion fields from the available parts
of the video. The latter method tracks patches containing missing
regions in the adjacent frames by employing a global motion
estimation scheme. In [19,20] 3D patch-based probability models
with potential applications in video inpainting are introduced.
The probability model introduced in [19] is an alternative for mo-
tion models such as optical-flow. A sparsity-based prior for a var-
iational Bayesian model is defined for video sequences. The
damaged portion of a video can be treated in this Bayesian frame-
work as an inpainting task. A learning strategy in [20] on the vi-
deo’s 3D space–time patches leads to video epitomes. Epitomes
are viewed as a set of 3D arrays of probability distributions applied
for video reconstruction. Although the preliminary results of video
inpainting using these methods are promising, they need more
improvements to be able to deal with large missing portions.

Maintaining the visual consistency along with handling the
large dimensionality of videos in the inpainting process is an
important fact. No wonder we see complicated steps in the state-
of-the-art techniques, such as segmentation of different motion
layers or objects, foreground/background separation, tracking,
optical-flow mosaics computation and so onto cope with spatio-
temporal consistency. In this paper we propose an approach that
takes advantage of the bandlets sparse representation to recon-
struct missing data visually pleasingly. Image sparse representa-
tion methods were introduced for spatial inpainting problems
[21–23]. In such methods, missing pixels are inferred by adaptively
updating the sparse representation (e.g. wavelets, DCT, etc).
Although these approaches are very challenging to be adapted to
video completion that deals with unsound and damaged estimated
motion vectors, they yield satisfactory results in the case of image
inpainting. Apparently, employing an efficient sparse representa-
tion can enhance the inpainting results. The main motivation
behind employing the bandlet domain is due to its effective capa-
bility in capturing the geometric properties of an image as an effi-
cient sparse representation [24]. The captured geometric features
are used in our technique to firstly blend the results of patch
matching in order to keep the visual consistency. Secondly, the
overall bandlet geometry of the frames can be a good prior if we
consider the video inpainting as an ill-posed linear problem. The
obtained overall geometry is used for sparse regularization to
reconstruct the video. In our method, making distinction between
static camera videos and sequences containing camera motions is
not needed. Besides, there is no segmentation, tracking or complex
motion estimation as applied in many of the previously discussed
methods to facilitate the inpainting process. This is the main differ-
ence with our previous work [25] that relies on an accurate back-
ground/foreground segmentation in order to treat videos captured
by static and moving cameras in different fashions by patch match-
ing rather than bandlet-based patch fusion and 3D regularization.

The rest of this paper is organized as follows. Section 2 describes
the idea behind the bandlet transform capability in reconstructing
missing regions. Then, the proposed bandlet-based video inpainting
method is presented in Section 3. In Section 4, the experimental re-
sults are provided. Finally, Section 5 concludes this paper.

2. Using bandlets in inpainting

The bandlet framework can achieve an effective geometric rep-
resentation of texture images. It is essential in sparse regulariza-
tion and spatial or spatio-temporal data reconstruction for digital
inpainting purposes.

Although geometric regularity along image edges is an aniso-
tropic regularity, conventional wavelet bases can only exploit the
isotropic regularity on square domains. An image can be differen-
tiable in the direction of the tangent of an edge curve even though
the image may be discontinuous across the curve. Bandlet trans-
form [26] exploits such anisotropic regularity. Bandlet bases con-
struct orthogonal vectors elongated in the direction of the
maximum regularity of a function. The earlier bandlet bases
[27,28] have been improved by a multi-scale geometry defined
over wavelet coefficients [29,30]. Indeed, bandlets are anisotropic
wavelets warped along the geometric flow.

Considering the Alpert transform as a polynomial wavelet trans-
form adapted to an irregular sampling grid, one can obtain vectors
that have vanishing moments on this irregular sampling grid. This
is the principal need to approximate warped wavelet coefficients.
Only a few vectors of Alpert basis can efficiently approximate a vec-
tor corresponding to a function with anisotropic regularity. This
bandletization using wavelet coefficients is defined as

bk
j;l;nðxÞ ¼

X
p

al;n½p�wk
j;pðxÞ; ð1Þ

where j and k represent wavelet scale and orientation, respectively.
The al;n½p� are the coefficients of the Alpert transform where l is the
scale and n is the index of the Alpert vector. In essence, al;n½p� are the

coordinates of the bandlet function bk
j;l;n. These coefficients strictly

depend on the local geometric flow. Bandlet coefficient are gener-

ated by inner products f ; bk
j;l;n

D E
of the image f with the bandlet

functions bk
j;l;n. The set of wavelet coefficients are segmented in

squares S for polynomial flow approximation of the geometry. For

each scale 2j and orientation k, the segmentation is carried out
using a recursive subdivision in dyadic squares. A square S should
be further subdivided into four sub-squares, if there is still a geo-
metric directional regularity in the square. Apparently, only for
the edge squares, the adaptive flow is needed to be computed to ob-
tain the bandlet bases. The geometry of an image evolves through

scales. Therefore, for each scale 2j of the orientation k a different

geometry Ck
j is chosen. The set of all geometries fCk

j g represents
the overall geometry of an image. Each member of this set is in fact
a geometry value associated to one segmentation square S. For de-
tails about bandlets the reader is referred to [26].

The image inpainting problem may be formulated as follows. An
image I contains a set of missing pixels indicated by X and a source
(U ¼ I nX) area. The goal is finding an image �I such that�IðxÞ is equal
to IðxÞ for the pixels that belong to U, i.e., �IðxÞ ¼ IðxÞ 8x R X while
the overall geometry of �I has the same geometrical regularity as
that of I in U. In the presence of additive noise x we have the image
f with missing pixels as f ¼ hI þx where

hIðxÞ ¼
0 if x 2 X

IðxÞ if x 2 U:

�
ð2Þ



A. Mosleh et al. / J. Vis. Commun. Image R. 25 (2014) 855–863 857
A sparsity-based regularization solution for the inverse problem
f ¼ hI þx was proposed in [31] as

�I ¼ arg ming
1
2
kf � hgk2 þ k

X
k

jhg;wkij: ð3Þ

This minimization has been used with the orthogonal wavelet bases
wk for denoising [31] where the value of k is chosen based on the
level of noise and can be set to 1 for a noise-free image. Considering
the bandlets as anisotropic wavelets warped along the geometry
flow, we substitute the conventional wavelet bases of Eq. (3) with
the bandlet bases introduced in Eq. (1) as

�I ¼ arg ming
1
2
kf � hgk2 þ k

X
j;l;n;k

g; bC
k;j;l;n

D E��� ���: ð4Þ

where similar to Eq. (1), k and j are the number of orientations and
scales of the wavelets, and l; n are the sampling grid parameters in
the Alpert transform employed in the bandlet transform. As discussed
in the next section, our video inpainting scheme is subject to recon-
structing the missing part of the frames generated due to occlusions
and/or undesired object removal. Therefore, we avoid the noise level
in the above equations (i.e., x ¼ 0) and rewrite Eq. (4) as

�I ¼ arg ming

X
j;l;n;k

g; bC
k;j;l;n

D E��� ���: ð5Þ

This equation is indeed minimizing the ‘1 norm of the bandlet im-
age representation by which we achieve a solution for the spatial
inpainting problem. In the next section, we utilize this idea to de-
velop a 3D video volume regularization algorithm as well as the
effectiveness of bandlets for blending the matching results of a best
match search approach in the video completion task.

3. Spatio-temporal video completion

An important task of video completion is to fill in large missing
regions produced by object occlusion or undesired object removal.
The large missing region completion cannot be carried out well by
simply applying PDE, regularization, or other interpolation based
methods. On the other hand, in the exemplar-based methods, find-
ing a reliable area around the missing parts and also finding a
proper match in the source frames toward the end of the process
reduces the accuracy of the results. Therefore, a video inpainting
technique is proposed here that benefits from both an exemplar-
based patch matching and a sparsity regularization scheme. The
process starts looking for best candidates that match a patch Wp

on the border of the missing region. The N best retained matching
patches in the whole sequence (Fig. 1) are then fused and the
resulting data replaces the missing part of the border patch. In case
there is no proper match for the border patch, i.e., N ¼ 0, the border
patch is kept unchanged for a further process by the 3D video vol-
ume regularization to generate the final inpainting result.
Fig. 1. Fusion strategy of patch matching results in a 3D volume video. Wp lies on
the missing region border. �W1

p ; . . . ; �WN
p are the N most similar patches to Wp and W00p

is the patch fusion result.
A 3D patch centered at p on the border @X of the source U and
missing X regions is denoted by Wp as depicted by red in Fig. 1. We
search for the best match of Wp in the U of the whole frames. The
best match �Wp is found using sum of squared differences (SSD)

�Wp ¼ arg min
Wq2U

SSDðWq;WpÞ; ð6Þ

SSDðWq;WpÞ ¼
X
ðx;y;tÞ
kWpðx; y; tÞ �Wqðx; y; tÞk2

; ð7Þ

where for each RGB pixel located at ðx; yÞ in the source region (U) of
frame t we have a vector containing 5 elements ðR;G;B; u;vÞ. Con-
sidering ðYx;Yy;YtÞ as spatial and temporal derivatives of gray-scale
video Y ;u ¼ Yt=Yx and v ¼ Yt=Yy represent instantaneous motions
in x and y directions respectively [13]. The motion information is in-
volved in the space–time patch matching in order to preserve the
motion consistency.

Unlike many of the exemplar-based methods, we do not simply
replace the missing portion X of Wp by the corresponding pixels in
�Wp. Instead, the best N matches Bp ¼ �W1

p;
�W2

p;
�W3

p; . . . ; �WN
p

n o
are fused

using the bandlet transform as described in Section 3.1, then the fus-
ing result pixels are copied into the missing part X of Wp. The idea be-
hind using several top similar patches instead of a single patch in
image inpainting was presented in [32,23] by using nonlocal means
and a linear blending of the patches spatially, respectively. The reason
for employing a fusion framework in our video completion scheme
stems from the fact that, for other border patches W�p spatio-tempo-
rally near Wp that have many pixels in common with Wp the resulting
set B�p would have many matching patches in common with Bp of Wp.
Therefore, their results of fusion can be very similar. Consequently,
the results of inpainting for spatio-temporally close regions become
reasonably consistent both spatially and temporally.

The value of N is determined using a threshold value s. If SSD of
a patch �Wp and Wp is lower than s, B saves �Wp. The value of s should
not be too large to filter out many patches and at the same time it
should not be too small to keep so many of them. Based on our
observations we choose 0:85 as a good value for this threshold.
This value may vary depending on the patch size. Also, N should
not be too large to avoid unnecessary fusions. In our experiments
N is limited to N 6 10. It is worth noting that the number obtained
for N indicates the degree of reliability of the best matching
patches found for Wp. A lower value of N means Wp is not fre-
quently repeated in the entire frames and consequently the ob-
tained matches are not quite reliable for Wp. This case happens
frequently in inpainting of scenes captured by a static camera
where the goal is reconstructing the missing region after a station-
ary object removal. Therefore, we leave a border patch Wp intact
once the length N of its Bp set is 0 (i.e., 8Wq 2 U; SSDðWp;WqÞ > s).

The priority of filling-in process is very important in the exem-
plar patch matching. We give the highest priority to a border patch
Wp that contains more reliable pixels, lies on the continuation of
textures and also lies on the moving regions of the video compar-
ing to other patches. The reliability of pixels in the border patch is
measured by the confidence value given by

CðpÞ ¼
X

q2Wp\U
CðqÞ

0
@

1
A=jWpj: ð8Þ

This parameter is adopted from [7] for the 3D patches, where jWpj is
the volume size of Wp. In this equation and the equations that ap-
pear hereafter, Wp \U indicates pixels of the border patch Wp that
lie in the source pixels U of the video. In the initialization, the con-
fidence value is set to 1 for the pixels in the source region and 0 for
the pixels in the missing area, i.e. CðpÞ ¼ 08p 2 X and
CðpÞ ¼ 18p 2 U. A patch centered at p on the border @X with already
more filled-in pixels has a larger confidence than those of other



Fig. 3. Fusion result for 3 different source images of Barbara. (a)–(c) Source images.
(d) Resulting fused image.
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patches. The number of edge pixels can be used to measure the
structural information contained in the patch. This is obtained by
means of the already computed spatial derivatives Yx and Yy. Sup-
pose �Yx and �Yy represent 0-1 maps of thresholded horizontal and
vertical derivatives of the entire frames, respectively. Instead of
manually defining threshold values to generate these two binary
maps, Otsu’s method can be used to find a proper threshold. Then,
the structural data value of Wp is defined as

DðpÞ ¼
X

q2Wp\U

�YxðqÞ _ �YyðqÞ

0
@

1
A=jWpj: ð9Þ

Similarly, �Yt that contains 0-1 maps of temporal derivatives is used
to determine the motion data value of a border patch,

MðpÞ ¼
X

q2Wp\U

�YtðqÞ

0
@

1
A=jWpj: ð10Þ

A high value of D means that the patch is placed on the continuation
of a highly textured region. Also, a large value of M indicates a large
number of moving pixels with large motion vectors in the border
patch. The priority of a border patch is obtained as follows

PðpÞ ¼ CðpÞ � DðpÞ �MðpÞ: ð11Þ

A border patch Wp with the highest PðpÞ is chosen from the whole
frames to be filled-in first. Once the patch matching is carried out,
the confidence value is updated as �CðpÞ ¼ aCðpÞ where 0 < a < 1.
The derivative matrices �Yx; �Yy and �Yt are also updated by copying
the derivative values of �Wp into the corresponding locations in
Wp \X. Then the process is repeated for a new highest priority bor-
der patch until there is no border patch unprocessed.

The resulting video sequence containing unfixed regions (i.e.
those with unreliable matches) are passed to the sparsity regulariza-
tion inpainting stage for further processes as discussed in Section 3.2.

3.1. Patch fusion

Multi-scale decomposition (MSD) based image fusion schemes,
especially wavelet-based ones, have a great performance com-
pared to regular methods [33]. However, as discussed in Section 2,
due to its capability to capture more complicated geometric flows
and structural information in images, the bandlet transform is
much more appropriate than wavelet transform for analysis and
synthesis of edges and textures [34]. Hence, we design a fusion
scheme based on bandlets to blend the best patch search results.

Fig. 2 shows the proposed image fusion scheme. Consider I1 to
IM as M images of a single scene captured from M different sources
(e.g., cameras, sensors, etc.), the bandlet transform is applied on
each Ii to obtain the geometric features Ci in the form of real num-
bers and bandlet coefficients C of each image. Now we need to gen-
erate a fused set of geometry flows and bandlet coefficients.

The fused geometry flow set CF is computed as follows

CF ¼
XM

i¼1

jiCi

 !, XM

i¼1

ji

 !
; ð12Þ
Fig. 2. Bandlet-based fusion framework for M source images.
where ji is 0 if mean li of the values of Ci is lower than a threshold
r. The value of r is chosen as the mean of all l1;l2; . . . ;lM . Indeed,
this thresholding leads to applying only the highly structurally sim-
ilar source images to produce the fused geometry. The most similar
C of the source images are selected and their mean value generates
CF . The fused bandlet coefficients’ set is calculated as

CF ¼
XM

i¼1

Ci

 !
=M: ð13Þ

It is worth mentioning that the bandlet coefficients C and the geo-
metric features C are produced for l; n; j; k scales and orientations
of Eq. (1).

The inverse bandlet transform is performed on CF and CF in or-
der to generate the fused image from the M source images. Fig. 3(d)
shows an example of the bandlet based fusion result for 3 source
images, where Barbara’s image is manually blurred and the result-
ing images are considered as the source images depicted in
Fig. 3(a)–(c).

Now consider the set Bp of the N best matching patches ob-
tained for Wp in the proposed video inpainting technique in Sec-
tion 3. Each �Wi

p of Bp has a size of X � Y � T. The corresponding
spatial planes of patches in Bp are fused using the aforementioned
fusion method to produce the resulting inpainting patch W00p, i.e.,

W00pðt1Þ ¼ fuse W01p ðt1Þ;W02p ðt1Þ; . . . ;W0Np ðt1Þ
� �

..

.

W00pðtiÞ ¼ fuse W01p ðtiÞ;W02p ðtiÞ; . . . ;W0Np ðtiÞ
� �

..

.

W00pðtTÞ ¼ fuse W01p ðtTÞ;W02p ðtTÞ; . . . ;W0Np ðtTÞ
� �

ð14Þ

where WpðtiÞ represents all the X � Y pixels at time index
tið1 6 ti 6 TÞ in the patch Wp. This fusion scheme takes more struc-
tural information into account than simply copying the source (U)
pixels of the best match �W1

p to produce the final inpainting result.
Besides, as mentioned earlier such patch fusion strategy followed
the introduced search process, helps gain more visual consistency.

3.2. Spatio-temporal regularization using bandlets

Algorithm 1. Bandlet-based 3D video volume inpainting

1: i ¼ 0 and Vi¼0 ¼ y

2: while jV ðiþ1Þ � V ðiÞj > e
3: Find �Vi using Eq. (16)
4: for z ¼ 1! X � Y � T do [Update the estimate;

Viþ1 ¼ TBð�ViÞ]
5: Bandlet transform on �Vi

z

6: Soft-thresholding Eq. (17) on �Vi
z bandlet coefficients

7: Generate Viþ1
z by inverse bandlet transform

8: end for
9: i iþ 1
10: end while
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As a result of the N best patch matching strategy, the unreliable
border patches (i.e. those that less likely have a match in the whole
Fig. 4. A damaged video volume from different views. (a) X–Y planes view. (b) T–Y
planes view.

Fig. 5. Various iteration results of Algorithm 1 on the 11th frame of the video of
Fig. 4. For a better illustration the images are cropped from left, right and bottom.

Fig. 6. The 2-stage proposed video completion method shown for a sample frame.
(a) Original frame. (b) Stage 1 result: Exemplar-based patch fusion step (Sec-
tion 3.1). (c) Stage 2 result: bandlet-based regularization on the result of stage 1
(Section 3.2).
sequence or those less frequently are repeated in the frames) are
recognized by the inpainting system. These kinds of patches re-
main unchanged in the first inpainting stage and are passed to
the 3D regularization procedure introduced in the following
paragraphs.

Considering the 2D minimization problem introduced in Eq. (5)
as an exhaustive optimization, we adopt the soft-theresholding
algorithm which has been used as a solution for multi-scale wave-
let representation inverse problems such as denoising [35].

The overall geometry is supposed to be fixed for an estimate of
the original video. The soft-theresholding function is carried out
iteratively for the minimization of Eq. (5) for each plane in the
3D volume video. At each iteration, the estimate video Viþ1 is
updated as follows

Viþ1 ¼ TBð�ViÞ; ð15Þ

�Vi ¼ ViðxÞ if x 2 X

yðxÞ if x 2 U:

(
ð16Þ

Pixels of the original video volume are represented by yðxÞ in the
above equation. TB denotes the soft-thresholding function per-
formed in the bandlet domain for each existing plane in �Vi defined
as

TBðfzÞ ¼
X
j;l;n;k

tkðhfz; bj;l;n;kiÞ:bj;l;n;k; ð17Þ

where fz denotes each existing plane in the video volume. For a 3D
volume consisting of T frames of X � Y pixels, we consider T planes
along the time, X planes along horizontal and Y planes along vertical
directions. tkðxÞ ¼max 0;1� k

jxj

� �
x and the value of k goes to 0 as

the iteration number increases. bj;l;n;k represents the bandlet func-
tions of various scales and orientations as in Eq. (1).

Algorithm 1 presents the details of the minimization procedure
to inpaint a video volume. This algorithm stops once the difference
between two consecutive estimates is less than a small value e.
One may think of applying this algorithm on each frame indepen-
dently as the inpainting task. Obviously, in a video sequence the
flow of motions and trajectories is very important and needs to
be considered in the inpainting task to preserve the consistency.
Fig. 4(a) displays the resulting video of the exemplar-based repair
stage done on the original video of Fig. 7(c). This video contains
black holes representing unfixed patches. Rotating the video vol-
ume around the Y axis, one can see the video volume T–Y planes.
As seen for example in the T–Y plane of X ¼ 145 in Fig. 4(b), pixels
of the missing region do not only lie on the spatial geometric flows
but also those along the time direction. As a consequence, in each
iteration of Algorithm 1, the regularization is carried out on planes
X–Y ; T–X and T–Y denoted by �Vi

z. Due to limitations of a 3D illus-
tration, the inpainting result for only a single frame is shown in
Fig. 5.

A. Mosleh et al. / J. Vis. Comm
4. Experimental results

Several video sequences, including some that are provided in
[11,9] are used to evaluate the proposed video inpainting method.1

This set of videos contains sequences captured by both static and
moving camera. The resolution of each video sequence is
320� 240. The intermediate results of the proposed two-stage video
completion technique performed on a sample video sequence for one
1 For sample video inpainting results visit: http://users.encs.concordia.ca/mos_ali/
VideoInpainting/JVCIR.htm.
of its frames are presented in Fig. 6. In the implementation, the fol-
lowing settings are used:

� The size of each patch is 9� 9� 5 in the patch matching
process.
� a is set to 0.5 for confidence update.
� s is set to 0.85 to choose the N top matching patches.
� Gray-scale values of the RGB frames are found by ðRþ Gþ BÞ=3

whenever needed like instantaneous motion calculation.
� Considering a border patch Wp centered at p ¼ ðx; y; tÞ, the

search range is reduced to x� 50 < x < xþ 50; y� 50
< y < yþ 50 and t � 7 < t < t þ 7 in the video sequence in
order to avoid unnecessary search. This does not negatively

http://users.encs.concordia.ca/mos_ali/VideoInpainting/JVCIR.htm
http://users.encs.concordia.ca/mos_ali/VideoInpainting/JVCIR.htm


Fig. 7. Completion results for different video sequences. In each sub-figure, the top
row shows the original frames and the bottom row demonstrates the corresponding
inpainting results.
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affect the patch matching result, since most likely the best
patches for an arbitrary patch exist in its adjacent space and
time locations.

The details of the bandlet transform applied in our technique
are as follows:

� Number of scales j, on which geometry is computed, is set to 3.
� The introduced scale factor l by Alpert transform in the bandlet-

ization (Section 2) is set to 4.
� Orthogonal wavelets are used in the bandetization.
� In the wavelet transform, Daubechies wavelets are employed.
� A fixed size 8� 8 segmentation is employed instead of the com-

plex dyadic segmentation introduced in Section 2.

Fig. 7 depicts the results of our video inpainting scheme on dif-
ferent sequences. These videos are selected from TV, video games,
and also captured by a digital camera. The objective in the se-
quence of Fig. 7(a) is to remove the stationary object and fill-in
its missing region with proper data. Since the camera and the
removed object are static, as discussed in Section 3, there is not
much information about what was behind the object in the whole
sequence. Therefore, the inpainting result is mostly produced by
3D regularization rather than patch matching. Other examples
illustrated in Fig. 7 depict inpainting results of videos containing
camera motions. In all cases, the proposed method performs the
completion task quite well. In order to gain insight into the effect
of each step of the proposed video completion scheme, several
analyses are next presented as well as a comparison with two
state-of-the-art methods.

4.1. Effects of patch fusion and 3D regularization

As mentioned before, the N best patch sorting and fusion results
in a better performance in comparison to conventional patch
replacement. We show this by means of a quantitative comparison.

A manual damage is generated on an original video sequence.
Then, the damaged video is completed by the spatio-temporal vi-
deo completion approach presented in Section 3. The completion
is performed once without patch fusion, i.e, replacing the missing
parts of a border patch by the corresponding pixels of the best
matching patch. The spatio-temporal completion is carried-out
once again by applying the introduced patch fusion technique.
However, since the second stage of our proposed method (i.e., 3D
regularization) is not applied in this experiment, we simply avoid
the threshold s (used to find N) and set N ¼ 5. Then, for both cases,
the difference of the completion result of the damaged video and
the original video sequence is observed by computing the MSE va-
lue for the corresponding frames of the original and the completion
result video sequences. Fig. 8(a) shows a frame of the video chosen
for evaluation which is damaged as in Fig. 8(b) and then completed
as in Fig. 8(c) and (d).

The plot indicated as ‘‘Exemplar Bandlet-Based Patch Fusion’’ in
Fig. 9 shows mean square error (MSE) graph of all the 50 frames of
the original video and the spatio-temporal completion result se-
quence using the bandlet based patch fusion. Obviously, the MSE
value of the fusion-based completion for almost all the frames is
lower than that of the conventional exemplar-based completion
scheme labeled as ‘‘Exemplar-based’’ in Fig. 9. In order to show
the performance of the proposed bandlet-based patch fusion tech-
nique in video completion tasks, the experiment is performed an-
other time using another image fusion technique. A patch fusion
scheme similar to Section 3.1 is considered for a well-known image
fusion technique based on wavelets introduced in [36]. Then, the
completion task is performed by means of the exemplar-based
platform applying this fusion technique. Similar to the wavelet
stage of the bandlet transform, Daubechies wavelets are employed
in this wavelet-based patch fusion scheme. The resulting MSE val-
ues of all the generated frames using this method are presented as
the ‘‘Exemplar-based Wavelet patch Fusion’’ plot in Fig. 9. The plots
shown in Fig. 9 indicate visually pleasing completion results for the
bandlet-based patch fusion scenario compared to simply replacing



Fig. 8. (a) Original frame. (b) Damaged frame. (c) Regular exemplar-based inpainting result (Frame number 13, MSE = 19.13). (d) Patch fusion exemplar-based inpainting
result (Frame number 13, MSE = 18.4). (e) Two-stage (exemplar patch fusion-based method followed by the bandlet-based 3D regularization) inpainting result (Frame
number 13, MSE = 11.86).
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Fig. 9. Objective evaluation of patch fusion and 3D regularization in video
inpainting.

Fig. 10. (a) Original frame. (b) Damaged frame. (c) Proposed method completion
result (Frame number 22, MSE = 8.18).
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Fig. 11. Objective evaluation of the proposed video completion method. Average
frame MSE is 6.11, 6.02, 5.1863 for Patwardhan et al. [9], Tang et al. [18], and the
proposed two-stage method, respectively.
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the missing region by the best matching patch and also using an
effective fusion method [36] based on wavelets.

Similar experiments are carried out in order to evaluate the
effectiveness of bandlet-based 3D regularization in the inpainting
task. This time, the proposed two-stage video inpainting method
is carried-out for the video sequence of Fig. 8. In other words, the
damaged video of Fig. 8(b) has been inpainted using spatio-tempo-
ral patch-fusion followed by the 3D regularization step in order to
refine the results and also to preserve the visual consistency
(Fig. 8(e)). The corresponding MSE plots in Fig. 9 show a higher
performance for the proposed video completion method compared
to using solely the patch fusion scheme or the convectional exem-
plar-based video inpainting technique presented in Section 3. It is
worth mentioning again that the regularization methods are not
practical for large regions due to the blur effect they impose on
the resulting frames [7]. However, as presented here a precise
combination of a regularization-based method and an exemplar-
based method can result in a higher accuracy. The majority of
the run-time of our algorithm is spent on bandlet transform which
lacks an optimized implementation since it is relatively new.
Therefore, it is not straightforward to discuss the complexity in a
precise way that can be presented in this paper. With the preset
implementation the run-time may be around 3 h to finish a com-
pletion task for a typical video employed in our experiments. The
run-time improvement is a challenge to be addressed in a future
work.
4.2. Comparison with state-of-the-art methods

The performance of video inapinting/completion methods is
generally evaluated subjectively. However, we use MSE to evaluate



Fig. 12. A sample frame inpainted by three different methods. (a) Damaged frame. (b) The proposed algorithm result. (c) Completion result of [9]. (d) Completion result of
[18]. (For a better illustration the images are cropped from left, right and bottom).
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the effectiveness of our method as done in our previous
experiments. A manual damage is produced on an original video
sequence. Then, the result of the completion method on the
damaged video is compared with the original video sequence by
computing the MSE value for the corresponding frames of the ori-
ginal and the completion result video sequences. Fig. 10(a) shows a
frame of the video chosen for evaluation which is damaged as in
Fig. 10(b) and then completed as in Fig. 10(c). The green plot in
Fig. 11 shows the MSE graph of all the 47 frames of the original
video and the completion result sequence using the proposed
method. For almost all the frames, the MSE value is low, indicating
visually pleasing completion results.

We compared our approach to two well-known video comple-
tion methods introduced in [9,18]. Fig. 12 shows a sample frame
of a video sequence processed by these two methods as well as
by our technique. We performed the same MSE graph generation
i.e., computing MSE for the completion results and the original se-
quence. The produced graphs are depicted in Fig. 11. The graphs
and the computed average MSE values of all the frames indicate
a high performance for our proposed method compared to these
two methods. Despite the crucial importance of temporal consis-
tency in video completion, to the best of our knowledge, none of
the existing techniques have been evaluated objectively in the lit-
erature in this sense. This is due to the fact that there is no stan-
dard temporal quality measurement framework designated for
video inpainting. Here, we employ the spatio-temporal most appa-
rat distortion (STMAD) model to analyse our approach with re-
gards to temporal consistency [37]. In fact, the extension of the
still image-based most apparat distortion (MAD) model [38] by
taking the motion information between frames into account is
the main idea of STMAD. Table 1 presents STMAD values obtained
for the completed videos by the three different techniques. The
STMAD is calculated between the inpainted video and the original
one of Fig. 10. The obtained values are normalized to the range of 0
to 1 and then they are subtracted from 1. Hence, a higher value in
the table indicates a better consistency. As the table indicates, our
approach has the highest value for STMAD and consequently the
best temporal consistency among the other methods. This high
performance is largely credited to the effective role of bandlets in
the patch-fusion scheme in the spatio-temporal completion and
Table 1
Temporal consistency evaluation. STMAD obtained for each resulting video using
different video completion techniques.

Method Patwardhan et al. [9] Tang et al. [18] Ours

STMAD 0.501 0.484 0.601
the 3D regularization and a good combination of these two differ-
ent stages.

5. Conclusions

We have presented a video inpainting approach that effectively
benefits from the geometric features represented by bandlets. The
conventional exemplar-based video completion is modified and
followed by a 3D regularization in order to perform the inpainting
task. The patch search is carried out using the pixel values and
instantaneous motion information. Then, the best matching
patches are blended by a bandlet-based fusion framework to fill
in the border patch. The fusion procedure employs the geometric
flows and texture structures revealed by the bandlet transform.
Afterwards, since some patches remain unchanged in the gener-
ated video, a 3D regularization based on bandlets refines the
inpainting results. This is performed by enforcing the sparseness
of the bandlet image representation through a minimization over
the bandlet coefficients. The minimization is done iteratively by
a soft-thresholding scheme in the video volume.

Unlike many existing video completion methods, our approach
does not require background/foreground segmentation, decompo-
sition of motion layers, tracking and/or optical-flow mosaics com-
putation. Moreover, the experimental results indicate a high
performance of our video inpainting approach in preserving the
spatio-temporal consistency, and consequently in reconstructing
the videos visually pleasingly.

References

[1] T.F. Chan, J. Shen, Mathematical models for local nontexture inpaintings, SIAM
J. Appl. Math. 62 (2001) 1019–1043.

[2] M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image inpainting, in: Proc. 27th
Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), 2000, pp. 417–424.

[3] M. Bertalmio, Strong-continuation, contrast-invariant inpainting with a third-
order optimal pde, IEEE Trans. Image Process. 16 (2006) 1934–1938.

[4] M. Bertalmio, A.L. Bertozzi, G. Sapiro, Navier–Stokes, fluid dynamics, and image
and video inpainting, in: Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 2001, pp. I355–362.

[5] M. Ghoniem, Y. Chahir, A. Elmoataz, Geometric and texture inpainting based
on discrete regularization on graphs, in: Proc. 16th IEEE International
Conference on Image Processing (ICIP), 2009, pp. 1349–1352.

[6] H. Grossauer, O. Scherzer, Using the complex Ginzburg-Landau equation for
digital inpainting in 2D and 3D, in: Proc. of the 4th International Conference on
Scale Space Methods in Computer Vision, in: LNCS, vol. 2695, Springer, 2003,
pp. 225–236.

[7] A. Criminisi, P. Perez, K. Toyama, Region filling and object removal by
exemplar-based image inpainting, IEEE Trans. Image Process. 13 (2004)
1200–1212.

[8] K. Patwardhan, G. Sapiro, M. Bertalmio, Video inpainting of occluding and
occluded objects, in: Proc. IEEE International Conference on Image Processing
(ICIP), 2005, pp. II69–72.

http://refhub.elsevier.com/S1047-3203(14)00008-X/h0070
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0070
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0075
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0075
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0080
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0080
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0080


A. Mosleh et al. / J. Vis. Commun. Image R. 25 (2014) 855–863 863
[9] K.A. Patwardhan, G. Sapiro, M. Bertalmio, Video inpainting under constrained
camera motion, IEEE Trans. Image Process. 16 (2007) 4545–4553.

[10] T.K. Shih, N.C. Tang, W.-S. Yeh, T.-J. Chen, W. Lee, Video inpainting and implant
via diversified temporal continuations, in: Proc. 14th annual ACM
International Conference on Multimedia, 2006, pp. 133–136.

[11] T.K. Shih, N.C. Tang, J.-N. Hwang, Exemplar-based video inpainting without
ghost shadow artifacts by maintaining temporal continuity, IEEE Trans.
Circuits Syst. Video Technol. 19 (2009) 347–360.

[12] Y.-T. Jia, S.-M. Hu, R.R. Martin, Video completion using tracking and fragment
merging, Visual Comput. 21 (2005) 601–610.

[13] Y. Wexler, E. Shechtman, M. Irani, Space-time completion of video, IEEE Trans.
Pattern Anal. Mach. Intell. 29 (2007) 463–476.

[14] Y. Zhang, J. Xiao, M. Shah, Motion layer based object removal in videos, in:
Proc. Seventh IEEE Workshops on Application of Computer Vision (WACV/
MOTIONS’05), 2005, pp. 516–521.

[15] J. Jia, Y.-W. Tai, T.-P. Wu, C. Tang, Video repairing under variable illumination
using cyclic motions, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 832–
839.

[16] J. Jia, C.-K. Tang, Image repairing: robust image synthesis by adaptive nd tensor
voting, in: Proc. of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2003, pp. 643–650.

[17] T. Shiratori, Y. Matsushita, X. Tang, S.B. Kang, Video completion by motion field
transfer, in: Proc. of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2006, pp. 411–418.

[18] N. Tang, C.-T. Hsu, C.-W. Su, T. Shih, H.-Y. Liao, Video inpainting on digitized
vintage films via maintaining spatiotemporal continuity, IEEE Trans.
Multimedia 13 (2011) 602–614.

[19] X. Li, Y. Zheng, Patch-based video processing: a variational bayesian approach,
IEEE Trans. Circuits Syst. Video Technol. 19 (2009) 27–40.

[20] V. Cheung, B.J. Frey, N. Jojic, Video epitomes, in: Proc. of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), 2005, pp. 42–
49.

[21] O. Guleryuz, Nonlinear approximation based image recovery using adaptive
sparse reconstructions and iterated denoising-part i: theory, IEEE Trans. Image
Process. 15 (3) (2006) 539–554.

[22] O.G. Guleryuz, Nonlinear approximation based image recovery using adaptive
sparse reconstructions and iterated denoising-part ii: adaptive algorithms,
IEEE Trans. Image Process. 15 (3) (2006) 555–571.
[23] Z. Xu, J. Sun, Image inpainting by patch propagation using patch sparsity, IEEE
Trans. Image Process. 19 (5) (2010) 1153–1165.

[24] A. Mosleh, N. Bouguila, A.B. Hamza, A video completion method based on
bandlet transform, in: Proc. IEEE International Conference on Multimedia and
Expo (ICME), Barcelona, Spain, 2011, pp. 1–6.

[25] A. Mosleh, N. Bouguila, A. Ben Hamza, Video completion using bandlet
transform, IEEE Trans. Multimedia 14 (6) (2012) 1591–1601.

[26] S. Mallat, G. Peyre, A review of bandlet methods for geometrical image
representation, Numer. Algorithms 44 (2007) 205–234.

[27] E.L. Pennec, S. Mallat, Sparse geometric image representations with bandelets,
IEEE Trans. Image Process. 14 (2005) 423–438.

[28] E.L. Pennec, S. Mallat, Bandelet image approximation and compression, SIAM
Multiscale Model. Simul. 4 (2005) 992–1039.

[29] S. Mallat, G. Peyre, Surface compression with geometric bandelets, ACM Trans.
Graphics 24 (2005) 601–608.

[30] S. Mallat, G. Peyre, Orthogonal bandlets bases for geometric image
approximation, Commun. Pure Appl. Math. 61 (2008) 1173–1212.

[31] D.L. Donoho, J.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage,
Biometrika 81 (3) (1994) 425–455.

[32] A. Wong, J. Orchard, A nonlocal-means approach to exemplar-based
inpainting, in: Proc. IEEE International Conference on Image Processing
(ICIP), 2008, pp. 2600–2603.

[33] Z. Zhang, R. Blum, A categorization of multiscale-decomposition-based image
fusion schemes with a performance study for a digital camera application,
Proc. IEEE 87 (8) (1999) 1315–1326.

[34] X.Q.J. Yan, G. Xie, Z. Zhu, B. Chen, A novel image fusion algorithm based on
bandelet transform, Chin. Opt. Lett. 5 (2007) 569–572.

[35] J. Starck, M. Elad, D. Donoho, Redundant multiscale transforms and their
application for morphological component separation, Adv. Imaging Electron
Phys. 132 (2004) 287–348.

[36] G. Pajares, J.M. de la Cruz, A wavelet-based image fusion tutorial, Pattern
Recognit. 37 (9) (2004) 1855–1872.

[37] P. Vu, C. Vu, D. Chandler, A spatiotemporal most-apparent-distortion model for
video quality assessment, in: Proc. IEEE International Conference on Image
Processing (ICIP), 2011, pp. 2505–2508.

[38] E.C. Larson, D.M. Chandler, Most apparent distortion: full-reference image
quality assessment and the role of strategy, J. Electron. Imaging 19 (1) (2010)
011006-1–011006–21.

http://refhub.elsevier.com/S1047-3203(14)00008-X/h0085
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0085
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0090
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0090
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0090
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0095
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0095
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0100
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0100
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0105
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0105
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0105
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0110
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0110
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0110
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0115
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0115
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0120
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0120
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0120
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0125
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0125
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0125
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0130
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0130
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0135
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0135
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0140
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0140
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0145
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0145
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0150
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0150
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0155
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0155
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0160
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0160
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0165
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0165
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0170
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0170
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0170
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0175
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0175
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0180
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0180
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0180
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0185
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0185
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0190
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0190
http://refhub.elsevier.com/S1047-3203(14)00008-X/h0190

	Bandlet-based sparsity regularization in video inpainting
	1 Introduction
	2 Using bandlets in inpainting
	3 Spatio-temporal video completion
	3.1 Patch fusion
	3.2 Spatio-temporal regularization using bandlets

	4 Experimental results
	4.1 Effects of patch fusion and 3D regularization
	4.2 Comparison with state-of-the-art methods

	5 Conclusions
	References


