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Experimental results are provided to demonstrate the registration accuracy of the proposed approach
in comparison to existing entropic image alignment techniques.
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1. Introduction

Image registration or alignment refers to the process of
aligning images so that their details overlap accurately [1,2].
Images are usually registered for the purpose of combining or
comparing them, enabling the fusion of information in the
images. Roughly speaking, the image alignment problem may be
formulated as a two-step process: the first step is to define a
dissimilarity measure that quantifies the quality of spatial
alignment between the reference image and the spatially
transformed target image, and the second step is to develop an
efficient optimization algorithm for maximizing this dissimilarity
measure in order to find the optimal transformation parameters.
Recently, much attention has been paid to the image registration
problem due to its importance in a variety of tasks including data
fusion, navigation, motion detection, and clinical studies [1,2]. A
wide range of image registration techniques have been developed
for many different types of applications and data, such as mean
squared alignment, correlation registration, moment invariant
matching, and entropic alignment [3-6]. The latter will be the
focus of this paper. Inspired by the successful application of
the mutual information measure [3,4], and looking to address
its limitations in often difficult imagery, we proposed in [7]
an information-theoretic approach to ISAR image registration
by estimating the target motion during the imaging time, and it
was accomplished using the Jensen-Rényi divergence. This
generalized entropic measure enjoys appealing mathematical

* Corresponding author.
E-mail address: hamza@ciise.concordia.ca (A. Ben Hamza).

0143-8166/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.optlaseng.2010.06.011

properties affording a great flexibility in a number of applications
[8-11].

In recent years, there has been a concerted research effort in
statistical physics to explore the properties of Tsallis entropy, leading
to a statistical mechanics that satisfies many of the properties of the
standard theory [12]. In [13], a Tsallis entropy-based image mutual
information approach, combined with a stochastic optimization
algorithm, was proposed leading to accurate image registration
results compared to the classical mutual information [3,4].

In this paper, we propose an entropic image alignment
approach by maximizing the Jensen-Tsallis divergence [14]
using a simultaneous perturbation stochastic approximation-
based algorithm [15]. The main contributions in this paper
may be summarized as follows: (i) explore the use of the
Jensen-Tsallis divergence as an alignment measure, (ii) develop
an efficient optimization algorithm to maximize this divergence
measure, and (iii) perform an experimental comparative study of
the proposed approach with existing entropic image registration
methods.

The rest of this paper is organized as follows. The next
section is devoted to the problem formulation, followed by a
theoretical analysis of the Jensen-Tsallis divergence and a
derivation of its upper bound. Then, we develop a modified
simultaneous perturbation stochastic approximation algorithm
to maximize the divergence measure. In Section 3, we describe
the proposed image alignment method and discuss its most
important algorithmic steps in more details. In Section 4,
we provide experimental results to show the effectiveness and
the registration accuracy of the proposed approach. And finally,
we conclude and point out possible future work directions in
Section 5.
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2. Problem formulation

In the continuous domain, an image is defined as a real-valued
function I : Q> R, and Q is a nonempty, bounded, open set in R?
(usually @ is a rectangle in R?). Throughout, we denote by
X = (x1,X2) a pixel location in Q. Given two misaligned images, the
reference image I, and the target image I, as depicted in Fig. 1, the
image alignment or registration problem may be formulated as an
optimization problem

¢ = argmaxD(l; (%), 2(P.(x), M

where D(,-) is a dissimilarity measure that quantifies the
discrepancy between the reference image and the transformed
target image; and &,:Q«Q is a spatial transformation
parameterized by a parameter vector ¢. An example of such a
mapping is a Euclidean transformation with a parameter vector
¢ =(t,0,s), where t = (t,t,) is a translational parameter vector, 0 is
a rotational parameter, and s=(sy,Sy) is a scaling parameter
vector.

The goal of image registration is to align the target image to
the reference image by maximizing the dissimilarity measure
D(I1(x),I.(®.(x))) using an optimization scheme in order to find the
optimal spatial transformation parameters. Note that since the
image pixel values are integers, a bilinear interpolation may be
used to determine the values of I,(®,(x)) when ®,(x) is not an
integer. In this paper, we use the Jensen-Tsallis divergence as a
dissimilarity measure [14], and a modified simultaneous pertur-
bation stochastic approximation (SPSA) approach as an optimiza-
tion algorithm [15].

2.1. Jensen-Tsallis divergence

Let X={x1,X2,...,.X} be a finite set with a probability distribu-
tion p = (p1,p2, ....pr) Where k > 1. Shannon’s entropy is defined
as H(p):—zj’-‘:1pj log(p;), and it is a measure of uncertainty,

Nz
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Fig. 3. Surface/contour plots of Jensen-Tsallis divergence between two Bernoulli distributions p = (p,1-p) and q =(q,1—¢q), and with equal weights w; = w, = 1/2: first

row: o =0.3 and second row: o =1.2.
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dispersion, information, and randomness. The maximum uncer-
tainty or equivalently minimum information is achieved by the
uniform distribution. Hence, we can think of the entropy as a
measure of uniformity of a probability distribution. Consequently,
when uncertainty is higher it becomes more difficult to predict
the outcome of a draw from a probability distribution.
A generalization of Shannon entropy is Rényi entropy [16] given
by
1 k

Ry(p)= ——log > pf,

5082 ae(0,1)U(1,00). )

Another important generalization of Shannon entropy is Tsallis
entropy [12,17,18] given by

1 k k
H.(p)= 1o (,; P}x—1> = —]; pjlog,(p)), 3)
where log, is the «-logarithm function defined as

log, (%) = (1—o)"'(x1=*—1) for x > 0. This generalized entropy was
first introduced by Havrda and Charvat in [17], who were
primarily interested in providing another measure of entropy.
Tsallis, however, appears to have been principally responsible
for investigating and popularizing the widespread physics
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applications of this entropy which is referred to nowadays as
Tsallis entropy [12]. It is worth noting that for o € (0,1], Rényi and
Tsallis entropies are both concave functions; and for ot > 1 Tsallis
entropy is also concave, but Rényi entropy is neither concave nor
convex. Furthermore, both entropies tend to Shannon entropy
H(p) as «—1, and are related by

1
Ha(p) = 7= [exp((1-DRy(p)) 11

For x,y >0, the a-logarithm function satisfies the following
property

log,(xy) = log,x+log,y + (a—1)log,xlog,y. 4)

If we consider that a physical system can be decomposed in
two statistical independent subsystems with probability distribu-
tions p and q, then using Eq. (4) it can be shown that the joint
Tsallis entropy is pseudo-additive

Hy(p.q) = Hy(p)+ Ho(q@) + (1 —0)Ho(P)H.(Q),

whereas the joint Shannon and Rényi entropies satisfy the
additivity  property: H(p,q) =H({p)+H(q), and Ry(p.q) =
Ry(P)+Ra(q).
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Fig. 6. Bar plots of optimal registration parameter vector ¢* = (t;,t;,0") with errors {—¢*, using: (a) proposed method, (b) Jensen-Rényi divergence, (¢) mutual information,

and (d) Tsallis mutual information.
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The pseudo-additivity property implies that Tsallis entropy has
a nonextensive property for statistical independent systems,
whereas Shannon and Rényi entropies have the extensive
property (i.e. additivity). Furthermore, standard thermodynamics
is extensive because of the short-range nature of the interaction
between subsystems of a composite system. In other words,
when a system is composed of two statistically independent
subsystems, then the Boltzman-Gibbs entropy of the composite
system is just the sum of entropies of the individual systems,
and hence the correlations between the subsystems are not
accounted for. Tsallis entropy, however, does take into
account these correlations due to its pseudo-additivity
property. Furthermore, many objects in nature interact through
long-range interactions such as gravitational or unscreened
Coulomb forces. Therefore, the property of additivity is very
often violated, and consequently the use of a nonextensive
entropy is more suitable for real-world applications. Fig. 2
depicts Tsallis entropy of a Bernoulli distribution p=(p,1-p),
with different values of the parameter o«. As illustrated in
Fig. 2, the measure of uncertainty is at a minimum when
Shannon entropy is used, and for o« >1 it decreases as the
parameter o increases. Furthermore, Tsallis entropy attains a
maximum uncertainty when its exponential order o is equal
to zero.

Reference image
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Definition 1. Let p,,p,, ...,p, be n probability distributions. The
Jensen-Tsallis divergence is defined as

- oHu(p),

i=1

DY@, ....pn) =H, <Z CUiPi)

i=1

where H,(p) is Tsallis entropy, and @ = (w1,>, ..
vector such that 37 ; w; =1 and w; > 0.

.,p) is a weight

Using the Jensen inequality, it is easy to check that the Jensen-
Tsallis divergence is nonnegative for « > 0. It is also symmetric
and vanishes if and only if the probability distributions
DP1,D>, - - P, are equal, for all & > 0. Note that the Jensen-Shannon
divergence [19] is a limiting case of the Jensen-Tsallis divergence
when o— 1.

Unlike other entropy-based divergence measures such as the
Kullback-Leibler divergence, the Jensen-Tsallis divergence has the
advantage of being symmetric and generalizable to any arbitrary
number of probability distributions or data sets, with a possibility of
assigning weights to these distributions. Fig. 3 shows three-
dimensional representations and contour plots of the Jensen-Tsallis
divergence with equal weights between two Bernoulli distributions
p=(,1-p) and q = (q,1—q), for « € (0,1) and also for & € (1,00).
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2.2. Properties of the Jensen-Tsallis divergence

The following result establishes the convexity of the Jensen-
Tsallis divergence of a set of probability distributions [18].

Proposition 1. For « €[1,2], the Jensen-Tsallis divergence D is a
convex function of p;,p,, - - . ,Pp-

In the sequel, we will restrict «e[1,2], unless specified
otherwise. In addition to its convexity property, the Jensen-
Tsallis divergence is an adapted measure of disparity among n
probability distributions as shown in the next result.

Proposition 2. The Jensen-Tsallis divergence D{ achieves its
maximum value when py,p,,...,p, are degenerate distributions,
that is p; = (0;), where 6;; =1 if i=j and 0 otherwise.

Proof. The domain of the Jensen-Tsallis divergence is a convex
polytope in which the vertices are degenerate probability
distributions. That is, the maximum value of the Jensen-Tsallis
divergence occurs at one of the extreme points which are the
degenerate distributions. [
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2.3. Modified SPSA optimization algorithm

The implementation of SPSA depends on a simple “simulta-
neous perturbation” approximation to the gradient [15]. It
uses only two measurements of the loss function in each
iteration independent of the number of the problem
dimension. In contrast, the standard stochastic approxi-
mation method like finite difference stochastic approximation
varies the variables one at a time. If the number of
terms being optimized is equal to v, then the finite-difference
method takes 2v measurements of the objective function at each
iteration.

Next we propose a modified SPSA algorithm that maximizes a
real-valued loss function £(¢), where ¢ denotes a v-dimensional
transformation parameter vector that needs to be optimally
found by maximizing £(¢). The proposed SPSA algorithm
starts from an initial guess of ¢, where the iteration process
depends on the above-mentioned highly efficient “simultaneous
perturbation” approximation to the gradient g(¢)=VL(0).
It is assumed that £(¢) is a differentiable function of ¢ and
that the maximum point ¢* corresponds to a zero point of the
gradient, i.e.,

g(t") = VL") =0.
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Fig. 8. Bar plots of optimal registration parameter vector ¢* = (t;,t;,0") with errors {—¢*, using: (a) proposed method, (b) Jensen-Rényi divergence, (¢) mutual information,

and (d) Tsallis mutual information.
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Let y(¢£) = £(£)+noise, and ¢ be the estimate of ¢. Then the gradient
estimate g(?) in the k-th iteration is given by

Y(Ck+ Cegr) =Y (Lie—Crr)

s 2} _
gk( I<) 2Ck8k

where ¢, is the perturbation coefficient, and g, is the
v-dimensional simultaneous perturbation vector that is

Monte Carlo-generated. At the end of each iteration, the ¢,
estimate is updated using the standard stochastic approximation
form

li1 =L+ @i (L)

Note that the choice of the gain sequences a; and ¢, should satisfy
some typical stochastic approximation conditions [15].

3. Proposed method

Our proposed approach may now be described as follows:
Given two images that need to be registered, we first compute
their conditional intensity probabilities and the Jensen-Tsallis
divergence between them. Then we optimize this divergence
measure using the modified SPSA algorithm.

Q
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Without loss of generality, we consider a Euclidean transfor-
mation @, with a parameter vector ¢ = (t,0), i.e. a transformation
with translation parameter vector t=(tyt,), and a rotation
parameter 0. In other words, for an image pixel location x = (x,y)
the Euclidean transformation is defined as ®,(x) = Rx+t, where R
is a rotation matrix given by

R— cosf  sin0
- <—sin0 cos@)'

Denote by X = {Xq,X2,...,Xs} and YV = {y1,)>, ...,¥n} the sets of
pixel intensity values of the reference image I;(x) and the
transformed target image I(®.(x)), respectively. Let X and Y be

two random variables taking values in X and .
The proposed approach consists of the following main steps:

(i) Find the conditional intensity probabilities
Pi =P (@) (X) = (Dy)j —1,.n Vi=1,....1,

where p; =P(Y=y;IX=x;), j=1,...,n.
(ii) Find the optimal parameter vector ¢* = (t*,0") of the Jensen-
Tsallis objective function

Pr) 6))

= argm{axD;“(p], .

using the modified SPSA optimization algorithm (Fig. 4).
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Fig. 9. Jensen-Tsallis divergence with uniform weight.
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Note that if the images I; and I, are exactly matched, then
p; =(d;) and by Proposition 2, the Jensen-Tsallis divergence is
therefore maximized. Fig. 5(1) and (2) shows two MRI images in
which the misalignment corresponds to a clockwise rotation
with an angle 0 =10". The conditional probability distributions
{p;} are crisp, as shown in Fig. 5(3), when the two images are
aligned, and dispersed, as depicted in Fig. 5(4), when they are not
matched.

Also, it is worth pointing out that if « =1 and w; =PX =x%;)
then the Jensen-Tsallis divergence becomes mutual information,
indicating that the Jensen-Tsallis divergence induces a dissim-
ilarity measure that provides a more general framework for the
image registration problem.

4. Experimental results

We tested the performance of the proposed entropic image
registration method on a variety of images. In all experiments
we used an entropic index « =2 and the normalized histogram
as the weight vector o for the Jensen-Tsallis divergence. In our
first experiment, we applied a Euclidean transformation @,
with different values of the parameter vector ¢ = (t,ty,0) to the

0.5 uniform ;)

Jensen-Renyi (o

-40 -30 -20 -10 O 10

(e}

2}

Jensen—Renyi (a0 = 1.5 uniform ;)

1

-40 -30 -20 -10 O 10 20 30
6
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three reference medical images shown in Figs. 6-8. And, we
used the modified SPSA algorithm to find the optimal parameter
vector (*=(t;,t;,0"). We also compared the image alignment
results of the proposed approach to existing image registration
techniques based on the mutual information [3], Tsallis
mutual information [13], and Jensen-Rényi divergence [7]. The
output registration results are shown in Figs. 6-8, where
the absolute differences |tx—t;|, |ty—t;|, and |0—0"| between
the true and the estimated transformation parameters are
also displayed as error bars for three different transformation
parameter vectors ¢=(5,5,5), ¢=(5,10,15), and ¢=(10,20,20).
From these figures, it is clear that the estimated values
of the transformation parameters indicate the effectiveness
and the registration accuracy of the proposed algorithm.
Amongst the other methods, we noticed that the Tsallis
mutual information approach performs relatively well at higher
values of the rotation angle, but poorly at higher values of
the translation parameters compared to the proposed
approach. Moreover, the much better performance of our
method is in fact consistent with a variety of images used for
experimentation.

In the next experiments, we examine the effects of the
values of the weight vector w and the entropic index o
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Fig. 10. Jensen-Rényi divergence with uniform weight.
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Fig. 11. Jensen-Tsallis divergence with normalized histogram weight.

on the performance of the proposed
approach.

image registration

4.1. Effect of weight on the Jensen-Tsallis divergence

Figs. 9 and 10 show the plots for the divergence values of
Jensen-Tsallis and Jensen-Rényi, respectively, in the case of a
uniform weight w; = 1/n. As shown in Fig. 10, the Jensen-Rényi
divergence has the same maximum value given different values of
o, whereas the maximum value of the Jensen-Tsallis divergence
drops significantly when the value of « increases. Also, it is worth
noting that the output of the Jensen-Tsallis divergence shows a
sharp impulse located at where the images are aligned, and a
uniform value anywhere else if a uniform weight w; = 1/n is used
and also if o is larger than 1. This property indicates a dramatic
change of the gradient. Indeed, through extensive experiments we
noticed that the modified SPSA algorithm experiences difficulty in
converging to the optimal solution when the initial guess of ¢ is
not in a small range where a noticeable gradient change is
observed. To circumvent this problem, we used the normalized
histogram of the reference image I; as the weight vector w instead
of a uniform weight. The Jensen-Tsallis and Jensen-Rényi
divergences with the normalized histogram weights are shown
in Figs. 11 and 12, respectively.

4.2. Effect of o on the Jensen-Tsallis divergence

Most medical imaging methods, for instance, produce a full
three-dimensional (3D) volume, and the medical scans are viewed
as a series of superposed two-dimensional (2D) slices of these full
3D volume. The MRI 3D volume of a healthy patient, shown in
Fig. 13(a), consists of 27 horizontal slices and each slice is
128 x 128 pixels. To examine the effect of the entropic index o, we
applied the proposed approach to two horizontal slices of this MRI
3D volume: the reference image and the misaligned image, which
are shown on the left and right-hand sides of Fig. 13(b),
respectively. Figs. 14 and 15 display the output results of
Jensen-Rényi and Jensen-Tsallis divergences with uniform
weight and also with normalized histogram weight.

5. Conclusions

We proposed an entropic image alignment method
by optimizing a generalized divergence measure using a
modified simultaneous perturbation stochastic approximation
algorithm. The registration is achieved by finding the optimal
Euclidean transformation parameters that maximize the
Jensen-Tsallis divergence. The main advantages of the proposed
approach are: (i) Jensen-Tsallis divergence is symmetric,
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Fig. 13. (a) MRI 3D volume and (b) reference and target images for testing the effect of the entropic index.

convex, theoretically upper-bounded, and quantifies efficiently
the statistical dissimilarity between the reference image
and the transformed target image, and (ii) the experimental
results provide accurate registration results in comparison

with existing techniques. Our future goal is to incorporate
the prior information on the joint intensity histogram between
the images being registered for a more robust image
alignment.
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