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Abstract— Recognition of images and shapes has long been the
central theme of computer vision. Its importance is increasing
rapidly in the field of computer graphics and multimedia commu-
nication because it is difficult to process information efficiently
without its recognition. In this paper, we propose a new approach
for object matching based on a global geodesic measure. The
key idea behind our methodology is to represent an object by a
probabilistic shape descriptor that measures the global geodesic
distance between two arbitrary points on the surface of an object.
In contrast to the Euclidean distance which is more suitable for
linear spaces, the geodesic distance has the advantage to be able
to capture the intrinsic geometric structure of the data. The
matching task therefore becomes a one-dimensional comparison
problem between probability distributions which is clearly much
simpler than comparing 3D structures. Object matching can
then be carried out by an information-theoretic dissimilarity
measure calculations between geodesic shape distributions, and
is additionally computationally efficient and inexpensive.

I. INTRODUCTION

In recent years there has been an increasing interest in
recognition of images and shapes. Its importance is also
increasing rapidly in the field of computer graphics and mul-
timedia communication because it is difficult to process infor-
mation efficiently without its recognition. Three-dimensional
(3D) objects consist of geometric and topological information,
and their compact representation is an important step towards
a variety of computer vision applications including indexing,
retrieval, and matching in a database of 3D models. The latter
will be the focus of this paper. There are basically two major
steps in object matching: the first step involves finding a
reliable and efficient shape representation/descriptor, and the
second step is the design of an appropriate dissimilarity mea-
sure for object comparison between the shape representations.

Most three-dimensional shape matching techniques pro-
posed in the literature of computer graphics, computer vision
and computer-aided design are based on geometric representa-
tions which represent the features of an object in such a way
that the shape dissimilarity problem reduces to the problem
of comparing two such object representations. Feature-based
methods require that features be extracted and described before
two objects can be compared [1, 2]. Among feature-based
methods, one popular approach is graph matching, where two
objects are represented by their graphs composed of vertices
and edges. An efficient representation that captures the topo-
logical properties of 3D objects is the Reeb graph descriptor
proposed by Shinagawa et al. [1, 3]. The vertices of the Reeb
graph are the singular points of a function defined on the

underlying object [1, 3–5]. These singularities are prominent
landmarks and their detection, recognition, and classification
is a crucial step in image processing and computer vision
[4]. Such singularities carry important information for further
operations, such as image registration, shape analysis, motion
estimation, object recognition, and surface evolution [6–8].

An alternative to feature-based representations, called shape
distribution, is developed by Osada et al [9]. The idea here
is to represent an object by a global histogram based on the
Euclidean distance defined on the surface of an object. The
shape matching problem is then performed by computing a
dissimilarity measure between the shape distributions of two
arbitrary objects. This approach is computationally stable and
relatively insensitive to noise. Because of unsuitability of the
Euclidean distance when dealing with nonlinear manifolds, the
shape distribution, however, does not capture the nonlinear
geometric structure of the data.

Information-theoretic measures provide quantitative en-
tropic divergences between two probability distributions. A
common entropic dissimilarity measure is the Kulback-Liebler
(or directed) divergence [10] which has been successfully used
in many applications including indexing and image retrieval
[11]. Another entropy-based measure is the Jensen-Shannon
(JS) divergence which may be defined between an arbitrary
number of probability distributions [12]. Due to this general-
ization, the JS divergence may be used as a coherence measure
between any number of distributions and may be applied to
a variety of image processing and computer vision applica-
tions including graph matching [13], image registration and
segmentation [14, 15], edge detection [16], and segmentation
of DNA sequences into homogenous domains [17].

In this paper, we propose a shape signature called geodesic
shape distribution that captures the intrinsic geometric struc-
ture of 3D objects. A preliminary work on this signature was
presented in [18]. The proposed method is inspired by previous
works on object matching and in particular the recent works
of Hilaga et al [19] and Osada et al [9]. The shape distribution
approach [9] is based on the Euclidean distance which is not
suitable for capturing the nonlinear structure of 3D objects,
whereas the method presented in [19] is a feature-based
technique and requires the extraction of the singularities of the
geodesic distance. These singularities, however, are not easy
to extract/compute and most algorithms give erroneous results.
On the other hand, our approach is based on the triangle
mesh centroids which are the simplest features to compute
and effectively characterize the global surface shape. The
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primary motivation of the proposed approach is to encode a 3D
shape into a one-dimensional geodesic distribution function.
This compact and computationally simple representation is
based on a global geodesic distance defined on an object
surface, and takes the form of a kernel density estimate. The
geodesic distance overcomes the limitations of the Euclidean
distance which by virtue of its linearity in nature cannot
account for nonlinear structures in the underlying 3D object.
To gain further insight into the geodesic shape distribution
and its practicality in 3D computer imagery, some numerical
experiments are provided to demonstrate the potential and the
much improved performance of the proposed methodology
in 3D object matching. This was carried out by computing
the JS divergence between probabilistic shape distributions.
The geodesic shape distribution may be used to facilitate
representation, indexing, retrieval, and object matching in a
database of 3D models. More importantly, the geodesic shape
distribution provides a new way to look at the object matching
problem by understanding the intrinsic geometry of the shape.

The rest of this paper is organized as follows. The next
section is devoted to the problem formulation. Section III
describes some of the related work to our proposed approach
for 3D object matching. In Section IV, we describe the repre-
sentation step of our proposed shape signature called geodesic
shape distribution, and we discuss its main properties. In
Section V, we present the Jensen-Shannon divergence measure
and show its attractive properties as a dissimilarity measure
between probability distributions. In Section VI, we provide
numerical simulations to show the power of the proposed
shape measure for object matching. And finally, Section VII
provides some conclusions.

II. PROBLEM FORMULATION

Three-dimensional objects are usually represented as polyg-
onal or triangle meshes in computer graphics and geometric-
aided design. A triangle mesh M is a pair M = (V, T ),
where V = {v1, . . . ,vm} is the set of vertices, and T =
{T1, . . . , Tn} is the set of triangles.

In scientific visualization and analysis, a triangle mesh is
too large to be examined without simplification. One way
to overcome this limitation is to represent a triangle mesh
by its surface features that can easily be computed and can
effectively characterize the global surface shape. The centroids
of the set of triangles T are desirable features which may
be computed efficiently and have a global significance for
the surface shape representation as illustrated in Fig. 1. In
addition, there is a well defined correspondence between the
centroid and the region (triangle) from which it is computed
as depicted in Fig. 1. It is important to point out that centroid-
based methods have been used in a variety of computer
vision applications including clustering, and one of the widely
centroid-based technique used for cluster analysis in the K-
mean algorithm [20].

A. Global shape measure

Let M = (V, T ) be a triangle mesh. The centroid cj of a
triangle Tj is the mean of its vertices, that is, the point located

at the center of the triangle. Note that the cardinality of the
set of centroids C = {c1, . . . , cn} of the triangle mesh M is
equal to the cardinality of its set of triangles T .

Unless we establish a meaningful measure of distance
between the centroids of a triangle mesh, no meaningful
exploration of the underlying structure of an object is possible.
In order to take into account the interaction between the
centroids, we compute a pairwise distance measure d(ci, cj)
from any centroid ci to all the other centroids cj ∈ C. Fig. 1
illustrates an arbitrary distance between two centroids. Notice
that distance d need not be a Euclidean metric.

Fig. 1. Distance between two arbitrary centroids of a 3D object.

To obtain a global measure of the shape M, we simply
integrate (sum) over all centroids. More precisely, we define
a function f : C → R such that

f(ci) =
1
|C|

n∑
j=1

area(Tj) d(ci, cj)2, (1)

where area(Tj) denotes the area of the triangle Tj , and |C| =∑n
j=1 area(Tj) is the total area of the surface M. The function

f clearly represents a global measure or a distribution of the
shape and therefore to each 3D model M we will assign its
global measure f .

The problem addressed in this paper may now be concisely
described by the following statement: Given two 3D objects
M1 and M2 to be matched, find their global measures f1 and
f2, and calculate how dissimilar these objects are based on
a predefined dissimilarity measure D(f1, f2). In other words,
the dissimilarity between two objects measures “how different
they are”, and a smaller value of D means that the two objects
are more similar.

III. RELATED WORK

In this section, we will review two representative methods
for object matching that are closely related to our proposed
approach. We briefly show their mathematical foundations and
algorithmic methodologies as well as their limitations.

A. Reeb graph

Morse theory explains the presence and the stability of crit-
ical points in terms of the topology of the underlying smooth
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manifold [21–23]. Topology is the property that determines
which parts of the shape of objects are connected to which
other parts [24–26], while geometry determines where, in
a given coordinate system, each part is located [27]. The
basic principle is that the topology of a manifold is very
closely related to the critical points of a smooth function
on that manifold. An interesting concept related to Morse
theory and very useful to analyze a surface topology is the
Reeb graph. The latter is defined as a quotient space M/∼
with an equivalence relation given by p ∼ q if and only
if h(p) = h(q) and p, q belong to the same connected
component of h−1(h(p)), where h : M → R is the height
function such that h(x, y, z) = z for all (x, y, z) ∈ M. In
particular, each connected component is represented by a point
in the Reeb graph. By taking an appropriate number of cross-
sections and smooth interpolation between, Shinagawa et al.
[1, 3] proposed a Reeb graph based approach or so-called
homotopy model for object reconstruction. Reeb graph has a
nice mathematical definition that makes it very attractive from
a theoretical point of view. This representation, however, is
not rotationally invariant. This limitation lead Hilaga et al to
develop a geodesic-based Reeb graph technique [19]. In this
approach a multiresolution Reeb graph is computed efficiently
and a similarity distance is calculated to compare two Reeb
graphs.

B. Shape distribution

Recently, Osada et al [9] proposed a shape distribution
based approach for three-dimensional object matching. The
key idea is to compute the Euclidean distance between all
pairs of random points on the surface to obtain the so-called
D2 shape histogram. Given a triangle Tj = {vj1,vj2,vj2},
each random point is generated as

pj = (1 −
√

r1)vj1 +
√

r1(1 − r1)vj2 +
√

r1r2vj3,

where r1 and r2 are pseudo-random numbers between zero
and the total cumulative area. Then, the comparison of objects
is carried out by computing a dissimilarity measure between
their D2 shape distributions. Fig. 2 illustrates an ellipsoid
and its D2 shape distribution. The main drawback of the
shape distribution approach, which is based on the Euclidean
distance, is its inability to capture the nonlinear structure of
the data.

C. Shape spectrum

Shape spectrum was initially proposed for view grouping
and matching of 3D free-form objects [28], and it is the
histogram of the shape index operator which is defined at each
point p of a surface M as

S(p) =
1
2
− 1

π
tan−1 κ1(p) + κ2(p)

κ1(p) − κ2(p)
,

where κ1, κ2 are the surface principal curvatures such that
κ1 ≥ κ2. These principal curvatures measure the maximum
and minimum bending of the surface at each point [27].
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Fig. 2. D2 shape distribution of an ellipsoid. The horizontal axis in
(b) represents the Euclidean distance, and the vertical axis represents the
probability of that distance between two centroids on the surface.

Given a triangle mesh M = (V, T ), the principal curvatures
at each face (or triangle) Ti ∈ T are computed by fitting a
quadric surface Q = {(x, y, u(x, y))} where

u(x, y) = λ1x
2 + λ2xy + λ3y

2 + λ4x + λ5y + λ6}

to the set of points consisting of the centroid ci of Ti and
the centroids of the adjacent triangles to Ti (i.e. the triangles
that share an edge with Ti). Fig. 3 depicts a 3D object and its
shape spectrum.

IV. PROPOSED APPROACH

The goal of our proposed approach may be described as
follows: Given two 3D objects M1 and M2 to be matched,
find their global measures or shape descriptors f1 and f2, and
calculate how dissimilar these objects using a dissimilarity
measure D(f1, f2) that has to be quantified. The basic idea
behind the shape descriptor is to characterize a 3D object with
a one-dimensional function which will help us discriminate
between objects in a database of 3D models.

A. Global geodesic shape function

The Reeb graph concept has been shown to be very effective
in modeling 3D objects based on cross sections such as MRI
or CT images. It is more appropriate to modeling applications
where the height is of special interest such as terrain imaging.
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Fig. 3. 3D object and its shape spectrum.

The height function, however, has some limitations as an
object signature for matching, indexing, or retrieval of arbi-
trary 3D objects. The main reason is that the height function
is not rotationally invariant. To overcome these limitations,
we propose a global geodesic function defined on the object
surface as follows. Let ci and cj be two points (centroids)
on a smooth manifold M. The geodesic distance g(ci, cj)
between ci and cj is the shortest length L(γ) =

∫ b

a
‖γ′(t)‖dt

of a smooth curve γ : [a, b] → M such that γ(a) = ci and
γ(b) = cj . The geodesic distance may be locally viewed as
the Euclidean dE(ci, cj) = ‖ci − cj‖, and is hence clearly
invariant to rotation and translation.

Inspired by the geodesic-based representation for 3D topol-
ogy matching proposed by Hilaga et al. [19], we define a
global shape function f : C → R expressed in terms of a
rotationally invariant (square) geodesic distance as follows

f(ci) =
1
|C|

n∑
j=1

area(Tj) g(ci, cj)2. (2)

The primary motivation behind the geodesic distance is of
overcoming the limitations of the Euclidean distance which by
virtue of its linearity in nature cannot account for nonlinear
structures in the underlying object. Unlike the Euclidean dis-
tance which is basically a straight line between two points in
3D space, the geodesic distance captures the global nonlinear
structure and the intrinsic geometry of the data as illustrated
in Fig. 4. This clearly shows that the Euclidean distance
between two arbitrary points in a nonlinear manifold is just a
straight segment connecting two points and does not reflect the
nonlinear structure of the object, whereas the geodesic distance
which is the shortest curve along the manifold connecting both
points clearly captures the intrinsic geometry of the object.

1) Geodesic distance calculation: Given a set of centroids
C = {c1, . . . , cn} of a 3D object represented by a triangle
mesh M, the geodesic distance calculation is based on a similar
approach used for computing the isometric feature mapping
(Isomap) for multidimensional scaling [29] on nonlinear man-
ifolds [30]. The algorithm has two main steps:
(i) Construct a neighborhood graph by connecting a given

Fig. 4. Euclidean vs. geodesic distance on a nonlinear manifold.

centroid to its k-nearest neighbors, and link these neigh-
boring centroids by edges with weights equal to the
Euclidean distances.

(ii) Compute the geodesic distances (shortest paths) between
all pairs of n points in the constructed graph using
Dijkstra’s or Floyd’s algorithm.

Note that Step (i) may be alleviated by choosing a random
subset of C in order to reduce the computational complexity
of the geodesic calculation. From Eq. (2), it is clear that a
discrete form of the geodesic shape function can be written as

f(ci) =
(Ga)i

|C| =
(Ga)i

‖a‖1
, i = 1, . . . , n (3)

where G = (g2
ij) is the (square) geodesic distance matrix

of size n × n, and a = (a1, . . . , an)T is an n × 1 vector of
triangle areas, i.e. aj = area(Tj), and |C| =

∑n
j=1 aj = ‖a‖1

is the total area. The geodesic distance matrix G = (g2
ij) is

symmetric with zeros in the diagonal, and positive off-diagonal
elements. Note that the geodesic distance on triangulated
surfaces may also be effectively computed using the fast
marching method introduced in [31].

2) Triangle area calculation: Denote by {v1,v2,v3} the
vertices of an arbitrary triangle T of a given triangle mesh
M. Using Newell method, the area of the triangle T can be
computed as area(T ) = ‖N‖/2, where N = (N1, N2, N3)
is the triangle normal vector with coordinates given by

N1 =
d∑

i=1

(yi − ynext(i))(zi + znext(i))

N2 =
d∑

i=1

(zi − znext(i))(xi + xnext(i))

N3 =
d∑

i=1

(xi − xnext(i))(yi + ynext(i))

and (xi, yi, zi) are the coordinates of each vertex vi (with
dimension d = 3) of a triangle T . Note that vnext(i) =
(xnext(i), ynext(i), znext(i)) denotes the next vertex in the list
after vi, taking into account that v1 follows the last vertex vd.
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B. Global geodesic shape distribution

Note that the geodesic shape function can be expressed as a
geodesic shape vector X = {X1, . . . , Xn}, where Xi = f(ci).
This vector may be viewed as a shape descriptor that may be
used for 3D shape comparison.

Assume that the geodesic shape vector X of an object M

is a random sample with a common (unknown) probability
density function p. A common approach to approximate the
probability density function p is through the kernel density es-
timation which is an important data analytic tool that provides
a very effective way of showing structure in a data set [32].
The kernel density estimator p̂ is given by

p̂(x) =
1

nh

n∑
i=1

K

(
x − Xi

h

)
, (4)

where x represents the normalized value of the geodesic shape
function given by Eq. (3), K is the Gaussian kernel, and h
is the bandwidth or window width to be estimated. A good
selection rule of this bandwidth is given by

ĥ =
[

243R(K)
35µ2(K)2 n

]1/5

σ̂,

where R(K) =
∫

K(t)2 dt, µ2(K) =
∫

t2K(t) dt, and σ̂ =
medj{|Xj − medi{Xi}|} is the median absolute deviation.
The effect of the bandwidth parameter h is illustrated in Fig. 5.

Fig. 5. Effect of the bandwidth parameter h. The horizontal axis represents
the normalized value of the geodesic shape function, and the vertical axis
represents the geodesic shape density.

The horizontal axis, of all the figures depicting the geodesic
shape distributions, represents the normalized value of the
geodesic shape function given by Eq. (3), whereas the vertical
axis represents the geodesic shape density given by Eq. (4)
with an appropriate estimated bandwidth. In other words, the
geodesic shape density has a unit interval domain [0, 1], and
a non-negative bounded interval range [0, µ] where µ is the
upper bound of the density p̂.

Hence to each 3D object represented by a triangle mesh
M, we associate a kernel density p̂ which we will refer to
as a geodesic shape distribution, and it is computed using

Fig. 6. Illustration of the geodesic shape distribution algorithm.

(a) (b)

Fig. 7. (a) 3D tank model. (b) Geodesic shape distribution, where the
horizontal axis represents the normalized value of the geodesic shape function,
and the vertical axis represents the geodesic shape density.

the algorithm depicted in Fig. 6. This probabilistic shape
descriptor represents an object information and will be used
in our matching experiments. Fig. 7 depicts a 3D model of a
tank and its geodesic shape distribution.

C. Properties of geodesic shape signature

In addition to its rotational, translational and scale invari-
ance, the geodesic shape signature is also robust to resampling
and simplification as illustrated in Fig. 8 and Fig. 9. Note that
for triangulation, we use the barycentric subdivision shown in
the top row of Fig. 8. This subdivision technique consists of
introducing a new vertex at the center of each triangle and a
new vertex at the midpoint of each edge and drawing edges
from the centroid of the triangle to each of the new midpoint
vertices and to the original vertices.

In order to compare two geodesic shape distributions and
hence to measure the performance of the proposed scheme,
we will describe in the next section an information-theoretic
distance that quantifies the difference between two 3D shapes
through their probabilistic shape descriptors. Fig. 10 depicts a
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Fig. 8. Robustness and invariance.
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Fig. 9. Robustness and invariance (cont.). In (d) The horizontal axis
represents the normalized value of the geodesic shape function, and the
vertical axis represents the geodesic shape density.

block-diagram of the proposed framework.

V. PROBABILISTIC DISSIMILARITY

Let M1 and M2 be two 3D objects with geodesic shape dis-
tributions p̂ and q̂ respectively. Information theoretic measures
provide quantitative entropic divergences between two proba-
bility distributions. A common entopic dissimilarity measure
is Kulback-Liebler (KL) divergence K defined as

K(p̂, q̂) =
∫

p̂(x) log2

p̂(x)
q̂(x)

dx = E

{
log

p(x)
q(x)

}
,

where E{·} denotes the expected value with respect to p(x).
The KL dissimilarity measure, however, is non-symmetric,

unbounded, and undefined if p̂ is not absolutely continuous
with respect to q̂ [16, 33]. To overcome these limitations, we

Fig. 10. Block-diagram of the proposed methodology.

use the Jensen-Shannon (JS) divergence D given by

D(p̂, q̂) =
1
2

[
K

(
p̂,

p̂ + q̂

2

)
+ K

(
q̂,

p̂ + q̂

2

)]

= H

(
p̂ + q̂

2

)
− H(p̂) + H(q̂)

2
,

where H(p̂) = −
∫

p̂(x) log2 p̂(x) dx is the differential en-
tropy, which corresponds to Shannon’s entropy in the discrete
domain. Shannon’s entropy is a measure of uncertainty, disper-
sion, and randomness. The maximum uncertainty is achieved
by the uniform distribution, so we can think of the entropy as
a measure of uniformity of a probability distribution. Hence,
when uncertainty is higher it becomes more difficult to predict
the outcome of a draw from a probability distribution.

The JS divergence is a statistical distance that is very useful
in quantifying differences between probability distributions or
densities. In other words, this dissimilarity measure quantifies
differences in shape between two arbitrary objects. Unlike
the Kullback-Leibler divergence, the JS divergence has the
advantage of being symmetric, always defined, and gener-
alizable to any arbitrary number of probability distributions,
with a possibility of assigning weights to these distributions
[12]. Fig. 11 shows a three-dimensional graph and a contour
plot of the JS divergence between two discrete Bernoulli
distributions. The following result establishes the convexity
of the JS divergence [14].

Proposition 1: The Jensen-Shannon divergence D(p̂, q̂) is
a convex function of p̂ and q̂.
In addition to its convexity property, the JS divergence is
shown to be an adapted measure of disparity among proba-
bility distributions. Using the theory of majorization, it can be
shown that the JS divergence is bounded, and its upper bound
is achievable [14].

Proposition 2: The Jensen-Shannon divergence between
two geodesic shape distributions p̂ and q̂ is upper bounded

D(p̂, q̂) ≤ log2(2) = 1.
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(a) (b)

Fig. 11. (a) 3D plot and (b) contour plot of the Jensen-Shannon divergence.

VI. EXPERIMENTAL RESULTS

Object matching experiments were performed using a data-
base of 3D models collected online. Each model is represented
as a triangle mesh which consists of a pre-selected number of
triangles equal to 1000 in all the experiments. We conducted
the following five sets of experiments:

A. Experiment #1: 3D airplanes

The first set consists of 3D airplane models as shown in
Fig. 12. As can be seen, the only difference between the
models M1 and M3 is the radar. Using the Jensen-Shannon
divergence, we computed the pairwise dissimilarity values
between the models, and we found indeed that the smallest
value corresponds to the dissimilarity between M1 and M3

with a matching rate of 99%.

M1 M2

M3
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Fig. 12. First set of experiments: 3D airplanes.

B. Experiment #2: 3D tanks

The second set consists of 3D tanks as illustrated in Fig. 13.
Similar to the first experiment, we computed the pairwise

dissimilarity values between the models, and we found that
the smallest value corresponds to the dissimilarity between
M1 and M3 with a matching rate above 98%.
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Fig. 13. Second set of experiments: 3D tanks.

C. Experiment #3: 3D models of animals

The third set deals with objects that are topologically
equivalent to a sphere (i.e. with genus equal to zero) as
shown in Fig. 14. The numerical results using the Jensen-
Shanon dissimilarity measure are depicted in Table I where
the grayscale colorbar displays the grayscale colormap of
this dissimilarity matrix. This grayscale colormap ranges from
white (maximum similarity) to black (maximum dissimilarity),
and passes through the gray colors indicating the values of the
matching algorithm. Note that the minimum dissimilarity rate
is about 9%, that is the matching rate is about 91%.

D. Experiment #4: 3D models with handles

In the fourth set of experiments, the underlying objects are
topologically different from the ones considered in the third set
of the experiments. Fig. 15 shows a set of objects with genus
equal to one. Matching is achieved by the minimum Jensen-
Shannon distance computations as illustrated in Table II. Note
that the minimum dissimilarity rate is about 2%, that is the
matching rate is about 98%.

E. Experiment #5: 3D face matching

An important application of the geodesic shape signature
is 3D face recognition as illustrated in Fig. 16, and the
dissimilarity values between these 3D face models are given
in Table III. The results indicate that faces M3 and M5 are
the most similar with a matching rate above 98%.
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Fig. 14. Third set of experiments: 3D models and their geodesic shape
distributions.

TABLE I

JENSEN-SHANNON DISSIMILARITY RESULTS FOR THE THIRD SET OF

EXPERIMENTS.
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Fig. 15. Fourth set of experiments: 3D models and their geodesic shape
distributions.

TABLE II

JENSEN-SHANNON DISSIMILARITY RESULTS FOR THE FOURTH SET OF

EXPERIMENTS.
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M5 M6

Fig. 16. 3D face models.

3D face models
Jensen-Shannon dissimilarity: D(Mi, Mj)

M1 M2 M3 M4 M5 M6

M1 0 0.06 0.021 0.05 0.029 0.08
M2 0.06 0 0.03 0.08 0.043 0.025
M3 0.021 0.03 0 0.092 0.012 0.054
M4 0.05 0.08 0.092 0 0.11 0.097
M5 0.029 0.043 0.012 0.11 0 0.046
M6 0.08 0.025 0.054 0.097 0.045 0

TABLE III

3D FACE MODELS: DISSIMILARITY RESULTS. THE BOLDFACE NUMBERS

INDICATE THE BEST MATCHING RATE, AND ARE INDICATED TWICE IN THE

TABLE DUE THE SYMMETRY OF THE DISSIMILARITY MEASURE.

F. Computation complexity

The computational complexity and memory requirement
of the the geodesic shape distribution is dominated by the
calculation of all pair shortest paths. Given a set of m centroids
on the surface, the Floyd algorithm requires O(m3) operations
and stores O(m2) elements of estimated geodesic distances
for straightforward implementations. Significant improvement
could be achieved by using the fast marching method for
computing the geodesic distance on triangular meshes. This
algorithm was recently proposed in [31] with an overall time
complexity of O(m log m).

G. Comparison to related techniques

For each of the above five experiments, we computed the
Jensen-Shannon dissimilarity measure between the objects
using the shape spectrum, the D2 shape signature and the
geodesic shape signature. The results obtained are shown in
Table IV which clearly indicate that our proposed signature
performs the best in terms of matching rate.

Shape
Signature

Jensen-Shannon dissimilarity: D(Mi, Mj)

Exp. #1 Exp. #2 Exp. #3 Exp. #4 Exp. #5

shape
spectrum

0.048 0.06 0.021 0.05 0.029

D2 shape
signature

0.06 0.036 0.03 0.08 0.043

geodesic
signature

0.01 0.01 0.01 0.029 0.01

TABLE IV

COMPARISON RESULTS. THE BOLDFACE NUMBERS INDICATE THE BEST

MATCHING RATE WHICH CORRESPOND TO THE GEODESIC SHAPE

DISTRIBUTION.

H. Future work

In this preliminary work, we are mainly dealing with object
representation and matching based on the geodesic shape
signature using a small database. Our future goal is to extend
the proposed signature to object retrieval which requires a
relatively large database of 3D objects such as the Princeton
benchmark database which would be very useful for testing
and evaluation. For retrieval purposes, it would make more
sense to look at the relative dissimilarity measures by plotting
the precision versus recall, where

precision =
No. relevant objects retrieved

Total No. objects retrieved

and

recall =
No. relevant objects retrieved

Total No. relevant objects in the collection
.

Also, it would be of interest to incorporate topology into
the proposed methodology through Morse singularities of the
global geodesic shape function. Finally we note that while
the experimental results presented in this section are very
promising, significant additional performance gains are still
possible. For example, our current way of selecting centroids
as landmarks is rather one of many possible options and by no
means the best option, and a multiresolution geodesic shape
distribution may also provide better key to landmarks.

VII. CONCLUSIONS

In this paper, we proposed an new methodology for 3D
object matching. The key idea is to encode a 3D shape into
a 1D geodesic shape distribution. Object matching is then
achieved by calculating an information-theoretic measure of
dissimilarity between the probability distributions. That is, the
dissimilarity computations are carried out in a low-dimensional
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space of geodesic shape distributions. The main advantages of
the proposed approach are: (i) the geodesic distance captures
the intrinsic geometry of the data, (ii) the approach is simple
and computationally inexpensive, and (iii) the simulations
results indicate the suitability of the proposed technique for
object matching.
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