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Abstract We propose a robust and imperceptible spectral
watermarking method for high rate embedding of a water-
mark into 3D polygonal meshes. Our approach consists of
four main steps: (1) the mesh is partitioned into smaller sub-
meshes, and then the watermark embedding and extraction
algorithms are applied to each sub-mesh, (2) the mesh Lapla-
cian spectral compression is applied to the sub-meshes, (3)
the watermark data is distributed over the spectral coeffi-
cients of the compressed sub-meshes, (4) the modified spec-
tral coefficients with some other basis functions are used
to obtain uncompressed watermarked 3D mesh. The main
attractive features of this approach are simplicity, flexibility
in data embedding capacity, and fast implementation. Exten-
sive experimental results show the improved performance
of the proposed method, and also its robustness against the
most common attacks including the geometric transforma-
tions, adaptive random noise, mesh smoothing, mesh crop-
ping, and combinations of these attacks.

Keywords 3D watermarking · Mesh compression ·
Spectral decomposition · Visual error

1 Introduction

The problem of 3D mesh watermarking is a relatively new
area as compared to 2D watermarking [1]. It has received less
attention partly because the technology that has been used
for the image and video analysis cannot be easily adapted to
3D objects that can be represented in several ways including
voxels, NURBS, and polygonal meshes. Early algorithms on

E. E. Abdallah (B) · A. Ben Hamza · P. Bhattacharya
Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, Canada
e-mail: ee_abdal@cs.concordia.ca

3D watermarking [2–4] consist of embedding the watermark
information directly by modifying either the 3D mesh geome-
try or the topology of the triangles. These methods are usually
simple and require low computational cost. However, they
are not robust enough to different types of attacks. Recently,
several watermarking algorithms in the frequency domain
have been proposed for 3D mesh [5–7] that are mainly based
on multi-resolution mesh analysis (spectral decomposition
and wavelet transform) and show good resistance against
attacks. In [5] a set of scalar basis functions has been construc-
ted over the mesh vertices where the watermark perturbs the
vertices of each mesh along the direction of the surface nor-
mal, weighted by the basis functions. In [7] the original mesh
is decomposed into a series of details at different scales by
using the spherical wavelet transform, and the watermark is
then embedded more in the approximation part than in the
detail part. In [8] a watermarking scheme for subdivision
surfaces has been presented. In [6] a watermarking algo-
rithm based on the mesh spectral matrix has been propo-
sed. The watermark is embedded by modifying the spectral
coefficients and this idea was generalized in [9] to water-
mark point-based 3D geometries. In [10] the normal vector
distribution has been used. A blind watermarking scheme
robust against affine transformation attacks was proposed in
[11]. Watermarking of texture attributes has been proposed
in [12]. Two blind watermarking schemes that are robust
against distortionless as well as distortion attacks are propo-
sed in [13], where the idea was to modify the vertex norms
distribution according to the watermark bit sequence. Wave-
let blind watermarking scheme has been proposed in [14]
where it is assumed that the host meshes are semi-regular, a
wavelet decomposition is applied first to embed the water-
mark at a suitable resolution level. A robust and fast spectral
watermarking scheme for large meshes using a new ortho-
gonal basis functions based on radial basis function has been
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proposed in [15]. In [16] the mesh Laplacian matrix was used
to encode the 3D shape into a more compact representation
by retaining the smallest eigenvalues and associated eigen-
vectors that contain the highest concentration of the shape
information.

Motivated by the need for more robustness against attacks
(especially to mesh compression and mesh smoothing), we
propose a robust imperceptible watermarking approach using
the spectral mesh compression. Our approach uses the mesh
Laplacian matrix to embed a watermark in the spectral
coefficients of a compressed 3D mesh. Extensive numerical
experiments are performed to demonstrate the much impro-
ved performance of the proposed method in comparison with
other methods. The visual error is evaluated by computing
a nonlinear visual error metric between the original 3D model
and the watermarked model obtained by our proposed
algorithm.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly review some background material and
describe the spectral compression of the mesh geometry. In
Sect. 3 we introduce the proposed approach and describe in
detail the watermark embedding and extraction algorithms.
In Sect. 4, we present some experimental results and compa-
risons with existing techniques, and we show the robustness
against the most common attacks. Finally, we conclude and
point out future directions in Sect. 5.

2 Mesh compression

2.1 3D model representation

In computer graphics and computer-aided design, 3D objects
are usually represented as polygonal or triangle meshes. A
triangle mesh M is a triple M = (V, E, T ), where V =
{v1, . . . , vm} is the set of vertices, E = {ei j } is the set of
edges with cardinality |E |, and T = {t1, . . . , tn} is the set
of triangles. Each edge ei j = [vi , v j ] connects a pair of ver-
tices {vi , v j }. Two distinct vertices vi , v j ∈ V are adjacent
(written vi ∼ v j ) if they are connected by an edge ei j ∈ E .
The neighborhood of a vertex vi is the set v�

i = {v j ∈ V :
vi ∼ v j }. The degree di of a vertex vi is the cardinality of v�

i .
Let vi = (xi , yi , zi ) ∈ V , 1 ≤ i ≤ m, then the mesh vertex
matrix V is the m × 3 matrix whose i th row is the vector vi .

2.2 Laplacian matrix of a triangle mesh

The mesh Laplacian matrix of a triangle mesh M = (V, E, T )

is given by: L = D − A, where A is the adjacency matrix
between the vertices, defined by

Ai j =
{

1 if vi ∼ v j

0 otherwise

and D is the m × m diagonal matrix whose (i, i) entry is di .

2.3 Spectral mesh compression

In [16] the 3D mesh geometry was represented as a linear
combination of a few basis functions. The idea is to apply
the eigen-decomposition to the mesh Laplacian matrix, and
then discard the largest eigenvalues and their corresponding
eigenvectors in order to reduce the dimensionality of the new
spectral basis. A significant compression ratio with a very
small loss in the mesh quality is obtained because this small
number of basis functions contains the optimal concentration
of the shape information. The eigen-decomposition of the
Laplacian matrix L is given by

L = B�BT (1)

where B = (b1 b2 . . . bm) is an orthogonal matrix whose
columns bi are the eigenvectors of L which we refer to as
Laplacian basis functions, and � =diag{λi : 1 ≤ i ≤ m} is
a diagonal matrix of the eigenvalues of L arranged in increa-
sing order of magnitude. We express the mesh vertex matrix
in the subspace spanned by the Laplacian matrix eigenvectors
as follows:

V T = CT BT =
m∑

i=1

cT
i bT

i (2)

where C = (c1 c2 . . . cm)T is an m×3 matrix of the spectral
coefficient vectors, that is, C = BTV where C is the pro-
jection of the mesh vertex matrix onto the Laplacian basis
vectors. Moreover, Eq. (2) can be written as

V T =
r∑

i=1

cT
i bT

i

︸ ︷︷ ︸
compressed

+
m∑

i=r+1

cT
i bT

i = CT
r BT

r +
m∑

i=r+1

cT
i bT

i (3)

where r is usually chosen to be smaller than m, and hence this
yields a compressed mesh version Mr of the original mesh
M with a very small loss in the mesh quality. The matrix
Br = (b1 b2 . . . br ) contains the spectral basis vectors,
and the matrix Cr = (c1 c2 . . . cr )

T contains the spectral
coefficient vectors. The spectral coefficients in the x , y, and
z-dimension are given by cx = BTvx , cy = BTvy , and
cz = BTvz , respectively, see Fig. 1 for an example.

Figure 2 shows two examples of the mesh compression
results using Laplacian-based method with 500 basis func-
tions.

2.4 Mesh partitioning

The computation of the eigenvalues and the eigenvectors of
a large m × m Laplacian matrix is prohibitively expensive
O(m3). To circumvent this limitation, we partition a large 3D
mesh into smaller sub-meshes. The embedding and extrac-
tion algorithms are then applied to each sub-mesh. In our
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Fig. 1 a 3D bunny model, and
its spectral coefficients in the
b x-dimension, c y-dimension,
and d z-dimension
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Fig. 2 Spectral compression of the 3D models using Laplacian com-
pression. a Elephant model, b Bunny model

approach we used the MeTiS software [17] for mesh parti-
tioning, and we used sub-meshes of 500 vertices on average
as illustrated in Fig. 3.

2.5 Watermarking in the mesh spectral domain

Watermarking schemes in the mesh spectral domain usually
embed the watermark data into the mesh shape by modifying
the spectral coefficients computed from the mesh topology.
It is known that the smaller spectral coefficients correspond to
the low frequency components, and the high spectral

(a) (b)

Fig. 3 MeTis mesh partitioning. Each sub-mesh is colored by a random
color. Black triangles represent edge cuts. a Elephant model: 4,067
vertices, 8 sub-meshes. b Bunny model: 20,100 vertices, 40 sub-meshes

coefficients correspond to the high frequency components
of the 3D mesh.

The two methods proposed in [6,21] use a spectral app-
roach by embedding the watermark directly in the spectral
coefficients computed from the original 3D mesh.

Our experiments show that in order to increase the robust-
ness against smoothing and compression attacks, the water-
mark should be embedded only in the spectral coefficients
that represent the low frequency components. However, in
order to increase the robustness against additive random noise
the same watermark should be embedded repeatedly as much
as possible in the spectral coefficients vectors. So there is a
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trade-off between the robustness against random noise attack
on the one hand and smoothing and compression attacks on
the other hand.

In [6], the lowest five spectral vectors (low frequency com-
ponents) are not used in the embedding process due to their
use in the realignment process before the extraction algo-
rithm. In [21], the realignment algorithm is fixed, and the
lowest frequency components are used to embed the water-
mark. However, the trade-off between smoothing, compres-
sion and noise attacks was not addressed.

Motivated by the need for more robustness against attacks
we use the “Spectral compression of mesh geometry” intro-
duced in [16]. We also use the fact that the low frequency
coefficients represent the global shape features of a 3D mesh
(the rough approximation of the model may be reconstructed
using small low frequency spectral coefficients). The goal of
our proposed scheme is to embed the watermark in the low
frequency components by repeating the watermark embed-
ding process as much as possible. The number of the spec-
tral coefficients of the compressed 3D mesh is exactly the
same as the number of the spectral coefficients of the ori-
ginal 3D mesh without compression. As a result, we obtain
the maximum number of the watermark repletion (maximum
robustness against a noise attack). Moreover, all the embed-
ded watermarks are done in the low frequency components
that are used during the mesh compression stage. This gua-
rantees the most robustness against smoothing and compres-
sion attacks.

3 Proposed method

In this section, we describe the main steps of the propo-
sed watermark embedding and extraction algorithms, Figs. 4
and 5 show the flow diagrams. The goal of our proposed
approach may be described as embedding the watermark
in the global shape features which are represented by the
low frequency components of the 3D mesh. In this case we
are not only increasing the robustness against attacks but
also increasing the watermark imperceptibility. The proposed

Fig. 4 Watermark embedding process

Fig. 5 Watermark extraction process

algorithm embeds the watermark information into the spec-
tral coefficients of the compact representation of the 3D
model.

3.1 Watermark embedding process

The 3D mesh is partitioned into smaller sub-meshes and
the watermark embedding procedure is applied to each sub-
mesh. Let S be a sub-mesh of n vertices and W be a pseudo-
random vector of {−1,1} used as a watermark of size k such
that k � n. For all sub-meshes the watermark embedding
process consists of the following steps:

1. Compute the Laplacian matrix L of size n × n.
2. Compute the eigenvalues and the associated eigenvectors

(basis functions) of L.
3. Project the mesh vertices onto the basis functions to get

the spectral coefficients matrix C = BTV of the original
sub-mesh S.

4. Use the r basis functions (r < n) to obtain the compres-
sed sub-mesh Sr .

5. Repeat the steps (1–3) on the compressed 3D sub-mesh
Sr to get the spectral coefficients matrix Cr .

6. Duplicate the watermark d times, where d = �n/k�.
Let the new watermark sequence be Wd . Modify the
compressed spectral coefficients Cr by the watermark
sequence Wd . So,

Ĉr = Cr + αWd (4)

where Ĉr is the modified compressed spectral coeffi-
cients matrix, and α is a constant (watermark strength).

7. Express the compressed watermarked sub-mesh vertices
in the subspace using the modified spectral coefficients.
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(a) (b)

(c) (d)

Fig. 6 a, b Original 3D model with the corresponding watermark
model. c, d Close-up comparison. Elephant model with (4,076 vertices,
7,999 faces)

Thus,

V T
Wr

= Ĉ
T
r BT =

r∑
i=1

ĉT
ir bT

i

where V T
Wr

is the compressed sub-mesh vertex matrix.

8. Use the remaining basis functions that are not used in step
(4) to obtain the uncompressed watermarked sub-mesh
with vertex matrix given by

V T
W = V T

Wr
+

n∑
i=r+1

cT
i bT

i (5)

where C = {ci }n
r+1 is the spectral coefficients matrix of

the high frequency basis functions. Figure 6a, b shows a
3D model elephant with the corresponding watermarked
model. In Fig. 6c, d we used the zoom tool enlarge the
view of the 3D Elephant models head in order to clearly
show the performance of our proposed algorithm.

3.2 Watermark extraction process

We present a private watermarking scheme, meaning that the
original unwatermarked object is needed for the extraction
process. The original model helps getting a perfect realign-
ment with the watermarked model before starting the extrac-
tion process. In addition to the original model, the embedding

strength factor, basis number and the sizes of mesh-partitions
need to be saved in the secret key. An initial search step to find
the right original model from the owner database is needed.
We used the global geodesic measure proposed in [18]. The
idea is to represent an object by a probabilistic shape des-
criptor that measures the global geodesic distance between
two arbitrary points on the surface of an object. Unlike the
Euclidean distance which is more suitable for linear spaces,
the geodesic distance has the advantage of being able to cap-
ture the intrinsic geometric structure of the data. The mat-
ching task therefore becomes a one-dimensional comparison
problem between probability distributions which is clearly
much simpler than comparing 3D structures. The computa-
tional complexity of this method is O(m log m), where m is
the number of the centroids points of a 3D mesh model. Let
the original unwatermarked mesh be M and the watermarked
probably attacked mesh be M̂.

(i) Mesh Registration

We need to estimate the optimal rotation, scaling and transla-
tion to get M̂ back to its initial scale and location if it is chan-
ged. This registration process is very important in order to
extract the watermark successfully. We use the iterative clo-
sest point (ICP) method [19,20] to select the optimal trans-
formation (translation and rotation) to align two surfaces.
Sometimes it is necessary to provide initial alignment, espe-
cially with the cropping attack. For the scaling transform, if
both meshes represent the non-cropped objects or represent
exactly the same surface patches of an object, we need to align
both meshes to their initial position using ICP and then mea-
sure the ratio between the length of their corresponding axes.

(ii) Remeshing

After registration, a remeshing is usually necessary to deal
with the changes resulted by the attacks that may modify
the mesh topology like simplification algorithms. To map
the original topology we used the remeshing method [21]
by tracing a ray through each vertex of the original mesh
in the same direction of the normal vector of that vertex.
If an intersection point is not found, create a vertex with
the same coordinate as its reference in the original mesh.
After applying the registration and remeshing processes to
the watermarked and probably attacked mesh, we apply the
watermark extraction algorithm which can be summarized as
follows: The 3D mesh is partitioned into smaller sub-meshes
using the same procedure as in the embedding process. For
each sub-mesh:

1. Apply the first four steps of the embedding process with
the same number of basis functions to the initial and the
watermarked sub-meshes to obtain compressed version.
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2. Apply the steps (1–3) of the watermarking algorithm
on the compressed 3D sub-meshes. Then, to extract the
watermark vector we compare the spectral coefficients of
the initial compressed sub-mesh with the spectral coef-
ficients of the watermarked and probably attacked com-
pressed sub-mesh. wi

x = (̂xi −xi )/α, wi
y = (ŷi − yi )/α,

and wi
z = (̂zi −zi )/α, where (X̂ , Ŷ , Ẑ), (X, Y, Z) are the

spectral coefficients of the compressed watermarked and
the compressed initial sub-meshes, respectively, and α is
a constant saved in the secret key during the embedding
process.

3. Construct W = (Wx +Wy +Wz)/3, where Wx , Wy, and
Wz are the extracted watermark vectors in step (2).

4. Find the average watermark vector W d from W which
contains d = �n/k� watermark copies. Finally the
extracted vector is given by the decision rule:

Ŵd = {wdi }k
i=1 =

{−1 if wdi < 0

1 otherwise
(6)

5. If the correlation coefficient between Ŵd and W is grea-
ter than a predefined threshold, then the watermark is
present.

4 Experimental results

Our experiments were performed using a variety of 3D
models represented as triangle meshes. Table 1 shows the
characteristics of the 3D models used in our experiments
(collected by courtesies of the Stanford University, Avalon,
Cyberware, and the Max Planck Institute). We conducted
experiments to test the imperceptibility of the watermark
and the robustness against attacks. A comparison between
our proposed scheme and other spectral watermarking tech-
niques were also conducted.
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Fig. 7 Correlation coefficient results for the camel model using four
different strength factors and four noise rates attacks

4.1 Imperceptibility

In order to achieve high visual quality of the watermarked
model, the watermark strength factor α should be taken into
consideration. The most common embedding rule is the addi-
tive one: xi = xi + αwi where xi is the i th component of
the original vector, wi the i th sample of the watermark, and
α is the watermark strength. The parameter α is chosen by
the owner of the 3D model such that it is small enough to
keep the watermark imperceptible to the human observer, and
large enough to resist as many attacks as possible. Figures 7
and 8 depict the robustness of the camel model with noise
and smooth attacks, respectively. Different strength factors,
different noise rates, and different smoothing iterations have
been used. Clearly, a higher strength factor gives better cor-
relation coefficients between the original watermark vector
and the average vector of the extracted watermarks.

Figure 9 shows an example of the influence of the strength
factor on the watermark perceptibility. The watermark
embedded in the 3D models with a high strength factors is not
only perceptible to the human observer but also it may destroy

Table 1 characteristics of the
3D models used in our
experiments

Model No. of vertices No. of faces No. of patches No. of watermarks

Camel 4,001 8,050 7 750

Bunny 20,100 39,999 40 3,768

Max Plank 5,040 10,067 10 945

Elephant 4,067 7,999 8 762

Tank 15,186 13,902 31 2,847

Mesh part 2,496 5000 4 468

Cow 2,903 5,804 4 543

Rocker arm 10,000 20,000 18 1,875

Hand 10,113 19,801 18 1,896
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Fig. 8 Correlation coefficient results for the camel model using four
different strength factors and smoothing attacks with different number
of iterations
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Fig. 9 Watermark perceptibility. The watermarks embedded in the
Camel and Elephant models with different strength factors

the overall geometric structure of the models. So there is a
trade-off between the robustness of the watermarked model
against attacks and the degradation of the original 3D mesh.
Figure 10 shows the best strength factor α for the 3D camel
model and it is chosen based on the minimization of the error
rate.

To quantify the imperceptibility of the proposed approach,
we propose a nonlinear visual error D(M, M̂) defined bet-
ween the original model M and the watermarked model M̂

as follows

D(M, M̂)=
(

m∑
i=1

‖vi − v̂i‖2 + ‖A(vi ) − A(v̂i )‖2

)/
(2m)

0.001 0.01 0.02 0.05 0.08 
10−3 

10−2 

10−1 

Noise attack, amplitude = 0.35% 

Fig. 10 False-positive and false-negative alarm for different values of
the strength factor α

where {vi }m
i=1 and {v̂i }m

i=1 are the mesh vertex sets of M

and M̂, respectively. A is a nonlinear diffusion operator [22]
defined as

A(vi ) = (1/di )
∑

v j ∈v�
i

(vi − v j )
(

g(|∇vi |) + g(|∇v j |)
)

(7)

where the gradient magnitudes are given by

|∇vi | =
√√√√ ∑

v j ∈v�
i

∥∥∥(vi/
√

di ) − (v j/
√

d j )

∥∥∥2
, (8)

|∇v j | =
√√√√ ∑

vk∈v�
j

∥∥∥(v j/
√

d j ) − (vk)/(
√

dk)

∥∥∥2
(9)

and g(x) = 1�(1 + x2/c2) is the Cauchy weight function
(see Fig. 11) with a constant tuning parameter c that needs
to be estimated. It can be shown (see [23]) that the 95%
asymptotic efficiency on the standard Gaussian distribution
is obtained with c = 2.3849 which is used in all the experi-
mental results. Note that the visual error D(M, M̂) requires
the use of two neighboring rings as depicted in Fig. 12. Intui-
tively, the anisotropic operator A introduces some smoothing
effect which may be explained as follows: around the sharp
features of the 3D mesh where the vertex gradient magni-
tudes are large, the non-linear diffusion operator in Eq. (7)
used to preserve the sharp feature of the 3D mesh. Moreover,
in the flat regions of the 3D mesh where the vertex gradient
magnitudes are relatively small, Eq. (7) is reduced to a linear
operator which tends to checks the distortion of the watermar-
ked model in these flat areas (smoothness of the watermarked
model).
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Fig. 11 Cauchy weight function with c = 2.3849

Fig. 12 Illustration of two neighboring rings

We used also the geometric Laplacian distance error
[16,24] defined as

G(M, M̂) =
(

m∑
i=1

‖vi − v̂i‖ + ‖I(vi ) − I(v̂i )‖2

)/
(2m)

where I is the geometric Laplacian operator given by

I(vi ) = vi −
⎛
⎝ ∑

v j ∈v∗
i

�−1
i j v j

⎞
⎠ / ⎛

⎝ ∑
v j ∈v∗

i

�−1
i j

⎞
⎠ (10)

where �i j is the Euclidian distance between vi and v j . This
visual metric consists of a sum of two error terms between
the original and the watermarked vertex positions: the first
term provides a measure of geometric closeness between
the correct and the watermarked vertex locations, and the
second term captures the smoothness properties of these
vertices.

The proposed metric error is a nonlinear extension of the
geometric distance error introduced in [16]. The main diffe-
rence between the two metric errors is that the second term
of geometric distance error is defined in terms of a linear
operator that tends to smooth more, whereas the second term
of the non-linear diffusion operator that tends to smooth less
and hence leads to a much better performance of the mesh
geometric structures. Figure 13 shows the nonlinear diffusion
operator error and the geometric Laplacian distance error for
three different watermarked models with different strength
factors. Clearly our experimental results show that the pro-
posed method gives low visual metric errors that guarantee
the imperceptibility of the watermark.

0.90.850.80.70.6
10−3

10−2

10−1

Noise attack, amplitude = 0.35%

Fig. 14 False-positive and false-negative alarm for different values of
the threshold

Fig. 13 Nonlinear visual error and the geometric Laplacian distance error changes with different strength factors a Max Planck, b mesh part, and
c elephant
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Fig. 15 Robustness against
random noise and Laplacian
smoothing attacks. a Max
Planck model with
(σ 2 = 0.0035) additive noise.
b Max Planck model after
(7 iterations) of the low pass
filter. c, d Detector responses for
a and b, respectively
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4.2 Robustness

Robustness is an important factor that we need to consider
when designing a watermark system for copyright protec-
tion. Attacks do not necessarily mean the removal of the
watermark; they can be operations to make the watermark
undetectable [25,26]. We tested the robustness of the propo-
sed algorithm with different 3D models (see Table 1) against
various attacks including mesh transformation, mesh simpli-
fication, additive random noise, mesh smoothing, compres-
sion, and cropping. Sequences of 32 binary digits {−1, 1} are
randomly generated and used as watermarks. In the expe-
riments we display the attacked models with the detector
response for the real watermark, and 499 randomly other
generated watermarks. For all the detector response figures
the correlation between the original watermark and the extrac-
ted watermark is located at 250 on the X -axis and the dotted
line at 0.8 on the Y -axis represents the threshold. The thre-
shold is chosen to decrease false-positive (presenting incor-
rectly the watermark in the model) and false-negative alarm
(falling to detect the watermarked model). After running our

algorithm 500 times for the noise attack (amplitude 0.35%),
we calculated the false-positive and false-negative alarm for
different values of the threshold. The algorithm run the best
as depicted in Fig. 14 with threshold = 0.8. If the correlation
is larger than 0.8, then the watermark is present.

The non-linear diffusion operator is used not only to quan-
tify the imperceptibility of the proposed approach, but also to
estimate the watermarking strength factor leading to a much
better performance of the mesh geometric structures. More
specifically, the non-linear diffusion measure is calculated
for every sub-mesh by using a slightly lower strength factor
for all the sub-meshes with a high value of the diffusion ope-
rator and a higher strength factor for all the sub-meshes with
a low value of the diffusion operator. This adaptive strength
factor leads to an increased improvement of the robustness
against attack.

4.2.1 Additive random noise

In order to test the robustness of the watermark, an addi-
tive Gaussian noise was added to the watermarked mesh by

123



384 SIViP (2009) 3:375–389

Fig. 16 Robustness against
geometric transformation and
compression attacks. a Max
Planck model is scaled in Z
direction by factor of 2 then
rotated by 20◦ around Y -axis.
b Compressed Max Planck
model of 3,000 basis functions.
c, d Detector responses for
a and b, respectively
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summing a random vector to each vertex in the model. See
Fig. 15a for the attacked Max Planck model by Gaussian ran-
dom noise (σ 2 = 0.0035). The watermark could be extrac-
ted without any loss. The detector response is illustrated in
Fig. 15c. The watermark is lost when we increased the noise
(σ 2 = 0.0045) for the Max Planck model.

4.2.2 Mesh smoothing

Smoothing algorithms may be used by an attacker to destroy
the watermark by moving the node geometry of the water-
marked mesh. We used the Laplacian filter algorithm [27]
that adjusts the location of each mesh vertex to the centroid
of its neighbouring vertices. Hence the high frequency com-
ponents are those that are most affected by low pass filtering.
Our proposed algorithm is robust against smoothing attack as
we expected because the watermark was embedded in the low
frequency components. Figure 15b depicts the attacked Max
Planck model by seven smoothing iterations, and Fig. 15d
shows the detector response. As can be seen, the mesh is

significantly smoothed but the watermark is still perfectly
detectable.

4.2.3 Geometric transformations

These are the simplest attacks used to test the watermark
detectors. Like other watermarking algorithms that use the
3D registration and the original model, the proposed approach
is robust against geometric attacks because the transforma-
tions that are applied to the mesh can be inverted using mesh
registration. In Fig. 16a the attacked Max Planck model is
obtained in two steps. First, the model is scaled in the Z
direction by a factor of 2. Second, the scaled model is rota-
ted around Y -axis by 20◦. Figure 16c depicts the watermark
extraction response after the registration process was applied.
Clearly the detector is still able to recover the watermark.

4.2.4 Mesh compression

Mesh compression has recently become one of the most
effective attacks because the new compression techniques
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Fig. 17 Robustness against
cropping and mesh
simplification attacks.
a Cropped 600 vertices from
Max Planck model. b Max
Planck simplified down to 2,502
vertices and 5,000 faces. c, d
Detector responses for a and b,
respectively
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[16,28,29] reach a very significant compression ratio with
very small loss in the mesh quality. We evaluated the robust-
ness of our method against a compression attack [16]. The
proposed method is robust against compression because
the watermark is embedded in the spectral coefficient of the
compressed mesh. Figure 16b depicts the compressed Max
Planck model constructed with 3,000 basis functions from
the original mesh of 5,040 basis functions. The detector res-
ponse is shown in Fig. 16d.

4.2.5 Mesh cropping

This technique may be used by an attacker to destroy the
watermark by removing part of the watermarked mesh. We
verified the robustness of the proposed scheme against mesh
cropping by trying to extract the watermark from the cropped
3D mesh. Since the watermark is embedded repeatedly using
mesh partitioning the watermark can be fully recovered from
the deteriorated cropped mesh. Figure 17a depicts the crop-
ped Max Planck model (600 vertices have been removed).

The watermark is recovered perfectly from the cropped model
as it is shown in the detector response in Fig. 17c.

4.2.6 Mesh simplification

This method may also be used by an attacker to reduce the
number of faces of the 3D mesh. This reduction could remove
or destroy the watermark. See Fig. 17b for the simplified Max
Planck model. The mesh is simplified down from 5,040 ver-
tices and 10,067 faces to 2,502 vertices and 5,000 faces. Our
proposed method is robust against the simplification attack
because of the remeshing process. The detector response for
the attacked mesh in Fig. 17b is illustrated in Fig. 17d.

We also tested the performance of our proposed algorithm
using a combination of the previous attacks. Figure 18a, b
show the watermarked Max Planck model with multiple
attacks. In Fig. 18a the watermarked model is passed through
low pass filtering (7 iterations), and then a cropping attack
has been applied to remove 540 vertices from the smoothed
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Fig. 18 Robustness against
multiple attacks. a Max Planck
model attacked with smoothing
(8 iterations) and cropping 540
vertices. b Max Planck model
attacked with additive noise
(σ 2 = 0.0025) then simplified
to (80%) of original faces. c, d
Detector responses for a and b,
respectively
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Fig. 19 Watermarked elephant model with different attacks and their
corresponding detector responses: for each attack the correlation coeffi-
cient between the extracted watermark and 499 different random water-
marks are shown (250 on X -axis is the correlation with the real water-

mark). a, e Additive noise (σ 2 = 0.007), b, f Low pass filter 9 iterations,
c, g Compression 1,500 basis functions, d, h scaling in X direction, e,
i cropping 1700 vertices and smoothing seven iterations
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Fig. 20 Smoothing attack with
different iteration numbers:
a 12, b 13, c 10, d 30 and e 12

(a) (b) (c) (d) (e)

Fig. 21 Gaussian noise attack
with different standard
deviations: a 0.013, b 0.013,
c 0.0095, d 0.0095 and e 0.0095

(a) (b) (c) (d) (e)

Fig. 22 Compression attack
with different numbers of basis
functions: a 800, b 250, c 400,
d 1,000 and e 600

(a) (b) (c) (d) (e)

mesh. Figure 18b depicts the attacked model after adding
additive random noise of (σ 2 = 0.0025) and being sim-
plified down to 80% of the original vertices. In both cases
the proposed algorithm was able to recover the watermark
fully [see the detector responses for (a,b) in (c,d), respecti-
vely]. More experiments with different models are shown in
Fig. 19.

4.3 Comparisons with existing techniques

We conducted several experiments to compare the robustness
of the proposed method with related existing techniques that
use mesh spectral coefficients vectors to embed the water-
mark in the frequency domain, and in particular with water-
marking 3D meshes in the spectral domain [6] and its exten-
sion [21]. In our experiments, we embedded the watermark
in all the spectral coefficients vectors. However, in [6] the
lowest five spectral coefficients are used to realign the origi-
nal and the watermarked mesh before applying the watermark
extraction process. So in [6] the watermark is embedded in
all the (n − 5) higher spectral coefficients.

In our experimental comparisons we used six different 3D
models: camel, elephant, bunny, cow, rocker-arm, and hand,
and a sequences of 16 binary digits {−1, 1} are randomly
generated and used as watermarks. For each attack we used
various strengths. Table 2 shows the comparison results of

the proposed watermarking scheme with the methods intro-
duced in [6,21] against smoothing attack. Three different

Table 2 Comparison results: robustness against smoothing attack

Model α No. of Corr. Corr. Corr.
iterations proposed [21] [6]

Camel 0.02 11 1 0.6831 0.5164

13 1 −0.5222 −0.4229

15 0.8783 −0.9853 −0.6181

Elephant 0.02 10 1 0.5146 0.2

12 0. 8783 0.0667 −0.2437

15 0.8783 −0.3333 −0.3333

Bunny 0.0002 10 1 0.6 0.4667

12 1 0.3333 −0.4472

15 1 −0.2 −0.5164

Cow 0.01 10 1 0.6831 0.3333

15 0.8783 0 0.0667

18 0.7746 −0.5164 −0.7746

Rocker-arm 0.0001 10 1 0.8783 0.8783

13 1 −0.5164 −0.7333

15 0.8783 −0.7333 −0.8704

Hand 0.09 35 1 0.8704 0.7454

40 1 0.7746 0.6202

45 1 0.7454 0.6

The boldface numbers indicate the best correlation coefficients
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Table 3 Comparison results: robustness against additive noise attack

Model α σ 2 Corr. Corr. Corr.
proposed [21] [6]

Camel 0.02 0.013 1 0.8783 0.8783

0.015 0.8783 0.8783 0.8704

0.017 0.8704 0.8704 0.8704

Elephant 0.02 0.0095 1 1 0.8783

0.011 0.8783 0.8704 0.7333

0.013 0.7333 0.7454 0.7333

Bunny 0.0002 0.013 1 1 0.8783

0.015 0.8783 1 0.8704

0.017 0.8783 0.8704 0.7746

Cow 0.01 0.0095 1 1 1

0.012 0.8783 0.8704 1

0.015 0.7333 0.7746 0.8704

Rocker-arm 0.0001 0.095 1 1 1

0.012 0.8783 1 0.8783

0.015 0.8704 0.8783 0.8783

Hand 0.09 0.0095 1 1 0.8783

0.012 0.8783 0.8783 0.8704

0.015 0.5919 0.6 0.5222

The boldface numbers indicate the best correlation coefficients

Table 4 Comparison results: robustness against compression attack

Model α No. of comp. Corr. Corr. Corr.
basis proposed [21] [6]

Camel 0.02 300 1 0.8783 0.8783

250 0.8783 0.7746 0.6931

200 0.6831 0.6 0.5222

Elephant 0.02 1700 1 0.6181 0.8783

1500 1 0.5164 0.7746

1300 0.7746 0.4229 0.6831

Bunny 0.0002 800 1 0.731 0.8783

600 1 0.5164 0.8704

500 0.8783 0.3133 0.5164

Cow 0.01 500 1 0.7746 0.5146

400 0.8783 0.5164 0.333

300 0.7746 0.4229 0.2582

Rocker-arm 0.0001 800 1 0.8783 0.8783

600 1 0.6831 0.6831

500 0.8783 0.3587 0.5164

Hand 0.09 1200 1 0.8783 0.8783

1000 0.8783 0.7333 0.7333

800 0.7746 0.4667 0.6181

The boldface numbers indicate the best correlation coefficients

numbers of iterations were applied. Clearly our proposed
scheme performs the best in terms of the robustness against
the smoothing attack. An example of the smoothing attack

Table 5 Comparison results: robustness against smoothing and simpli-
fication attacks

Model α Simpl. No. of Corr. Corr. Corr.
rate (%) iterations proposed [21] [6]

Camel 0.02 20 9 0.8783 0.7746 0.6541

Elephant 0.02 30 8 1 0.8704 0.3456

Bunny 0.0002 35 7 1 0.6 0.522

Cow 0.01 20 9 0.8783 0.7746 0.5146

Rocker-arm 0.0001 35 8 1 0.8783 0.8704

Hand 0.09 30 25 1 1 0.8783

The boldface numbers indicate the best correlation coefficients

is shown in Fig. 20. Resistance against the noise attack is
shown in Table 3 where Gaussian random noise was added
to each vertex of the watermarked model with three dif-
ferent standard deviations. Figure 21 shows the noise attack
on different models. All the spectral techniques have good
resistance against the noise attack because the watermark
is embedded in all the spectral coefficients. To evaluate the
robustness of the three techniques against the compression
attack, we first simplified the mesh by reducing the number
of faces to 10,000 for all the large the 3D models, then the
3D models are compressed using the algorithm proposed in
[16]. The third column in Table 4 indicates the number of the
basis functions used to compress the watermarked models.
The correlation coefficients shown in Table 4 clearly demons-
trate that our proposed scheme outperforms the existing tech-
niques, and an example is shown in Fig. 22. To evaluate the
robustness against smoothing and simplification attacks, we
used various simplification rates and a fixed smoothing itera-
tion number. Table 5 demonstrates that the proposed method
performs better than the other techniques against the com-
bination of simplification and smoothing attack. This better
performance is in fact consistent with a variety of 3D models
used for experimentation.

4.4 Computational complexity

The computational complexity and memory requirements of
the watermark embedding process of our proposed scheme is
the same as for the other two schemes proposed in [6,21]. The
computation of the spectral basis functions of the Laplacian
matrix is the most expensive and it is common to all the
spectral domain schemes. The spectral analysis involves the
computation of the basis functions of the Laplacian matrix
of the 3D mesh. We partition the mesh into sub-meshes of
n vertices each. The algorithm requires O(n3) operations
and stores O(n2) elements of the calculated eigenvectors for
straightforward implementations. Significant improvement
could be further achieved by using the fast multi-resolution
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method [31] on the Laplacian matrix with an overall time
complexity of O(n).

5 Conclusions

In this paper, we proposed a simple and computationally inex-
pensive watermarking methodology for embedding a water-
mark in the frequency domain of 3D models. The key idea
is to encode a watermark vector repeatedly into the spectral
coefficients of the compressed 3D mesh. A nonlinear visual
error was used to test the perceptual quality of the watermar-
ked 3D mesh. The performance of the proposed method was
evaluated through extensive experiments that clearly showed
a perfect resiliency against a wide range of attacks. For future
work, we plan to analyze the relationship between the num-
ber of basis vectors used in the compression process, water-
mark length, mesh partition size, and strength factor to further
improve the robustness against attacks.
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