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Fine-tuning U-Net for ultrasound image
segmentation: different layers, different outcomes.

Mina Amiri, Rupert Brooks, and Hassan Rivaz

Abstract—One way to resolve the problem of scarce and
expensive data in deep learning for medical applications is using
transfer learning and fine-tuning a network which has been
trained on a large dataset. The common practice in transfer
learning is to keep the shallow layers unchanged and to modify
deeper layers according to the new dataset. This approach may
not work when using a U-Net and when moving from a different
domain to ultrasound (US) images due to their drastically
different appearance. In this study, we investigated the effect
of fine-tuning different sets of layers of a pre-trained U-Net for
US image segmentation. Two different schemes were analyzed,
based on two different definitions of shallow and deep layers. We
studied simulated US images, as well as two human US datasets.
We also included a chest X-ray dataset. The results showed that
choosing which layers to fine-tune is a critical task. In particular,
they demonstrated that fine-tuning the last layers of the network,
which is the common practice for classification networks, is often
the worst strategy. It may therefore be more appropriate to fine-
tune the shallow layers rather than deep layers in US image
segmentation when using a U-Net. Shallow layers learn lower
level features which are critical in automatic segmentation of
medical images. Even when a large US dataset is available, we
also observed that fine-tuning shallow layers is a faster approach
compared to fine-tuning the whole network.

Index Terms—Ultrasound imaging, Segmentation, Transfer
learning, U-Net.

I. INTRODUCTION

TRAINING a deep convolutional neural network (CNN)
from scratch is not easy, particularly in medical appli-

cations, where generating annotated data requires spending
a large amount of time and money. Transfer learning is an
alternative to full training, where the knowledge learned by a
network on a different and usually large dataset is transferred
to another application. This can be done by fine-tuning a few
layers or retraining the whole network. It has been shown in
several studies that it is feasible to use non-medical images
(for instance natural images) as the source dataset for transfer
learning to the domain of medical images [1]–[3]. This way,
the model benefits from having a large number of available
images for training, which at a minimum provides a suitable
parameter initialization for further training in the new domain.
When the target dataset in the new domain is small, the
recommended approach in transfer learning is fine-tuning, e.g.
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to keep the shallow layers of the network unchanged, and to
update the deep layers according to the new dataset [4].

It has been shown that low-level features are learned by
shallow layers of a CNN, while more semantic and high-
level features are recognized by deeper layers [5]. Therefore,
the common approach of fine-tuning the deepest layers of a
network stems from the assumption that low-level features of
different datasets (associated with shallow layers) are similar,
and high-level features of datasets (associated with deeper
layers) are specific to those datasets and should be learned
independently for each application. This assumption may not
hold true in medical applications, for example when applying
transfer learning from natural images to ultrasound (US)
imaging, the source and target datasets are extremely differ-
ent. Even basic and low-level features could be substantially
different for medical images compared to natural images.

US imaging is a standard modality for many diagnostic and
monitoring purposes including heart and vascular imaging,
breast cancer screening and fetus monitoring. Breast US
segmentation and tumor region extraction is an important
step in clinical diagnosis of breast cancer which is the most
common form of cancer among women worldwide. Based
on the segmentation results, the tumor can be categorized
and further clinical actions can be planned. There has been
significant research into developing automatic methods for
segmentation of breast US images as well as other anatom-
ical structures (such as prostate, kidney, fetus, etc.) [6], [7].
The automatic methods proposed for breast US segmentation
can be classified into thresholding-based, clustering-based,
watershed-based, graph-based, active contour model, Markov
random field and classic machine learning methods [8], [9].
Deep learning techniques such as CNNs have also been widely
utilized recently [10]–[12]. U-Net [13], for instance, has been
shown to be a fast and precise technique for medical image
segmentation, and has been successfully adapted to segment
US images [12], [14]–[17]. It was indeed shown to be the best
architecture for the segmentation of US images [18]. Several
methods have also been proposed for segmentation of breast
volumetric images [19], [20] including the 3D version of U-
Net [21].

Another important and common application of medical US
is monitoring and screening pregnant women. During the US
screening examination, several measurements of the fetus are
computed to assess its growth. Among them, the head circum-
ference is a critical index of the gestational age and the fetal
development process. Several methods have been proposed
for automatic head circumference measurement using US data
[22]–[25].
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Many previous works on US have used transfer learning
due to the limited data, but unique characteristics of US
have not been considered. In particular, US is a coherent
imaging modality, where constructive interference of the scat-
tered waves leads to a characteristic speckle noise, which is
not present in natural images or images from other medical
modalities (e.g. radiographs).

U-Net transfer learning has been studied for magnetic
resonance images when a model has been pre-trained on a
large number of medical images of a specific disease and has
been utilised for a different disease [26]. However, only the
last layers and the decoder (expanding) path have been fine-
tuned, and no analysis has been done on shallow layers. This is
indeed the common approach in transfer learning, which may
not be the correct approach in segmentation applications when
using U-Net. In this study, we questioned the effectiveness of
fine-tuning the last layers of a U-Net in segmentation.

We investigated transfer learning when we had a domain
shift from natural images to medical US images. Because of
the specific structure of the U-net and its skip connection
layers, there is some ambiguity in the definition of deep and
shallow layers in this network, something that we had not
considered in our recent work [27]. Herein, we analyzed the
effect of fine-tuning a pre-trained U-Net network in several
different experiments based on two different definitions of
deep and shallow layers to find the best strategy for transfer
learning of US images. We studied segmentation of simulated
US data as well as breast and fetal US images. We also
included an X-ray dataset as control. Our main findings are as
follows:

• Unlike the common approach in classification, fine-tuning
the last layers of a U-Net does not provide good results
in US image segmentation.

• Removing the bottleneck (shown as block 5 in Fig. 1)
from fine-tuning results in an equivalent performance as
fine-tuning the whole network. The number of parameters
in the bottleneck is about half the number of parameters
in the whole network, an important advantage for freezing
the bottleneck.

• It is not just the number of parameters which predicts
the performance of a fine-tuning strategy. The depth and
connections of a layer are also critical.

II. METHODOLOGY

This section provides an overview of the network and differ-
ent datasets used in this study. Details of pre training, transfer
learning and fine-tuning the network are also presented.

A. Network Architecture

We used nearly the same U-Net architecture proposed in the
original paper [13], except for having replaced the transposed
convolutional layers by bilinear upsampling followed by 2x2
convolution. The network consisted of blocks of two 3x3
convolutional layers with ReLU activation. Each block was
connected to the next block by either a maxpooling or an
upsampling operation (Fig. 1). Each layer in the first block
had 64 filters. After each maxpooling operation, the number
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Fig. 1. Schematic of the U-Net [13] and the fine-tuning strategies. Green
blocks are the blocks included in fine-tuning, and blue ones are frozen.

of filters was increased by a factor of two and after each
upsampling operation, the number of filters was decreased by
a factor of two. The last layer was a 1 × 1 convolutional
layer with sigmoid activation to map the feature vector to the
interval of 0 and 1. For evaluation purposes, we considered
the threshold value of 0.5, so that pixels with values above
0.5 were considered as 1, while pixels with values below 0.5
were considered as 0. We did not use batch normalization,
but we used the dropout technique (50%) just after the
bottleneck (block 5). In total, this network had around 31
million parameters.

B. Experimental Design
Due to the presence of skip connections, the notion of

shallow or deep layers in the network is less straightforward
in a U-Net configuration than in a typical feedforward classifi-
cation network. We considered two conceptual subdivisions of
the network to explore which parts are more relevant for fine
tuning. Within each conceptual subdivision of the network,
the experiments empirically compared several possible ways
to select components for fine tuning.

One can consider the U-Net as an autoencoder with skip
connections. From this point of view, layer 1 (at the start
of the encoder) would be the shallowest, and layer 9 (at the
output of the decoder) would be the deepest. We called this
interpretation scheme 1. We began by dividing the network
precisely in half by path length, splitting in the middle of the
bottleneck layer. As early experiments showed significantly
greater gains when the contracting (encoder) component was
fine-tuned, this component was further subdivided, with exper-
iments that quantified the gain from fine-tuning only the first
block (1), the first two blocks (1,2) or the second half of the
encoder (3,4). We also studied block 9 only as the common
approach in transfer learning.
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Alternatively, one may consider the top of the “U” to be the
shallowest part due to the presence of the skip connections,
and the bottleneck to be the deepest part. This is closely related
to the interpretation of residual networks as an ensemble of
networks within a network [28], where each possible path
through the network contributes to the whole, and shorter
paths have greater importance. From this point of view, the
shorter the minimum paths through the network that a block
contributes to, the “shallower” it is. Due to the network
structure, this also has the effect that in this interpretation the
shallower blocks contribute to more total paths than the deeper
ones. Note that layers 1 and 9 are involved in all paths through
the network, and layer 5 is only involved on one path through
the network. We have described this family of approaches as
scheme 2.

In scheme 2, we began by dividing the network as closely
in half as possible (in terms of number of parameters). The
bottleneck (block 5) alone contains approximately half of the
parameters of the network. Further subdivisions consistent
with this interpretation were also considered; blocks 1-9 alone,
blocks 1,2,8,9 alone and blocks 3-7 alone.

C. Datasets

In order to pre-train the network, we used the XPIE dataset
which contains 10000 segmented natural images [29]. The
images in this dataset are not gray scale. To have a more
similar pre-training dataset to the US dataset, we converted
these images into black and white prior to feeding to the
network. The pre-trained network was then used for the task
of segmentation of US B-mode images.

Our first US dataset consists of 85 simulated US B-
mode images (SUS) generated by a MATLAB-based publicly
available US simulation software, Field II [30], [31]. The
simulation was done for 50 RF lines, with a center frequency
of 3.5 MHz and sampling frequency of 100MHz. Each image
had a random number of circle or ellipsoid shape hypoechoic
lesions. The intensities for the lesions were set k times the
background (0 < k < 1). The lesions were randomly located
inside the simulated phantom. More details of the simulation
procedure can be found in [32].

We also studied a breast US imaging dataset (BUS) con-
taining 163 images of the breast with either benign lesions
or malignant tumors [11]. We also included another US
dataset containing 805 unique 2D images of fetal head (FUS)
[33]. The main purpose of this dataset was to automatically
measure the head circumference, however, in this study we
used it for segmentation of the head. It is evident that a good
head segmentation will result in a good head circumference
estimation.

In order to investigate whether the results were specific to
the US imaging, we repeated the analysis for a chest X-ray
dataset with a total of 240 images [34], wherein we used the
pre-trained network to segment both lungs. Fig. 2 shows a
few examples of images from the different datasets used in
this study.

Data Augmentation: As the size of US and X-ray datasets
was small, we implemented data augmentation techniques to

Fig. 2. Some examples from different datasets used in this study and their
associated masks. From top to bottom: XPIE dataset, simulated data, breast US
dataset, fetal US dataset, and chest X-ray dataset. The XPIE images have very
different appearances when compared to X-ray or US images. The speckle
noise due to the image formation process is apparent in the US images.

improve the network performance, invariance and robustness.
For these datasets, the network should be robust to shift, flip-
ping, shearing and zooming. We implemented on-the-fly data
augmentation techniques by generating smooth deformations
of images using random and small degrees of shifting (with
the shift range of 0.05 of the total length), zooming (random
zoom in the range of ± 0.05), and horizontal flipping. For pre-
training the network using natural images, we did not augment
the data, as the size of the dataset was large, and the network
was only used as a pre-trained network.

D. Analysis

We first trained a U-Net using the XPIE dataset. The weights
of this pre-trained network were then utilized as an initial
point for all subsequent fine tunings of the network, across
all folds. All images were resized to 256 × 256 pixels and
were normalized to [0,1]. We used 5-fold cross validation to
evaluate the performance of the network. Each dataset was
randomly divided into five folds. Each fold was used as a
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held out test set while the network is trained using the other 4
folds. In the training procedure, 20% of the training data was
used for validation.

To investigate the effect of the dataset size on the results, we
repeated the whole five-fold cross validation using 80, 50 and
5 percent of the data as the training set, 20% of which used
for validation (respectively 16%, 10% and 1% of the entire
dataset). The total number of images used in each scenario
for all datasets is presented in Table I. The 50 or 5 percent of
the total dataset were selected out of the training data.

We employed the early stopping technique, wherein training
stops when a minimum loss was achieved on the validation
set and no improvement was observed for 20 epochs, and the
best performing model on the validation set was saved for
evaluating the test set. Training was performed using ADAM,
a binary cross entropy loss and a batch size of 2. Learning
rate was set as 10−4. If early stopping did not occur in 200
epochs, the training was considered failed.

To be able to compare different fine-tuning scenarios, all
experiments used the same folds, and the performance of the
network was then assessed using the same test set (the entire
held out fold) for 5, 50 and 80% of the data. To compensate
for the fewer number of images when analyzing 5 or 50% of
the data and therefore fewer number of optimization steps, we
considered the same number of batches in an epoch for all
different experiments in each dataset, equal to the number of
batches when 80% of the data was used for training.

E. Performance Metric

To evaluate the performance of the network in segmenting
the images, we used Dice score. Dice score is an index of
similarity between two samples, defined as:

Dice score =
2TP

2TP + FN + FP
(1)

where TP (true-positive) denotes the number of elements
correctly predicted as the mask, FN (false-negative) denotes
the number of ground-truth mask elements falsely predicted as
the background, and FP (false-positive) denotes the number of
elements in the background, falsely predicted as the mask.
We employed t-test to compare results of fine-tuning the
shallow vs. deep paths in two schemes. We also tested whether
transfer learning significantly improved the segmentation and
whether including more images in the training phase affected
the results. We corrected all results for multiple comparisons
using Tukey’s method.

III. RESULTS

The results of different fine-tuning schemes on 80, 50 and
5 percent of the datasets are provided in this section. The
average Dice score of different strategies for all datasets and
all training-set sizes are provided in Table II.

A. The best and the worst strategies

Overall, among all different strategies we included in this
study, fine-tuning the whole network, all network except block
5 and the contracting path yielded the best results. It is
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Fig. 3. Average Dice score when the network is trained from scratch compared
to when the pre-trained network is totally fine-tuned, for different numbers of
images.

interesting that removing the bottleneck (block 5), with 45.6%
of total number of parameters, from the fine-tuning did not
reduce the results considerably. In fact, when the number
of images was low (training with 5% of SUS, BUS and X-
ray datasets), removing block 5 from fine-tuning resulted in
the best performance, even better than fine-tuning the whole
network.

Fine-tuning blocks 1, 9 and 5 were the worst strategies.
Block 9 is the last block according to scheme 1 and block
5 is the deepest block according to scheme 2. It is therefore
evident that fine-tuning last layers in US image segmentation
using U-Net is not a good practice.

B. Transfer-learning vs. training from scratch

Fig. 3 represents the results of comparing the segmentation
performance when the network was trained from scratch and
when the pre-trained network is fine-tuned using different
number of images. For all datasets and all different fractions
(80%, 50% and 5%) studied in this paper, fine-tuning the
whole pre-trained network outperformed training from scratch
(Table II). This difference was significant (p < 0.05, Tukey
corrected) when 5% of the data was used in all datasets, but
did not reach statistical significance when a greater number
of images was used. However, when training the network
from scratch, the training was not as easy and stable as
employing transfer learning. The convergence rate was 100%
when retraining the pre-trained network even with 5% of the
data, but training did not converge in 200 epochs in several
folds when training from scratch. When using 80% of the data,
training failed in 1 out of 5 folds for SUS and BUS datasets.
When using 50% of the data, training failed in 1 out of 5
folds for BUS and X-ray datasets, and when using 5% of the
data, training failed in 2 out of 5 folds for SUS, BUS and
FUS datasets. The results presented in the figure are derived
by averaging over successful training instances. It is important
to note that we were able to train the network by changing
parameter initialization in the failed folds.
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TABLE I
THE NUMBER OF IMAGES IN TRAINING, VALIDATION AND TEST SETS IN EACH EXPERIMENT.

Dataset Size 80% 50% 5% Test
Training Validation Training Validation Training Validation (20%)

SUS 85 54 14 34 9 3 1 17
BUS 163 104 26 66 16 6 2 33
FUS 805 515 129 322 81 32 8 161
X-ray 240 154 38 96 24 10 2 48

TABLE II
THE AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF DICE SCORE FOR DIFFERENT DATASETS AND DIFFERENT SIZES OF THE TRAINING SET.

THE COLOR CODING REPRESENT THE PERFORMANCE OF EACH SCENARIO IN EACH ROW (FROM GREEN TO RED: FROM THE BEST TO THE WORST
PERFORMANCE). THE NUMBER OF PARAMETERS AND THE FRACTION OF TOTAL PARAMETERS IN EACH EXPERIMENT ARE PRESENTED IN FIRST ROWS.
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(0.047) 
0.787 

(0.051) 
0.799 

(0.052) 
0.620 

(0.044) 
0.711 

(0.033) 
0.754 

(0.030) 
0.744 

(0.037) 
0.718 

(0.036) 
0.788 

(0.025) 

50% 
0.797 
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(0.028) 
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0.971 
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0.961 
(0.005) 

50% 
0.971 

(0.003) 
0.968 

(0.003) 
0.959 

(0.005) 
0.970 

(0.003) 
0.959 

(0.003) 
0.960 

(0.004) 
0.956 

(0.005) 
0.920 

(0.003) 
0.675 

(0.036) 
0.929 

(0.007) 
0.946 

(0.003) 
0.953 

(0.001) 
0.954 

(0.007) 

5% 
0.955 

(0.009) 
0.954 

(0.009) 
0.930 

(0.004) 
0.952 

(0.010) 
0.940 

(0.009) 
0.945 

(0.008) 
0.955 

(0.007) 
0.930 

(0.011) 
0.670 

(0.028) 
0.931 

(0.004) 
0.936 

(0.007) 
0.940 

(0.005) 
0.806 

(0.017) 

X- ray 

80% 
0.979 

(0.000) 
0.98 

(0.001) 
0.977 

(0.001) 
0.979 

(0.000) 
0.973 

(0.001) 
0.977 

(0.001) 
0.978 

(0.001) 
0.960 
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0.948 
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(0.001) 

5% 
0.973 
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(0.004) 
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(0.003) 
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(0.003) 
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0.972 

(0.002) 
0.940 

(0.008) 
0.897 

(0.013) 
0.950 

(0.012) 
0.922 

(0.027) 
0.946 

(0.005) 
0.959 

(0.010) 

 

C. Fine-tuning only parts of the network

In scheme 1, training the shallow path and freezing the deep
path led to better results compared to freezing the shallow path
and fine-tuning the deep path for all datasets (Fig. 4). Fig.
5 represents some examples of the segmentation results on
the test set of BUS and SUS dataset. It is noteworthy that
the number of parameters in the shallow path is less than
half of the number of parameters in the deep path (Table
II), but still we achieved better results by training fewer
number of parameters. Similar results were observed when
fewer images were used, and the difference between these two
scenarios became even more evident (Fig. 4). The difference
was statistically significant for all dataset sizes (p < 0.05,
Tukey corrected), except for the SUS dataset.

As explained before and seen in Fig.1, we further divided
the contracting path into two parts (blocks (1,2) vs. blocks
(3,4)). None of these two parts were consistently better than
the other (Table II), and fine-tuning the whole contracting path
was significantly better than fine-tuning either of these two
parts (p < 0.05).

The well-known approach to transfer learning in computer
vision classification applications, is fine-tuning the last layers.
This approach, however, failed in this study. Fine-tuning the
last block of the network (block 9) was the worst strategy
among all studied strategies, in datasets BUS, FUS and X-
ray, and among the three worst strategies in the SUS dataset
(Table II). Fine-tuning the first block (block 1) did not prove
a good choice, either. However, training block 1 was signif-
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icantly better than training block 9 in BUS, FUS and X-ray
datasets, despite having approximately one fifth the number of
parameters.

In scheme 2, similar to scheme 1, fine-tuning the shallow
half (all except block 5) outperformed fine-tuning the deep
half (block 5). The difference between the two scenarios
was statistically significant for all pairs. Fig. 4 depicts the
comparison of fine-tuning shallow and deep layers for all
fractions of data used in this study. Fig. 5 also shows some
examples of BUS and the simulation dataset when shallow or
deep layers are fine-tuned.

Continuing the exploration of scheme 2, fine-tuning only
blocks (1,2,8,9) did not significantly differ from fine-tuning
the equivalent deeper half (blocks 3-7) (p > 0.05, Fig. 4). In-
terestingly, by fine-tuning these 4 blocks of the network (with
only 1 million parameters) we were able to achieve a large
portion of the performance, and only a small improvement
was obtained by training the rest of the network (Fig. 6).

By including both blocks 1 and 9, we observed a slight
improvement in the results compared to training block 1 or
9 only. Although there was still a gap when compared to the
best results, by only fine-tuning blocks 1 and 9, with only
0.006 of the total number of parameters, a substantial gain
was obtained compared to the pre-trained network (Fig. S1).

When enough data is available, it may seem obvious that
training the whole network is the best strategy, but in the case
of small datasets, this may not be true. We analyzed the perfor-
mance of the network when different numbers of images were
used. With 5% of the data for training, the best segmentation
result was obtained by fine-tuning all components except block
5. When using the whole dataset, the results of fine-tuning the
whole network was not significantly different from fine-tuning
either the contracting path or all except block 5. In addition,
the time needed for the network to converge when only shallow
layers are fine-tuned is much shorter than that of fine-tuning
the whole network. Table III shows the average Dice score
and time spent among folds when 80% of the data is used for
training for the best three strategies (on a NVIDIA TITAN V
GPU). The difference in Dice score is less evident in the FUS
and X-ray datasets, but the difference in the required time for
training is noticeable.

In order to compare the results in different fine-tuning
scenarios, we used random but fixed folds. However, the same
pattern was observed when completely random folds were
analysed in each experiment (results not shown). Although
random folds were studied, the overall results were still
showing the importance of fine-tuning shallow layers. We also
visualized some example features extracted from a shallow and
a deep layer for the pre-trained network and the fine-tuned
network in the supplementary material (Fig. S2). Although it
is not easy to interpret these features to explain the impact of
fine-tuning, association of low-level features to shallow layers
and high-level features to deep layers is evident.

D. The effect of size of the training set

Having access to large datasets is essential in deep learning,
and can boost the models’ performance. Our results followed
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Fig. 4. Average Dice score for different sizes of training set, in different
fine-tuning schemes. The figure depicts the example case of BUS dataset.

TABLE III
COMPARISON OF FINE-TUNING THE WHOLE NETWORK VS. THE

CONTRACTING PATH (SCHEME 1) AND THE SHALLOW HALF (SCHEME 2)
WHEN 80% OF THE DATA IS USED FOR TRAINING, IN TERMS OF AVERAGE
DICE SCORE (STD) AND TIME REQUIRED FOR TRAINING EACH FOLD(MIN)

Dataset Whole network Contracting All except block 5
Dice Time Dice Time Dice Time

SUS .834 1.36 .823 1.53 .826 1.30
(0.19) (0.20) (0.18)

BUS .774 1.65 .767 1.39 .785 1.40
(0.24) (0.21) (0.21)

FUS .972 3.20 .970 2.70 .971 2.29
(0.52) (0.41) (0.40)

X-ray .979 3.08 .980 2.84 .979 2.53
(0.50) (0.41) (0.45)

the same rule: enhanced performance when using more data.
The average Dice scores for different experiments are shown
for the BUS dataset as an example (Fig. 4). A similar pattern
was observed for other datasets as well. Higher values of
Dice score were achieved when including all available 80%
of the data for training compared to 50 and 5 percent of
the data (p < 0.05, Tukey corrected). Likewise, better results
were achieved when 50 % of the data was used rather than
5% of the data in all datasets and experiments (p < 0.05,
Tukey corrected). As expected, higher variance in the network
performance was observed when using 5 or 50 percent of
available images compared to using all images, due to the
small size of data used for training.

As expected, the pre-trained network did not work well for
our target tasks without fine-tuning. Even by using only 5% of
the data the segmentation performance improved substantially,
compared to the pre-trained network (Fig. 7).

IV. DISCUSSION

We confirmed what was demonstrated in other studies [1],
[2], namely, that fine-tuning pre-trained CNN models, in a
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B-Mode          GT Pre-trained  Whole network  Contracting Expanding   All except block 5     Block 5

Fig. 5. Comparison of different fine-tuning scenarios on a few examples from the SUS dataset (the top two rows) and BUS dataset (the bottom two rows).
The better performance of tuning the contracting path compared to the expanding path (scheme 1) and all blocks except block 5 compared to block 5 is
evident. For FUS and X-ray datasets, Dice scores are close to one and the variations between different scenarios are not easily detectable. GT: Ground Truth
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Fig. 6. The impact of fine-tuning the blocks 1,2,8,9, compared to fine-tuning
the whole network. The gain added by fine-tuning the whole network (green
portion) is not high in BUS, FUS and X-ray datasets. The figure depicts the
example case of using 80% of the data for training.

transfer learning fashion, is useful for medical image analysis
and even outperforms training from scratch when limited
training data is available. Although there are relatively large
differences between natural and medical images, knowledge
transfer is still possible from the natural domain to the
medical domain. Using natural images as the source dataset
is beneficial due to the larger size of the dataset compared to
medical images. However, there are some studies favoring the
use of medical images over natural images in transfer learning
[35], [36], because of the greater similarity between the source
and target datasets. Whether there would be any changes
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Fig. 7. The impact of using 5% of the available data, compared to the pre-
trained network. The gain added by using 80% of the data for training (green
portion) is not high in FUS and X-ray datasets. The figure depicts the example
case of fine-tuning the whole network.

in our results by using medical images for pre-training the
network warrants further investigation. We compared different
fine-tuning scenarios on the same pre-trained network. A pre-
trained network on a more similar dataset may expedite the
training, but the overall superior performance of shallow layers
observed in different fine-tuning schemes is likely independent
of the pre-training dataset.

In this study, we used natural images to pre-train the
network for segmentation of US images. Simulated US images
could also be utilized for pre-training. However, as simulating
a large number of US images is time-consuming, the number
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of available natural images is usually higher than simulated
images. Natural images also have a larger variance compared
to simulated US images, which is helpful in training the
network. The network can therefore benefit from such larger
datasets, and provide better segmentation results [37].

Training a network from scratch is not always feasible. For
instance, in this study, the training process did not converge
at all in some cases (especially when using fewer numbers of
images for training). Although with a different initialization
or set of hyperparameters, the network may be finally trained,
the training procedure was fragile compared to using a pre-
trained network. In addition, even when training from scratch
succeeded, the results were not as good as those resulting from
fine-tuning. Therefore, transfer learning is necessary when the
number of training images is small.

We demonstrated that in US image segmentation using
U-Net, in schemes 1 and 2, fine-tuning shallow layers of
a pre-trained network outperforms fine-tuning deep layers,
particularly, when a small number of images are available. We
studied 3 different US datasets and one X-ray dataset. In this
study we mainly focused on US images. Although we observed
similar but less evident results for the X-ray dataset, we cannot
generalize the conclusion to X-ray or other imaging modalities
without further investigation and inclusion of more datasets.
To clarify the effect of speckles and US-specific characteristics
as well as properties specific to other imaging modalities in
deep learning approaches, more investigation is necessary.

It is important to note that the U-Net is not a simple
feedforward architecture. The notion of deep and shallow is
ambiguous in a U-Net, because there are short and long paths
from the input to the output. In this study, we considered
two different definitions of shallow and deep layers. First, the
depth of a layer was defined to be the longest possible path
to reach it. Second, the depth of a layer was defined to be
its distance from the first layer taking the skip connections
into account. It is also interesting to note how the skip
connections affect the performance, especially with respect to
improvement when refining the shallow path in scheme 1. The
skip connections provide long range connections, which have
influence in the expanding path as well, so it is reasonable that
refining the contracting path would outperform refinement of
the expanding path.

Fine-tuning the expanding path was not as fast as the
contracting path because of higher number of parameters and
presence of the skip connections. We did not consider a fixed
number of epochs for training in different scenarios, and elim-
inated the effect of convergence speed of different experiments
by employing early-stopping in the training procedure.

The number of parameters involved in the fine-tuning
procedure does not necessarily determine the performance.
The depth of the fine-tuned layers plays an important role in
improving the results. The bottleneck (block 5), for example,
has almost half of the total number of parameters in the
studied architecture, however, fine-tuning the bottleneck does
not provide good results. In fact, fine-tuning all other layers
except the bottleneck provides equivalent results to fine-tuning
the whole network.

The main contribution of this work was to propose a way

to improve the US segmentation when a small amount of data
is available. However, our segmentation results are better than
a recent article [12] published by the authors of the dataset.
There are few reports available on segmentation of fetal head
using the same dataset we used in this work [38], [39]. Our
results are considerably superior compared to theirs (albeit,
our training and validation procedure is not identical to theirs).
Regarding the X-ray images, we could get Dice score of 0.979
for segmenting lungs, while a multiclass segmentation has led
to 0.974 Dice score for lungs on the same dataset [40].

As depicted in Fig. 6, marginal improvement was obtained
when more layers were included in fine-tuning. The progress
in the results was much faster for the first few layers, and the
slope of improvement declined when adding more layers. This
observation is in line with [2] where including more layers
resulted in very subtle improvement in segmentation results.

To avoid clouding the issue with confounding variables,
we have intentionally used a reasonably well understood
architecture and problem to demonstrate the effect of different
layers. U-Net is one of the most popular architectures in
image segmentation, and this study could be considered as
a preliminary investigation; it would be interesting to explore
other common architectures in future. It is also noteworthy to
study other imaging modalities in more details to delineate
their specific properties in the deep learning field.

One of the main limitations of this study is the number
of datasets. To generalize the conclusions to other tasks
(detection, classification, registration, etc) or other anatomical
structures such as heart and vascular system, further investi-
gation is necessary.

V. CONCLUSION

In US image segmentation with a U-Net, pre-training the
network using natural images improves the results, particularly
when limited data is available. The common practice of fine-
tuning the last layers in transfer learning from one domain
to another domain does not work in US image segmentation
using U-Net. Moreover, fine-tuning shallow layers of a pre-
trained network outperforms fine-tuning deep layers. This
could be due to the presence of specific low-level patterns
in medical images which are associated with shallow layers
of the network. Based on our results, it is recommended to
fine-tune shallow layers for small datasets. For large datasets,
fine-tuning the whole network or shallow layers are not signif-
icantly different, even though fine-tuning the whole network is
much slower. The specific U-Net architecture requires distinct
transfer learning approaches.
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