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Low Rank and Sparse Decomposition
of Ultrasound Color Flow Images

for Suppressing Clutter in Real-Time
Md Ashikuzzaman, Clyde Belasso, Md. Golam Kibria, Andreas Bergdahl, Claudine J. Gauthier and Hassan Rivaz

Abstract—In this work, a novel technique for real-time clutter
rejection in ultrasound Color Flow Imaging (CFI) is proposed.
Suppressing undesired clutter signal is important because clutter
prohibits an unambiguous view of the vascular network. Al-
though conventional eigen-based filters are potentially efficient in
suppressing clutter signal, their performance is highly dependent
on proper selection of a clutter to blood boundary which is
done manually. Herein, we resolve this limitation by formulating
the clutter suppression problem as a foreground-background
separation problem to extract the moving blood component. To
that end, we adapt the fast Robust Matrix Completion (fRMC)
algorithm, and utilize the in-face extended Frank-Wolfe method
to minimize the rank of the matrix of ultrasound frames. Our
method automates the clutter suppression process, which is
critical for clinical use. We name the method RAPID (Robust
mAtrix decomPosition for suppressIng clutter in ultrasounD)
since the automation step can substantially streamline clutter
suppression. The technique is validated with simulation, flow
phantom and two sets of in-vivo data. RAPID code as well
as most of the data in this paper can be downloaded from
RAPID.sonography.ai.

Index Terms—Ultrasound color flow imaging, clutter rejection,
robust matrix decomposition, real-time clutter suppression, vessel
visualization.

I. INTRODUCTION

Delineating the vasculature and measuring blood flow veloc-
ity in order to examine the physiological condition of the local
tissue has seen a growing interest during the past few years.
Visualizing the vascular structure is immensely important
because architectural change in the vascular network may indi-
cate tissue and cell damage leading to ischemia [1], diabetes
related diseases [2]–[4] and coronary heart disease [5]–[7].
Aneurysms which appear on the ventricular or atrial vessels
may lead to fatal heart attacks [8], [9]. An increased size of
the aneurysm might be a potential source of uncontrollable
bleeding in the circle of Willis of the brain, abdominal
aorta and thoracic aorta [10]–[12]. Furthermore, the gradual
development of malignant cells from benign tumors is highly
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affected by angiogenesis, the physiological process of devel-
opment of new blood vessels from pre-existing ones [13]–
[15]. Visualizing and monitoring of such microscopic change
in early stages is of immense importance to warrant better
treatment outcomes.

Ultrasound Color Flow Imaging (CFI) is an easy-to-use and
cost-effective modality that can be used to observe the blood
flow direction and velocity across various vascular networks in
the body. The color encoded information in this modality can
then be analyzed to determine any potential abnormalities in
the region of interest (ROI) [16]. However, ultrasound suffers
in its ability to produce a clear visual of the ROI. This is
due to scattering which is the result of the beam originating
from the transducer travelling through clusters of blood cells as
well as other neighbouring structures such as vessel walls and
surrounding tissues [17]. In addition, clutter signals originating
from stationary or slowly moving tissue components and wave
reverberations are the biggest hindrances to visualizing mi-
crovascular changes. This is due to the fact that backscattered
signals from blood and other tissue exhibit similar properties,
especially when blood is moving slowly or tissue is moving
rapidly [17]–[19]. Since the backscattered signal from the
normal tissue is usually 40 to 100 dB stronger than that of
blood [17], it dominates the signal component resulting from
moving red blood cell speckles [20] which negatively affects
the vessel visualization process. Another important fact is
that blood and clutter components possess non-overlapping
frequency spectra [18].

The backscattered signal from tissue has a lower Doppler
shift than that of blood as tissue velocity is usually slower [17].
This led to using high pass filtering as a promising tool for
clutter filtering in the early stages of CFI research. Many meth-
ods have been developed to optimally reject unexpected clutter
signals from the desired blood components [21]–[23]. Clutter
suppression techniques based on high pass filtering can be
divided into two broad classes: Finite Impulse Response (FIR)
filters [24] and Infinite Impulse Response (IIR) filters [20].
Each of the classes has its own advantages and downsides.
Despite having a steeper roll-off, IIR filters suffer from longer
settling time [18]. In contrast, FIR filters minimize the settling
time, but require a higher order to separate clutter component
from blood signal. However, FIR and IIR filters share a
common problem of having inadequate slow-time samples
leading to ineffective classification of data generated from
slowly moving soft tissue and blood [19], [25]. In addition,
in cases where unexpected tissue movement dominates, high
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pass filters fail to adaptively select the filter cut-off frequency
based on clutter characteristics [19], [26].

To resolve the issue of proper cut-off selection, several
eigen-based filtering methods have been proposed to discrimi-
nate clutter and blood [25], [27]–[29]. The underlying assump-
tion prompting the development of eigen-based techniques is
that tissue is spatio-temporally more coherent than blood [18].
The principal idea is to discard the eigen subspace representing
the clutter component in the slow-time signal [19]. Initially,
one-dimensional spatial and temporal information was taken
into account to filter out the clutter signal [30], [31]. These
one-dimensional approaches fail to distinguish tissue subspace
from blood subspace when the speed of blood is low or the
tissue motion is faster than normal [18].

To address the aforementioned shortcomings of one-
dimensional investigation, a method [18] based on the Sin-
gular Value Decomposition (SVD) and Principal Component
Analysis (PCA) of a large Casorati matrix [32] consisting
of 2D spatial and temporal coherence has been proposed.
Along similar lines, recent work proposed processing the
power Doppler images obtained from SVD using Non-local
mean based framework, morphological filtering and Hessian-
based vessel enhancement techniques [33]–[35]. In addition,
motion correction of the acquired ultrasound frames has
been introduced to improve the sensitivity of power Doppler
imaging [36]. The eigen-based filter has been extended to
the 3rd dimension in [37]–[39] using the higher order SVD
technique [40]. However, determining the threshold value that
separates blood from normal tissue is a challenging task
in this method. More specifically, it is assumed that the
first few eigen-values are associated with clutter, the next
few represents blood, while the rest denote noise [37]. The
dimensions of clutter and blood are manually chosen to reject
clutter and noise [37]. Having no rigid ground to determine
the dimension of clutter, this manual approach is prone to
inefficient suppression of clutter. Therefore, recent work [41]
proposed 5 parametric and 5 non-parametric methods to select
the boundary between clutter and blood subspaces.

To address the aforementioned limitations of PCA- and
SVD-based techniques, we propose to look at the clutter
suppression problem from the viewpoint of decomposing
the data matrix into low rank and sparse components in a
computationally efficient manner. The decomposition makes
use of the Robust Matrix Completion algorithm, where the
low rank component represents the steady tissue signal and
the sparse component represents the moving blood echo [42].
More specifically, we organize a series of acquired ultrasound
RF frames into a data matrix. Since an ultrasound RF frame
contains some measure of echo for each of its sample, the
data matrix is complete with no missing element. Therefore,
the Robust Matrix Completion Algorithm acts like Robust
Principal Component Analysis (RPCA) [43], [44]. Compre-
hensive studies [45]–[48] have been conducted during the last
few years to resolve the matrix rank minimization problem.
Many of these algorithms [43], [49] have been successful
in the field of computer vision to separate the foreground
from the background resulting in automatic separation of
foreground and background. However, these techniques are
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Fig. 1: A flowchart of the proposed RAPID algorithm.

computationally very expensive and also have high memory
requirement.

Herein, our goal is to consider blood as the foreground
since it is the rapidly moving component, and clutter as the
background. Instead of using computationally expensive and
memory exhaustive RPCA methods, we have adapted the
recently proposed fast Robust Matrix Completion (fRMC algo-
rithm) [50] and the in-face extended Frank-Wolfe method [51]
for the purpose of separating the blood component from
the stationary tissue echo. As such, we call the algorithm
RAPID (Robust mAtrix decomPosition for suppressIng clutter
in ultrasounD).

RAPID is briefly illustrated in Fig. 1. The main advantage of
RAPID is that there is no need to select any threshold manually
to separate the blood and clutter components. A shorter version
of this work has been presented at the IEEE International
Symposium on Biomedical Imaging (IEEE ISBI 2019) [52].
This full version includes more in-depth presentations of the
method and results, additional phantom experiments using
plane-wave imaging, and two sets of in-vivo animal and human
subject experiments.

Similar to our previous work [53], we have publicly released
the MATLAB code of RAPID, which can be downloaded from
RAPID.sonography.ai. The RF data of the phantom experiment
and the in-vivo rat dataset collected for this work can also be
downloaded by following the same link.

II. EXPERIMENTAL SET-UP AND DATA ACQUISITION

A. Design and Materials for Phantom Experiment

The phantom gel is created from a mixture of water,
Knox unflavored gelatin, sugar-free Metamucil psyllium fiber
supplement [54], and a container to store the mixture. The
venous structure model consisted in an intra-venous (IV) tube
passed through a container which has two holes bored on
parallel faces of the container. Once the gel mixture is made,
it is allowed to congeal and solidify overnight. The solidified
gel is then placed in a bain-marie to heat the mixture so that
it can liquefy without burning, and is slowly poured into a
container with the IV tube, and placed in the refrigerator to
solidify.

1) Design and Implementation of the Flow Circuit: The
flow circuit is designed to have the fluid of choice flow through
the venous structure model at a desired flow rate. The circuit
is a closed system, as all the liquids being pumped from
the main reservoir returns back to it after having traversed
the various channels of the system. The oncoming flow is
produced by a siphon pump and controlled by a stopper valve.
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Fig. 2: Data acquisition from the flow phantom with a hand-
held L3-12H linear array probe.

For the first two phantom experiments (see Section IV-B),
our fluid of choice was water with small amounts of oil and
detergent mixed in to create small scatterers. For the third
and fourth phantom experiments (see Section IV-B), we used
Blood Mimicking Fluid (CIRS: Tissue Simulation & Phantom
Technology, Norfolk, VA). Fig. 2 shows the experimental set-
up.

B. Simulation of Ultrasound Data

We simulated a tissue with dimensions 3.6 cm×2 cm×1 cm
containing a horizontal blood vessel (i.e. perpendicular to the
direction of ultrasound wave propagation) of 0.4 cm diameter
in the middle using the Field II software package [55], [56].
The flow was laminar with a parabolic velocity profile with the
peak velocity of 25 cms−1. The frame-rate of ultrasound was
set to 1000 fps. The elements of the probe had a width and
height of 0.02 cm and 0.5 cm with a kerf of 0.002 cm. The
sampling frequency was set to 40 MHz whereas the frequency
of the probe and fractional bandwidth were 7.27 MHz and
60% respectively, unless otherwise specified. For beamform-
ing, 64 active elements were used.

C. Ultrasound Data Collection

Ultrasound RF data collections were conducted using an
Alpinion E-Cube R12 research ultrasound system with an L3-
12H linear array probe. In all experiments, the frequency of
the probe and the sampling frequency were set to 10 MHz
and 40 MHz, respectively, unless otherwise specified.

The in-vivo experiment on rat was carried out at the Animal
Care Facility (ACF) of Concordia University. A 27 week old,
Sprague-Dawley male rat was anesthetized before scanning.
The rat was placed on a surgery table in supine position

(a) L3-12H Linear Array 
Probe with

Bandwidth = 3 – 12 MHz
Footprint = 4.5 cm

(b) In-vivo data acquisition 
from a gas-anesthetized 

male rat

Fig. 3: Data acquisition from the abdomen of a Sprague-
Dawley male rat with a hand-held L3-12H linear array probe.
20 RF frames are collected from one rat.

as shown in Fig. 3. A portion of the abdominal hair was
shaved to prevent large attenuation of waves in the hair.
Ultrasound RF data was collected from the abdomen of the rat
using the L3-12H linear array probe by conventional focused
beamforming. All procedures were approved by the Animal
Ethics Committee of Concordia University (#30000259) and
were conducted in accordance with guidelines of the Canadian
Council on Animal Care.

The human-subject data was collected from the knee of a
volunteer using a hand-held probe at Concordia University’s
PERFORM Centre. The data collection was conducted with
an approved ethics from Quebec’s Ministere de la Sante et
des Services (MSSS).

III. METHODS

Assume that we have p ultrasound RF frames of size m×
n. The complex envelopes of the RF frames are denoted by
Ei ∈ Cm×n where i ∈ {1, 2, 3, . . . , p}. All p envelopes are
organized in a data matrix D ∈ Cmn×p where each column
represents the complex envelope of an RF frame. Our purpose
is to separate blood and clutter subspaces from the data matrix
D. In this section, we first briefly describe the conventional
SVD-based algorithm [18], and then elaborate the proposed
method.

A. SVD Clutter Suppression

In this method, the data matrix D is decomposed as:

D = UΣV † =

r∑
l=1

σlulv
†
l (1)

where U ∈ Cmn×mn and V ∈ Cp×p are unitary matrices
containing the left and right singular vectors of D respectively.
Σ ∈ Rmn×p is a diagonal matrix with diagonal entries set to
the singular values of D. r = min(mn, p) denotes the rank
of the matrix D. σl, ul and vl stand for singular values and
left and right singular vectors of D, respectively. Superscript
† denotes the conjugate transpose.
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Since mn is usually a very large number, the matrix U
cannot be stored in memory of conventional computers (for
typical RF signals and p = 20 frames, approximately 500
GB of RAM is required to store U ). Therefore, only the first
mn × p elements of U are calculated and stored in memory
instead of all mn×mn elements. Similarly for Σ, only the first
p×p elements are calculated and stored in memory. This will
lead to a significant reduction in running time and memory
requirement. Once the ranks of clutter and blood subspaces
c and b are found by manual tuning, the blood subspace is
separated from the clutter by:

B̂ =

c+b∑
l=c+1

σlulv
†
l (2)

where B̂ represents the blood component of the data matrix.
The magnitude of every column of B̂ or the power contained
in the filtered data can be shown to depict the vasculature.

B. RAPID: Robust Matrix Decomposition in Ultrasound Clut-
ter Suppression

If the correlation coefficient between any two of the p
frames is high, the data matrix D can be modelled as a
low rank matrix. The blood flow prevents having correlation
between entire frames, which can be removed from the data
matrix D by solving the following optimization problem [43]:

min rank(C) s.t. D = C +B

where C is the low rank clutter subspace and B denotes the
sparse blood component. To solve the optimization problem,
we consider the Low Rank Matrix Completion (LRMC) tech-
nique where sparsity of the blood component is enforced by
solving the following minimization problem:

min ‖C −D‖2F s.t. ‖C‖? < δ

where ‖.‖F represents the Frobenius norm defined as root sum
squared of magnitudes of the matrix entries. ‖.‖? stands for the
nuclear norm of a matrix referring to the sum of its singular
values. δ is the radius of the nuclear norm ball of low rank
clutter matrix C. Since D is a non-singular matrix and contains
envelopes of RF frames in each column, it usually has a large
Frobenius norm. Hence the square of the Frobenius norm of D
which is defined as the sum of the square of the singular values
is greater than the nuclear norm of D. It is mathematically
impossible for the nuclear norm of C to be larger than that of
D, since C is the underlying low rank component of D. Hence
the upper bound of the nuclear norm ball δ can comfortably be
set to any value greater or equal to the square of the Frobenius
norm of D. In all of our validation examples, we set δ to
ten times the square of the Frobenius norm of D. Therefore,
RAPID has no tunable parameter.

This is a convex optimization problem [50], [57], which can
be efficiently solved by using the recently proposed in-face
extended Frank-Wolfe method [51]. It is shown in this work
that the low rank structures lie in the boundary of the solution
space (Fig. 4), which is exploited to substantially increase the
convergence speed and reduce the memory requirements. The
algorithm is outlined in Algorithm 1.

Xk

Xk+1 Xk+1

X* 

Xk+1

Optimal solution

Solution space

Regular FW step

Partial 
step Full 

step

Fig. 4: An illustration of regular and in-face steps of the in-face
extended Frank-Wolfe method. Two conditions are checked to
decide whether to take the full or partial in-face step. If none
of them are satisfied, regular Frank-Wolfe step is chosen.

Algorithm 1: In-face extended Frank-Wolfe algorithm for
finding the low-rank clutter subspace
Input : Data matrix D and maximum number of

iterations
Output: Optimal low-rank clutter subspace C∗

1 Definition: Cq is the current iterate of the low rank
clutter matrix, f(Cq) = 1

2‖C
q −D‖2F ;

2 while not converged do
3 Calculate ∇f(Cq): the gradient of f(Cq);
4 Compute the direction of next iterate dq;
5 Compute the step size;
6 Compute Cq+1: check two conditions to determine

whether to take full or partial in-face step. If none
of the conditions is satisfied, take regular
Frank-Wolfe step.

7 end

The output of this algorithm is the optimal low rank clutter
matrix C∗. However, our goal is to find the sparse blood
component, which can be obtained by subtracting C∗ from D.
Every column of B∗ (= D−C∗) ∈ Cmn×p contains the sparse
blood component of individual frames. B∗ can be decomposed
into p complex frames of size m × n. The magnitude of
each of these frames B∗i can be shown as different images to
visualize frame to frame flow. The power Doppler image can
be generated with the magnitudes of all p clutter suppressed
frames which depicts only the vasculature, not the flow:

P (j, k) =
1

p

p∑
i=1

|B∗i (j, k)|2 (3)

The in-face extended Frank-Wolfe solver offers a substan-
tially faster convergence rate compared to traditional RPCA
methods because it does not need to perform SVD in each
iteration [51], which leads to significant reductions in its
memory footprint and computational complexity. In addition,
this solver calculates three directions namely full step, partial
step and regular Frank-Wolfe (FW) steps (see the illustration
in Fig. 4) for updating the solution in each iteration. A full
step is an in-face step suggesting to go to a lower dimensional
face. A partial step is also an in-face step which proposes to
stay in the relative interior of the current face. If both of the
aforesaid directions fail to meet certain criteria [51], the next
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Fig. 5: Results of the simulation experiment. Column 1 represents the B-mode image. Columns 2, 3 and 4 depict the power
Doppler images from SVD with different combinations of clutter and blood subspace ranks. Column 5 shows the power Doppler
image from RAPID. (f) represents the color bar for the power Doppler images.
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Fig. 6: Histogram of SNR values for the simulation experi-
ment. SNR values are calculated on 50 different positions of
the moving window shown in the left image.

TABLE I: PSL of the power Doppler images from phantom
experiment with conventional imaging. PSL values are calcu-
lated on 3 landmarks depicted in Fig. 8(d).

SVD RAPID
Landmark 1 40.79 41.44
Landmark 2 61.47 65.01
Landmark 3 35.16 36.57

iterate takes the regular Frank-Wolfe step, which leads to a
further reduction of the computational complexity compared
to standard RPCA methods.

Effective utilization of thin SVD is a distinctive attribute of
in-face extended Frank-Wolfe algorithm. In a certain iteration
q, the thin SVD of Cq is updated and stored instead of
updating Cq . Given the thin SVD of Cq = UqΣqV

†
q , the

TABLE II: PSL of the power Doppler images from phantom
experiment with plane-wave imaging. PSL values are calcu-
lated on 3 landmarks depicted in Fig. 10(d).

SVD RAPID
Landmark 1 54.40 55.25
Landmark 2 49.51 49.42
Landmark 3 61.30 61.92

number of entries of Uq , Σq and V †q are mnrq , rq and prq

respectively, where rq is the rank of Cq . Therefore, while
dealing with the thin SVD instead of the full matrix, only
mnrq + rq + prq number of entries are required to be stored.
Since Cq corresponds to a low-rank structure in practice, rq

is small. In such a situation, in-face extended Frank-Wolfe
method enables us handle a large data matrix with minimal
memory consumption.

IV. RESULTS

We validated the proposed RAPID algorithm using simula-
tion, phantom and in-vivo experiments. We used p = 20 ul-
trasound frames in all experiments to generate the clutter sup-
pressed image. We compared our results with the conventional
SVD-based technique [18]. Along with qualitative comparison
of clutter suppressed power Doppler images, we performed
quantitative comparison based on Peak-to-Side Level (PSL)
and Signal-to-Noise Ratio (SNR), two conventional quality
metrics:

PSL = 20 log10

(
b

c

)
,SNR =

s̄

σ
(4)

where b and c denote the peak intensity at the brightest
region of the vessel and intensity at the darkest part of the
power Doppler image in neighborhood of the peak respec-
tively. s̄ and σ stand for the mean and standard deviation of
a spatial window located on the vessel.

The codes of SVD and RAPID were implemented in
MATLAB and run on a standard 8th generation 3.2GHz Intel
core-i7 computer. For SVD, we used the MATLAB command
“economy SVD”, which only calculates and stores the first p
left singular vectors for memory and computational efficiency.
The runtime of RAPID is similar to that of economy SVD.
Therefore, the proposed method is a potential technique for
real-time implementation on commercial ultrasound machines.

A. Simulation Results
Fig. 5 depicts the B-mode image along with the clutter

suppressed images for the simulation data. The best result
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Fig. 7: Results of the simulation experiment for different center frequencies. Columns 1-3 correspond to center frequencies of
7.27 MHz, 8.5 MHz and 10 MHz respectively. Rows 1 and 2 correspond to SVD and RAPID respectively. (g) shows the
color bar for the power Doppler images.

from SVD is usually obtained by manually tuning the ranks of
clutter and blood subspaces. Power Doppler images generated
by SVD with different combinations of clutter and blood ranks
are presented in Fig. 5. Visually, the best clutter suppressed
image is obtained by setting the clutter and blood ranks
to 1 and 15 respectively, as shown in part (d). No manual
tuning is necessary for RAPID to obtain the optimal clutter
suppressed image. The proposed technique automatically se-
lects the best combinations of ranks. Fig. 5 shows that the
result from RAPID is qualitatively similar to the best result
obtained by SVD. Since both SVD and RAPID fully suppress
the background, we did not calculate PSL to avoid infinite
quantitative values [33]. We calculated 50 SNR values for
different positions of a moving kernel on the blood vessel.
We report the histogram of these 50 SNR values in Fig. 6,
which confirms our visual assessment by showing similar SNR
values for SVD and RAPID throughout the vessel. The average
SNR values corresponding to SVD and RAPID are 2.7174
and 2.7214 respectively. These values are very similar, despite
the fact that SVD requires extensive manual intervention to
select the boundaries between the subspaces. This, therefore,
highlights the quality of our automatic parameter estimation.
It is improtant to note that we performed the quantitative
comparison between the power Doppler image from RAPID

and the best power Doppler image obtained from SVD.
To examine the effect of transmit frequency on clutter

rejection, we report the power Doppler images for simulation
data collected at three different center frequencies: 7.27 MHz,
8.5MHz and 10MHz in Fig. 7. In all three cases, without re-
quiring any parameter tuning, RAPID’s performance is similar
to the best performance of SVD. The best vessel enhancement
is found at a center frequency of 8.5 MHz for both methods.
There are two possible reasons. First, since ultrasound images
have less resolution at lower frequencies, the clutter suppressed
images at 8.5 MHz are better than that at 7.27 MHz. Second,
although ultrasound images exhibit higher resolution at lower
depths in case of high frequencies, the image quality declines
beyond a certain depth due to high attenuation of ultrasound
waves. Since our simulation frames contain a vessel at a depth
of about 1.8 cm, better performance is achieved at 8.5 MHz
compared to 10 MHz. Another reason is that the width of our
transducer is equal to λ for the 8.5 MHz center frequency,
and therefore, optimal results are obtained with both methods
at that frequency.

B. Flow Phantom Results

In the first experiment, conventional focused imaging was
performed with a frame rate of 64 fps. Fig. 8 depicts the
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Fig. 8: Results for the phantom data with focused conventional imaging. Column 1 shows the B-mode image. Columns 2, 3
and 4 represent the power Doppler images from SVD with different combinations of clutter and blood subspace assumptions.
Column 5 depicts the power Doppler image from RAPID. (f) represents the color bar for the power Doppler images.
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Fig. 9: Histogram of SNR values for the phantom data with
focused conventional imaging. SNR values are calculated on
50 different positions of the moving window shown in the left
image.

clutter rejected images along with the B-mode image. The best
result from SVD is selected by manually searching for the best
ranks of the clutter and foreground. The result produced by
RAPID without requiring any manual tuning (shown in (e))
looks slightly better than the best result from SVD (shown in
(d)). Quantitative values of PSL reported in Table I support our
visual assessment. PSL values are calculated on three different
landmarks of the power Doppler image indicated in Fig. 8(d).
In addition, we calculated the SNR at 50 different positions
of a moving window (see Fig. 9(a)) on the flow region of the
power Doppler image. The SNR values histogram is reported
in Fig. 9(b). The histogram shows that RAPID results in a
higher frequency in higher SNR values and lower frequency
in lower SNR values. Paired t-test of the SNR values shows
that RAPID statistically outperforms SVD with a p-value of
2.75 × 10−18. This very low p-value is due to the fact that
RAPID outperforms SVD throughout the vessel. Furthermore,
SVD and RAPID yield average SNR values of 3.31 and 3.62,
respectively showing an improvement of 9.35% by RAPID. It
is worth mentioning that quantitative comparison is performed
between the result from RAPID and the best result obtained
from SVD by manually fine-tuning the boundaries between
the subspaces.

In the second experiment, plane-wave data with 11.5 MHz

center frequency and a scan rate of 565 fps was collected,
with all other imaging parameters the same as the conventional
beamforming. Fig. 10 shows the B-mode image, results from
SVD for different combinations of clutter and blood ranks
and the result from RAPID. Again, RAPID obtains visually
superior results compared to SVD by automatically selecting
the optimal clutter-blood boundary. We have reported the PSL
values calculated on three different landmarks (see Fig. 10(d))
in Table II. These quantitative values also demonstrate that
RAPID rejects clutter more efficiently than SVD. In Fig. 11(b),
we show the histogram of 50 SNR values calculated at
different locations of a moving window (see Fig. 11(a)). The
histogram highlights the fact that RAPID results in a higher
frequency at higher SNR values. Furthermore, a paired t-test
shows that RAPID statistically outperforms SVD with a p-
value of 6.47 × 10−7. Averaging of the aforementioned 50
SNR values corresponding to SVD and RAPID resulted in
mean values of 2.33 and 2.40, respectively. This implies that
RAPID provides a 3.02% improvement in SNR over SVD.
Similar to the focused phantom experiment, we have reported
the quantitative values for the result from RAPID and the best
result from SVD.

In the third experiment, we examined the performance of
RAPID and SVD on datasets collected at different center
frequencies. We conducted a focused flow phantom experiment
where RF frames were acquired at 8.5 MHz and 11.5 MHz
transmit frequencies. The B-mode and clutter suppressed im-
ages are reported in Fig. 12. In all three cases, RAPID shows
similar (if not better) performance as SVD. However, we
generate the best results from SVD by extensive manual in-
tervention to select the proper boundaries between subspaces.
Best power Doppler images are observed at 11.5 MHz center
frequency for both methods. The reason is that the higher
frequency image has a good resolution and SNR at shallow
depths, where the tube is located.

In the fourth experiment, we investigated the performance
of RAPID and SVD with different flow rates by careful
mechanical tuning of the flow phantom set-up. We collected
RF frames with focused ultrasound imaging from the phantom
with flow rates of approximately 1.67 mLs−1 (slow flow)
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Fig. 10: Results for the phantom data with plane-wave imaging. Column 1 shows the B-mode image. Columns 2, 3 and 4
represent the power Doppler images from SVD with different combinations of clutter and blood subspace assumptions. Column
5 depicts the power Doppler image from RAPID. (f) represents the color bar for the power Doppler images.
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Fig. 11: Histogram of SNR values for the phantom data with
plane-wave imaging. SNR values are calculated on 50 different
positions of the moving window shown in the left image.

and 3.33 mLs−1 (fast flow). We show the B-mode and the
power Doppler images in Fig. 13. For both flow rates, RAPID
performs slightly better than SVD. SVD shows the best power
Doppler images when clutter and blood ranks are manually
tuned to 1 and 18, respectively. On the other hand, RAPID
obtains the optimal power Doppler images automatically. As
expected, both SVD and RAPID obtain their best results for
the case of fast flow since the difference between tissue clutter
and blood becomes dominant at higher flow velocities.

C. in-vivo Results

1) Rat Abdomen: B-mode along with the clutter rejected
images obtained from SVD and RAPID are reported in Fig. 14.
The abdominal aorta and its branches are not clearly visi-
ble in the B-mode image, whereas clutter suppressed power
Doppler images reveal the vascular structure very well. We
show the power Doppler images obtained from SVD for
different combinations of ranks associated with clutter and
blood subspaces. The best result is obtained assuming clutter
and blood ranks as 1 and 15 respectively (in (d)). Visually,
the result from RAPID and the best result obtained from SVD
are similar. We performed quantitative comparisons between
the best power Doppler image obtained from SVD and the
power Doppler image generated by RAPID. The PSL values
reported in Table III show that SVD and RAPID perform

TABLE III: PSL of the power Doppler images from the in-vivo
rat experiment. PSL values are calculated on the 3 landmarks
depicted in Fig. 14(d).

SVD RAPID
Landmark 1 34.27 34.28
Landmark 2 39.86 39.77
Landmark 3 47.81 47.86

almost equally in terms of rejecting clutter. We calculated the
PSL values on three landmarks shown in Fig. 14(d). For a more
comprehensive investigation, we calculated the SNR values at
50 different locations of a moving window on the vasculature.
The histogram of these 50 SNR values reported in Fig. 15
shows that the clutter suppression performance of RAPID
is similar to that of SVD. Statistical paired t-test provides
a p-value of 0.2226, confirming that there is no significant
difference in SNR values of power Doppler images obtained
from SVD and RAPID. The average of the 50 SNR values
corresponding to SVD and RAPID are 0.9138 and 0.9146,
respectively, further highlighting the performance similarity
between SVD and RAPID.

2) Human Knee: The conventional beamformed B-mode
image as well as the power Doppler images are shown in
Fig. 16. It is evident that suppression of clutter aids clear vi-
sualization of the lateral inferior genicular artery and branches
coming from fibular and anterior recurrent tibial arteries.
Fig. 16 also shows that the performance of SVD is highly
dependent on the selection of ranks associated with clutter and
blood subspaces. In this case, SVD shows its best performance
when clutter and blood ranks are considered to be 1 and
15, respectively. In contrast, RAPID is capable of generating
the most optimal result without any manual tuning. Visual
assessment shows that the power Doppler image obtained from
RAPID is similar to the best power Doppler image produced
by SVD. Similarly to all other experiments, we compared the
result of our method to the best result obtained from SVD
quantitatively. PSL values reported in Table IV confirm our
visual interpretation. In addition, the histogram of 50 SNR
values on different locations of a moving window reported
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Fig. 12: Results of the conventional flow phantom experiment for different center frequencies. (a) represents the B-mode image.
(b) and (c) show power Doppler images obtained by SVD and RAPID, respectively for 8.5 MHz center frequency. (d) and
(e) present power Doppler images from SVD and RAPID, respectively for 11.5 MHz center frequency. (f) shows the color
bar for the power Doppler images.
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Fig. 13: Results of the conventional flow phantom experiment
for different flow rates. Columns 1-3 correspond to B-mode,
power Doppler images from SVD and RAPID, respectively.
Rows 1 and 2 correspond to slow and fast flows, respectively.
(g) represents the color bar for the power Doppler images.

TABLE IV: PSL of the power Doppler images from in-vivo
human knee experiment. PSL values are calculated on the 3
landmarks shown in Fig. 16(d).

SVD RAPID
Landmark 1 60.22 60.2
Landmark 2 47.02 47.02
Landmark 3 33.77 33.78

in Fig. 17 also suggests that SVD and RAPID are similarly
effective at suppressing clutter. The average SNR values for
SVD and RAPID are 0.9440 and 0.9441, respectively, again
showing similar performances.

V. DISCUSSION

It is evident from the results that the clutter suppression
efficiency of SVD is highly dependent on proper selection
of the ranks of the subspaces, a process that is currently
performed manually. This manual involvement hinders clinical
adoption of clutter suppression. On the contrary, RAPID
selects the ranks automatically with a guarantee of converging
to the optimal solution.

SVD is proven to be a promising technique in ultrasound
clutter suppression. However, it fails while dealing with data
contaminated with outliers [43]. The robustness of RPCA
methods to noise is validated with video data in the field of
computer vision. Since RF frames acquired with ultrasound
are likely to be noisy, robust matrix decomposition methods
can potentially be more advantageous than SVD in ultrasound
clutter suppression.

The number of frames used to formulate the data matrix is
an important concern. Generally, vessels are better visualized
when the number of RF frames is increased as more temporal
information is incorporated. However, if the data acquisition
rate is low, including more frames leads to a significant
increase in signal decorrelation noise which might cause the
SVD methods to fail. The optimal number of frames likely
depends on the imaging frame-rate and extent of physiological
motions in tissue. Selection of the optimal number of frames
is an interesting avenue of further research.

Here we show that RAPID is capable of obtaining power
Doppler images from ultrasound frames collected at different
transmit frequencies. However, selection of a proper center
frequency is vital for optimally enhancing the vessel. While
looking at the superficial vascular structure, a high frequency
ultrasound probe should be used for data acquisition to achieve
the best resolution. On the other hand, a lower frequency probe
is preferable to collect frames from a deeper vascular network,
since high frequency ultrasound waves attenuate faster. When
we are interested in a vascular structure at moderate depth,
careful tuning of transmit frequency is required to compromise
between resolution and penetration depth. Another concern
is random noise which can be large at deep regions of the
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Fig. 14: Results obtained from in-vivo data collected from the abdomen of a rat. Column 1 depicts the B-mode image. Columns
2, 3 and 4 show the power Doppler images from SVD with different combinations of clutter and blood subspaces. Column 5
presents the power Doppler image from RAPID. (f) shows the color bar for the power Doppler images.
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Fig. 15: Histogram of SNR values for the in-vivo rat experi-
ment. SNR values are calculated at 50 different locations of
the moving window shown in the left image.

image for excitations with high center frequencies. Analyzing
the performance of RAPID and the validity of the low rank
constraint in this situation is an avenue for future work.

In case of slow blood flow, the task of clutter suppression
becomes difficult because slowly flowing blood is hardly
distinguishable from the steady tissue clutter. However, our
investigation on the flow phantom proves that RAPID is
capable of generating high quality power Doppler images for
both slow and fast flow rates. Although RAPID does not show
large improvement over SVD for different flow rates, RAPID
converges to the best attainable result without requiring the
manual tuning necessary for SVD.

In this work, we conducted the animal experiment with one
Sprague-Dawley male rat of age 27 weeks. As our results
for simulations, phantom, animal and human experiments are
similar, we expect the results to be comparable in more animal
experiments. Testing the algorithms in more animal and human
experiments is an area of future work.

As the steady background is estimated as a low rank struc-
ture in robust matrix decomposition algorithms, high frame to
frame correlation is an important requirement. The individual
RF frames are stacked in different columns of the data matrix,
and as such, should be highly correlated to each other. There-
fore, the method could fail in the event of a large out-of-plane
movement of the ultrasound probe while collecting the data.
Although we did not notice large performance degradation

of the proposed RAPID algorithm with possible out-of-plane
motion of the probe, 3D data collection from a 2D array
can alleviate this problem. Another potential solution to this
limitation is introducing a robust image alignment step in every
iteration of the RAPID algorithm. The sparsity of the blood
component is another important underlying assumption of our
algorithm. Although blood is sparser than tissue components
in usual scenarios, rapid signal fluctuations caused by turbulent
flow in the time domain can affect the spatial sparsity [58].
Imposing the sparsity condition on an appropriate transform
(e.g. temporal Fourier Transform) of the blood component
instead of the blood component itself might be a promising
technique to handle such non-sparsities since the spectral
components which lie in the vicinity of the dominant Doppler
peak can efficiently represent Doppler shift [58].

VI. CONCLUSIONS

In this work, we proposed RAPID: Robust mAtrix de-
comPosition for suppressIng clutter in ultrasounD, wherein we
suggested to enhance blood vessels and suppress unexpected
clutter signals by incorporating recently proposed robust ma-
trix completion and optimization algorithms. Validation with
simulation, flow phantom and in-vivo data proved that RAPID
does not require any manual intervention required to select the
true boundary between blood subspace and clutter, and as such,
automates the process of clutter rejection with a guarantee of
optimality. RAPID is also computationally efficient and can be
implemented in real-time. These features can potentially help
ultrasound-based vascular imaging to reach a wider clinical
adoption.
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