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APPENDIX

In this Appendix, we explain matrices H, Hy, D, D and
vectors 1 and bg.

H e QRQ’””“";” is a symgletric tridiagonal r2natrix: H =
diag(h'~(1,1),h""(1,2),..,h" " (m,n)) where h'"(i,7) is de-

fined by:

ro2
K2 Gg) = |, f2a B0 e (1)
I2,a(laJ)I2,l(ZaJ) Iz,l (i,7)

where Iéﬁa(i,j) and Iéyl(i,j) denote the axial and lat-
eral derivatives of Iy at point (i + a;;,7 + l;;). Hi €

Ié,a(iv ])Ié,l(zvj)

R2mnx2mn - ig 3 diagonal matrix defined as: H; =
diag(1l5 ,(1,1),15,(1,1), 15 ,(1,2), 15 ,(1,2),...,
Iy o(m,n), I, ,(m,n)). p € R¥""*! is defined as:
T
= 1[911,91.1,91,2: 91,2 - - - » Gmyn) 2
where
9ij =Ti(i,7) — (i + a; 5,7 + i j) 3)

D € R?mn*2mn g a gparse block matrix which contains
the regularization parameters stemming from optimization of
the first-order continuity term R;. Note that the matrix D of
this work is exactly the same as that of GLUE. Therefore, we
show D in Section I of the Supplementary Material. D is a
sparse matrix of size 2mn x 2mn which is defined as follows:

’ ’ T

Q' +T R, R, O ... ... ... O

Dy = €]
O
S" R, R,
R, Q" R,
0 O R, R, q

where O is a zero matrix of size 2n x 2n. Rll,
R/l, and R/2 are diagonal matrices of size 2n X 2n
and defined as: R, = diag(—261,—2\1,...,—201, —2)\1),
R, = diag(—46,,—4\,...,—40;,—4);) and R, =
diag(01,>\1,...,91,)\1).

I' is a diagonal matrix of size 2n x 2n which is defined
as I' = diag(v,0,7,0,...,7,0). by € R?™"*1 5 the adaptive
regularization term and defined as:

T
bs = [binit binid binid bend] &)

binits bmia and be,q are vectors of size 2n and defined in
Egs. 6, 7 and 8, respectively.

by = —(a1 + ag)eq, —(B1 + B2)er, —1€q, —Prer, oy
e —ai€q, —PBie, —ai€q + acq, —fre + Pag

6)

bmid = [—02€a  —P2e; 0 0 ozeq Boe] ()

(al *042)60.7(61 *62)€laaleavﬂlel7"'v (8)

bend =
1€q, Br€1, Q1€ + Q2€q, Bre] + PBag

Q/, Q” and S have been defined in Section I of the
Supplementary Material.
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This Supplementary Material presents the matrices D, Q', matrix of size 2n x 2n. Q and S are matrices of size 2n x 2n
Q" and S’. In addition, we report GLUE strain images using and defined by Eqs. 2 and 3.
strong weights. Besides, we analyze the effect of a 50% ., ,
increase in continuity weights on SOUL strain. Moreover, we Q. Q and S are sparse matrices of size 2n X 2n and
demonstrate the impact of regularizing the first sample on defined as Egs. 4, 5 and 6, respectively.
strain estimates. Furthermore, we investigate the correlation
between pixel size and regularization parameter values. We
also show the strain images corresponding to different real-
izations of the simulated layer phantom. Finally, we report
the lateral strain images obtained by GLUE and SOUL.

I. METHODS
D € R?mnx2mn jg defined in Eq. 1.
[Q R O O ... O]
R S R O ... O
O R S R 0]
D= (1)
O O ... R S R
0 0 ... O R Q]
where R = diag(—ay,—p1,...,—a1,—f1). O is a zero
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II. RESULTS

Axial strain images obtained by GLUE using high regular-

ization parameter values have been reported in Fig. 1. For the
four-layer simulated data, the continuity weights have been set

to 15 times the optimal values. For the other datasets, 10 times
stronger parameter sets than the optimal ones have been used.
It is evident that high continuity weights reduce the estimation
variance at the cost of visual contrast and edge sharpness.

Fig. 2 shows SOUL strain images for the soft-inclusion
simulation dataset using optimal and 50% stronger regulariza-
tion parameter values. It is evident that except slight loss of
target-background contrast, a moderate increment of continuity
weights has no visual effect on the strain image quality.

Fig. 3 demonstrates the effect of v on TDE. The strain
plots for one RF line of the simulated uniform phantom show
that the top few samples exhibit incorrect TDE when the first
sample is not regularized. GLUE also suffers from this issue
since it does not regularize the top sample. Fig. 3 shows that
SOUL resolves this issue by imposing a first-order continuity
constraint on the first sample of an RF line.

Fig. 4 shows the effect of pixel size on continuity parameter
values. In this experiment, the four-layer simulated phantom
has been upsampled by a factor of 2. SOUL strain images
obtained from this upsampled phantom using regular and 50%
lower continuity weights have been reported. Both sets of
parameters generate high-quality strain images. The effect
of upsampling on the strain image corresponding to regular
weights is negligible. On the other hand, lower level of
regularization slightly increases the estimation variance.

The strain images for Realizations 2 and 3 for the simulated
layer phantom are shown in Fig. 5. Hybrid and GLUE exhibit
extensive strain variability, whereas MPWC-Net++ fails to
obtain the true strain values in deep tissue regions. SOUL
outperforms the other techniques by producing low-variance
strain maps with high contrast among different tissue layers.

Lateral strain images obtained by GLUE and SOUL from
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the experimental breast phantom have been shown in Fig. 6.
Due to lower resolution of ultrasound in the lateral direction,
the lateral strain images are not as good as the axial counter-
part. However, it is visually evident that SOUL substantially
outperforms GLUE. This observation is clearer in Fig. 7 where
the lateral strain images for liver Patient 2 have been shown.
GLUE fails to distinguish the tumor from healthy tissue
whereas SOUL successfully reveals the tumorous region.
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Fig. 1: GLUE strain images with strong regularization. Columns 1 to 5 show the strain images for four-layer simulated phantom,
soft-inclusion simulated phantom, breast phantom, liver Patients 1 and 2, respectively.
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Fig. 2: Axial strain images obtained from the soft-inclusion
simulation phantom. Columns 1 and 2 depict strain images
from SOUL with optimal and 50% stronger regularization
weights, respectively.
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Fig. 3: Strain plots for the simulated uniform phantom.
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Fig. 5: Results obtained from the simulated layer phantom with different realizations of scatterer position and amplitude.
Columns 1 to 4 show the strain images produced by Hybrid, GLUE, MPWC-Net++ and SOUL, respectively. Rows 1 and 2
correspond to Realizations 2 and 3, respectively.
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Fig. 6: Lateral strain images obtained from the experimental Fjg 7: Lateral strain results obtained from liver Patient 2.
phantorp. Columns 1 and 2 correspond to GLUE and SOUL,  Columns 1 and 2 represent GLUE and SOUL strain images,
respectively. respectively.



