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Abstract—Calculation of the Normalized Cross Correlation
(NCC) at the estimated displacement has been usually the only
way to assess the accuracy of Time-Delay Estimation (TDE) in
elastography in recent years. However, a method is proposed in
[1] which takes advantage of using NCC profile with 7 valuable
features and also looks at accuracy assessment in a supervised
approach. In this paper, we build on our previous work by
utilizing continuity features in axial and lateral directions as
useful information. We show that these features improve the
sensitivity and specificity of the classifier. After extracting the
continuity features in addition to features proposed in our
previous work, we train a linear Support Vector Machine (SVM)
on three in-vivo data sets to show the significant improvement of
utilizing the proposed features.

Index Terms—Accuracy Assessment, Ultrasound Imaging, Ul-
trasound Elastography, Supervised Quality Assessment

I. INTRODUCTION

Ultrasound elastography is well studied in literature as an
imaging technique to measure mechanical properties of the
tissue, specially those are related to the elastic modulus [2],
[3]. To this end, several elastography methods are established
to obtain deformation field between two frames of ultrasound
Radio-Frequency (RF) data, a problem also referred to as
Time-Delay Estimates (TDE) [4]. Obtaining accurate TDE is a
challenging due to large signal decorrelation noise which can
adversly affect accuracy of elastography algorithms. Accuracy
assessment of TDE can be used to mask out erroneous areas of
strain images, improve quality of strain images by exploiting
weighted averaging of elasticity images [3], [5], and to speed
up training duration of sonographers to acquire images of
higher quality instead of relying on individual’s skills.

Reliable quality assessment of TDE plays an important role
in widespread use of ultrasound elastography. Early work
found lower bounds for the variance of the displacement
estimate errors [6], [7], [8], [9]. Although this approach tries to
find a closed-from expression for any unbiased TDE method
based on TDE parameters and ultrasound system configura-
tion, it can not provide accuracy of TDE. General performance
metrics such as signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR) of the strain images were therefore proposed
to overcome this pitfall of the lower bound error analysis.
These values are usually measured as a function of axial strain
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and are called strain filter [10], [11], [12], [13], [14]. Two
disadvantages can be considered in using SNR and CNR as
measures of quality assessment. First, they are measured in
a small and homogenous regions in strain image which are
not always available in real tissue. Second, these values are
not calculated directly from TDE. Instead they are obtained
through derivative of TDE that would definitely depend on
derivative operator.

A common method to assess the accuracy of TDE is by
using Normalized Cross Correlation (NCC). NCC is calculated
between two windows in corresponding RF frames to provide a
quantified insight regarding accuracy of TDE. In [15], regions
in which corresponding NCC values are less than a user-
defined threshold are masked out as incorrect areas of the
strain image. In [16], [17], [18], precision of the displacement
field is linked to the value of NCC, which is later used to
wash out the incorrect areas of the strain image. In [19],
consistency information of consecutive frames is incorporated
as measure to assess the quality of strain images. In [20], a
method is introduced which selects a few representative frames
from a large pool of axial strain images and assigns each
frame a quality indicator and performs a weighted averaging
of the strain images based on their NCC values. All of
aforementioned methods utilize only the value of the NCC
at the estimated displacement. Finally, a method is presented
in [1] which uses information of the NCC profile around
the estimated time-delay. Seven features are proposed in the
method to recognize peak-hoping and jitter error in TDEs.
Specifically, Skewness and variance of nine neighboring NCC
values are used to distinguish peak-hoping samples and the
only NCC value at the estimated displacement in addition
to four closest neighboring NCC values which are utilized
to find jitter error. After extracting those seven features, a
linear SVM model is trained as binary classifier to evaluate
the accuracy of TDEs. However, the proposed method does
not take into account continuity of TDE in displacement
field due to homogeneity properties of the tissue. Although
accurate TDE is not available for patient data sets, Dynamic
Programming Analytic Minimization (DPAM) [21] has been
used in the method to provide ground truth for training the
model.

Herein, we extract two additional features in addition to
the seven features in [1] to improve the distinguishability of
the proposed model on three in-vivo data sets. Moreover, a
new and accurate elastography method which is called Global
Ultrasound Elastography (GLUE) [22] is utilized to get more
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Fig. 1. Displacement between pre-and post compressed images. I1 and I2
are pre- and post-compressed images, respectively. Z, X, Y are axial, lateral
and out-of-plane directions, respectively. The coordinate system is attached to
the ultrasound probe. The sample P (i,j) in I1 has been moved by ( ai,j ,li,j )
in I2.

Fig. 2. Pre-compressed image on the left and the corresponding TDE between
I1 and I2 on the right. For sample P (i,j) in I1, eight neighboring TDE values
are shown as black points on the right image.

accurate TDE values for in-vivo data sets in training classifiers.
And then, performance of the proposed method is investigated
using the aforementioned nine features on all three patients.

II. METHODS

Let I1 and I2 be pre-and post-compressed images in Fig.
1, and the displacement field obtained by an elastography
algorithm corresponds to samples in I1 and I2 images. For
each sample (i,j) in the pre-compressed image, a and l show
axial and lateral displacement values, respectively in Fig. 1.
In [1], accuracy of TDE is evaluated in a supervised approach
using information of NCC profile and seven valuable features
are proposed for training the model.

Continuity (i.e. lack of rupture) in real tissue implies that
TDEs should not change significantly in a small region in
tissue. Therefore, for each sample (i,j) in I1, a window of
size 3 by 3 is taken into account in displacement field so
that variance of those nine TDE values in axial and lateral
directions are taken as continuity features according to Fig. 2.
This means in a case that peak-hoping sample happens, TDE
is estimated far from the correct TDE and these variances will
be increased incredibly in which peak-hoping samples will be
simply classified as incorrect TDE.

Fig. 3. Flowchart of the proposed method. I1 and I2 are pre- and post-
compressed images, respectively. Displacement field is available from a
displacement estimation algorithm.

A. Supervised Learning

In this work, Support Vector Machine (SVM) is trained
for the supervised quality assessment of time-delay estimates.
SVM is a supervised classification method and is utilized as
binary classifier to categorize correct and incorrect estimated
time-delays. Therefore, it requires training an testing samples
categorized as true and false classes which are formed accord-
ing to the scheme that is thoroughly described in [1].

B. Training Sets

For in-vivo data, the ground truth TDE is not available. In
[1], a method based on DPAM of a regularized cost function
was used. Although the method was accurate enough, we want
to show that the proposed scheme would work even in case
of using another accurate method in obtaining ground truth
of TDE for patient data. Therefore, we utilize the new and
more reliable proposed elastography algorithm in [22] to find
the correct TDE as ground truth. The method known as Global
Ultrasound Elastography (GLUE), finds all TDE values for all
RF frames simultaneously by using a non-linear cost function
and is optimized in an efficient way. In addition, the quality
of strain images are visually checked before using GLUE
TDEs to ensure that GLUE is successful in providing accurate
displacement fields.

C. Classification

The main purpose of this work is to add continuity features
to those seven valuable features discussed in [1] to improve the
quality of supervised classification. Therefore, for each sample
(i,j) in I1, nine features are calculated to train and validate the
proposed model. In Fig. 3, flowchart of the proposed method
is shown to better illustrate different stages of the supervised
accuracy assessment.

III. RESULTS

This work is implemented in MATLAB and is tested on
three clinical data sets. This approach makes use of all samples
of I1 in training and testing. This means that for each sample
(i,j) in I1, windows of size 51 by 1 are considered for
calculating the NCC values to obtain seven features discussed
in [1] and then variances of corresponding samples in displace-
ment field are calculated. For training, true and false classes
are needed. Therefore, true class is formed by using GLUE
method and false class is constructed by finding peak-hoping
samples and adding an uniform noise to the rest of the samples



TABLE I
CLASSIFICATION ACCURACY USING ONE NCC VALUE, 7 FEATURES, AND

9 FEATURES FOR THREE PATIENT DATA USING SVM CLASSIFIER.

Data set 1-NCC 7-Features 9-Features

Patient data 1 66.7 82.7 84.1

Patient data 2 69.2 83.9 85.2

Patient data 3 81.2 91.5 95.6

Average 72.3 86 88.3

in TDEs in both axial and lateral directions. The uniform noise
is in the range of [0.4 0.6] sample in the axial and [-0.1 0.1]
sample in the lateral direction meaning that there is always a
minimum 0.4 sample error in the axial direction for all samples
in false class.

A. In-Vivo Data

The RF data was acquired at Johns Hopkins University
using an Antares Siemens (Issaquah, WA) ultrasound machine
and A VF10-5 linear array at the center frequency of 6.67 MHz
with a sampling rate of 40 MHz. All three in-vivo data sets
are obtained from ablation therapy of the patients with liver
cancer. As mentioned before, the displacement field for all the
three patients is calculated utilizing the GLUE method [22].

The overall classification accuracy using one NCC value,
seven and nine features are shown in Table 1 for all the three
patients. The accuracy is improved by more than 14% on the
average by using the seven features and more than 16 % on
the average by using the nine features. In first and second
patient data, peak-hoping samples in forming the false class
involves 2% of all incorrect samples and rest of them are jitter
samples. However, we added more peak-hoping samples to the
third patient’s false class (10% of the false class) to show the
power of the two proposed features. Although using the nine
features for the third patient is improving the results, it has the
disadvantage of requiring a larger training sample (i.e. peak-
hoping samples), which comes with increased computational
cost. Last but not least, the Receiver Operating Characteristic
(ROC) curves for all the three patients are depicted in Fig.
4. The area under the ROC curve is increased from 0.6932
to 0.8965 for patient 1, from 0.7477 to 0.9008 for patient
2 and from 0.8777 to 0.9707 for patient 3 by using the
nine features. The improvements achieved by utilizing the
information of the NCC profile around the time-delay estimate
and locally continuity properties of the displacement field due
to continuity of the displacement field.

B. Accuracy Map in Region of Interest (ROI)

Quantitative validation of the proposed model and features
has been done in the previous sections. Herein, the accuracy
map of the scheme is visualized for patient 3. The red boxes in
Figs. 9 (a) and (b ), show tumor region in B-mode ultrasound
and strain image, respectively. To visualize the performance of
the proposed method, two experiments are performed. First,
the displacement field for the tumor region is obtained by
GLUE and is visually checked. Therefore, the binary classifier
should recognize them as true displacement estimate. In Figs.

(a) patient 1

(b) patient 2

(c) patient 3

Fig. 4. ROC curves for three patients.

9 (c) and (d), results of using one NCC and nine features
are shown. Yellow samples indicate correct classified regions
and blue samples show incorrect classified samples. Second,
all samples in tumor region are peak-hoping or corrupted
by noise as jitter samples. Therefore, the proposed method
should classify them as incorrect estimates. Figs. 9 (e) and
(f) show the result of using the method for using one NCC
and nine features values, respectively. Correct and incorrect
classifications are indicated in yellow and blue, respectively.
The results distinctly demonstrate that using the nine features



(a) Bmode Image (b) Strain Image

(c) TP1 (d) TP9

(e) FP1 (f) FP9
Fig. 5. Accuracy map in tumor region for patient 3 is shown in red boxes for true and false positive cases.

outperforms utilizing only one NCC value.

IV. CONCLUSION

A new method for accuracy assessment of TDE in ultra-
sound elastography is presented using NCC profile and conti-
nuity of the tissue displacement field. The approach considers
accuracy of TDE at each sample as a binary classification
problem meaning that each estimate is labelled as correct or
incorrect. Therefore, erroneous areas of the strain image can
be masked out to only show correctly estimated regions. This
method also reduces dependency of the quality of ultrasound

images on skills of sonographers. We used GLUE [22] in
this paper for performing TDE. However, any other reliable
elastography algorithms is applicable in our proposed method.
The performance of the proposed method is validated on
three patient data sets. Although training the SVM model is
computationally expensive, it is performed offline. The testing
stage of the proposed SVM-based method is very fast and
therefore can be used in real-time.
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