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Abstract—The accuracy of Time-Delay Estimation (TDE) in
ultrasound elastography is usually measured by calculating the
value of Normalized Cross Correlation (NCC) at the estimated
displacement. NCC value, however, could be very high at a
displacement estimate with large error, a well-known problem
in TDE referred to as peak-hoping. Furthermore, NCC value
could suffer from jitter error, which is due to electric noise
and signal decorrelation. Herein, we propose a novel method
to assess the accuracy of TDE by investigating the NCC profile
around the estimated time-delay. We extract several features from
the NCC profile, and utilize Support Vector Machine (SVM) to
classify peak-hoping and jitter error. The results on simulation,
phantom and in-vivo data show the significant improvement of the
proposed algorithm compared to the state of the art techniques.

Index Terms—Ultrasound Elastography, Supervised Quality
Assessment, Accuracy Assessment, Ultrasound Imaging

I. INTRODUCTION

Ultrasound elastography is an emerging medical imaging
modality that involves measuring tissue deformation field
caused by an external or internal force [1]. Several ultrasound-
based techniques have been established in past years in the
literature to find the deformation field [2], [3], [4], [5], [6] also
referred to as Time-Delay Estimates (TDE). TDE is calculated
between two frames of ultrasound Radio-Frequency (RF) data,
and is used to infer tissue mechanical properties, in particular
Young’s modulus. On one hand, elastography has been applied
in several clinical trials in breast, liver and prostate cancer,
and is rapidly finding new clinical applications [7], [8], [9],
[10], [11]. On the other hand, it has evolved into several
different techniques such as shear-wave elastography [12],
[13] and quasi-static elastography [14], [15]. In quasi-static
elastography, either the spatial gradient of the displacement
field (i.e. a strain image) is used, or an inverse problem is
solved to calculate the Young’s modulus [16], [17], [18], [19].

TDE is challenging due to signal decorrelation between the
two ultrasound frames. Failure in TDE creates artifacts in
elastography, which can adversely affect diagnosis or surgical
operations. The importance of assessment of the accuracy of
TDE is four-fold. First, it can be used to mask out erroneous
areas of the elasticity image. Second, ultrasound frame rate
is very high, and therefore, several TDEs can be calculated
and utilized every second. Recent work has, in fact, focused
on exploiting multiple images to improve the quality of
elastography [15],[20],[21]. An accuracy map can be exploited
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to perform weighted averaging of these elasticity images, as-
signing smaller weights to uncertain TDEs. Third, quasi-static
elastography methods are user-dependent, and rely highly on
the skill of the sonographer. An accurate assessment method
can be used to generate accuracy maps alongside strain images,
which can help train sonographers to obtain elastography
images of higher quality. And fourth, elastography algorithms
often use the displacement estimation of previous samples to
reduce the search range and computational complexity, which
can lead to propagation of errors. The proposed method can
be used to prevent such propagation of errors.

TDE methods are always subject to small and large error
values. Small error is widely referred to as jitter and can
be quantified by studying the fundamental limits on the
performance evaluation of TDE [20]. Large errors in the
displacement field, also called peak-hopping, create outlier
data in the displacement field. Peak-hoping happens when
maximum value of the cross-correlation function is found
somewhere far from the actual displacement estimate within
a predefined search region. Several algorithms have been
proposed to reduce the occurrence of large errors and limit
their effect in both quasi-static [21], [22], [23] and shear-wave
elastography [24], [25]. Although accuracy assessment of TDE
is essential in both quasi-static and shear-wave elastography,
this work focuses on the former.

Widespread adoption of ultrasound elastography relies on
reliable quality assessment of TDE. Early works is focused
on prediction of a lower bound for the variance of the
displacement estimate errors [26], [27], [28], [29]. These
contributions derive a closed-form expression for the TDE
error variance, which is parameterized in terms of the TDE
algorithm and ultrasound system configuration, and obtain the
minimum achievable error by any unbiased TDE algorithm
[26], [27]. Although mathematically elegant, this approach
does not provide the accuracy of the TDE and instead produces
a lower bound value for the error variance.

To overcome the shortcomings of the lower bound error
analysis, general performance measurements such as signal-
to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the
strain image are widely used [30], [31], [32], [33], [34]. These
measures are often called strain filter since they behave similar
to a bandpass filters when they are measured as a function of
axial strain. For example in [30], SNR is defined as the ratio
of the mean m and standard deviation σ of the estimated strain
over a small window as following:

SNR =
m

σ

The strain filter proposes a framework that allows a limited
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(a) Correct displacement estimates (b) Peak-hopping

Fig. 1. Joint probability density function of the skewness and variance for 1000 correct TDEs and 200 peak-hoping TDEs .

range of strains to be included in the strain image. The reasons
why the filter deviates from an all-pass characteristics in the
strain domain are ultrasound system parameters, the finite
value of the SNR, and the effect of signal decorrelation for
high strain values. In fact, the strain filter approach provides
valuable insight to design strain-imaging systems to generate
high quality results. However, there are three disadvantages in
using general performance measurements. First, they should be
estimated in small windows that must be regions of constant
strain [30]. Such regions are not necessarily available in real
tissue that is largely heterogeneous. Second, these methods do
not directly estimate the accuracy of TDE but rely solely on
strain, the spatial derivative of TDE. As such, the derivative
operator has a strong impact on these measures, such that
higher SNR and CNR can be obtained by smoother derivative
operators [35]. Third, strain filters only provide an upper
bound for the quality of the estimated strain value, and do
not produce the quality of the specific TDE. For example,
these filters usually predict a high value of SNR and CNR at
around 1% strain for most displacement estimation algorithms.
However, an incorrect displacement may be estimated at 1%
strain due to a large signal decorrelation.

The application of normalized cross-correlation (NCC) sim-
ilarity metric in performance evaluation of TDE is an active
field of research. NCC is generally calculated between two
corresponding windows in the two RF frames to quantify the
accuracy of the displacement field. In [36], a method has
been proposed to mask out the incorrect areas of the strain
image where NCC falls below a user-defined threshold. In
[37], [38], [39], the value of NCC is linked to the precision
of the displacement field, which is used later to blur out
the areas of the strain image that are not accurate. In [33],
standard deviation of the jitter error is evaluated by finding
NCC and the sum of squared difference (SSD) values of
the corresponding windows. In [40], a technique has been
introduced that incorporates the consistency information of
consecutive frames as a measure to evaluate the quality of
strain images. Finally, a frame quality indicator has been
presented in [41] that selects a few representative frames from
a large pool of axial strain images based on the value of NCC

and performs weighted averaging of the strain images based
on the NCC value. While these methods improve the quality
of strain images, they utilize only NCC at the TDE. We will
show that NCC profile around the TDE contains information
that is otherwise not available from the peak NCC value.

In Fig. 1, the joint probability density functions of the
skewness and variance for 1000 correct estimated samples and
200 peak-hoping samples are shown. For each sample, nine
NCC values are calculated by shifting the center of the post-
compressed window by ±1 samples in the axial and lateral
directions (i.e. nine values in a window of size 3×3). As it is
obvious, the surface in Fig. 1(a) is concentrated in a specific
area whereas it is spread randomly in Fig. 1(b). This difference
in the behavior of the probability density functions enables us
to use the skewness and variance of the neighboring samples
around the estimated one as two invaluable features to train
the classifier. The skewness of the NCC profile is calculated
as following:

skewness =
∑n

i=1(xi − µ)3

n

where n and µ represent the number and average of the
samples, respectively. Moreover, NCC curve by shifting ±1
samples in the axial direction in the post-compressed image
is shown in Fig. 2. It is expected to have a local maximum at
the correct estimated displacement. In 2D, this curve becomes
a 2D surface, and its shape can help in the assessment of the
accuracy of the TDE.

Herein, we present a novel technique for assessing the
accuracy of TDE that relies on multiple NCC measurements.
Instead of relying on the value of NCC at the estimated
displacement, we look at the NCC profile around the estimated
displacement. Our technique identifies locations that contain
errors larger than an accepted value, so that these regions can
be marked out of the strain image. In particular, we look at
the 4 NCC values obtained by varying the displacement by ±1
sample in either axial or lateral directions in addition to the
NCC value at the estimated displacement. Five aforementioned
NCC values and skewness and variance of nine samples in the
3×3 neighborhood around the estimated TDE are concatenated
into a feature-vector of size seven. We show that these seven
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Fig. 2. NCC curve obtained by shifting the post-compressed window by
±1 samples in both axial and lateral directions. NCC windows of pre- and
post-compressed images are shown in black and red respectively.

Fig. 3. Displacement between pre-and post compressed images. I1 and I2
are pre- and post-compressed images, respectively. Z, X, Y are axial, lateral
and out-of-plane directions, respectively. The coordinate system is attached to
the ultrasound probe. The sample P (i,j) in I1 has been moved by ( ai,j ,li,j )
in I2.

features are significantly superior in discriminating the cor-
rect versus incorrect displacement estimates using simulation,
phantom and in-vivo experiments.

II. METHODS

In elastography, pre- and post-compressed images corre-
spond to each other via a displacement field. Some popular
methods for estimation of the displacement field are discussed
in detail in [14], [42]. Assume that for each sample (i,j) in the
pre-compressed image, axial and lateral displacement values
are a and l as illustrated in Fig. 3. Our goal is to quantify the
accuracy of the displacement estimates.

NCC is a widely used similarity metric in TDE and it evalu-
ates the degree of similarity between pre- and post-compressed
images. The main advantage of NCC is its sensitivity to linear
changes in the intensity of the two images compared to the
ordinary cross correlation metric [43]. In addition, NCC is
confined to be in the range between -1 and 1, which avoids
dealing with very small or large values in training a classifier.
We, therefore, use the NCC profile as our feature set.

Let I1 and I2 be two matrices of dimension (m×n) repre-
senting the pre- and post-compressed ultrasound images, re-
spectively. For each sample (i,j) of the pre-compressed image,
a window centered at (i,j) is considered for the calculation of

the NCC. Suppose that X=(x,y) is a vector containing sample
coordinates such that (x, y) ∈ {i − 25, ..., i, ..., i + 25}×{j}
(Fig. 4a). Moreover, Y1=(x,y) is a shifted and linearly in-
terpolated window in the post-compressed image containing
sample coordinates such that (x, y) ∈ {i + ai,j −25, ..., i +
ai,j , ..., i + ai,j +25} ×{j − li,j }. The corresponding NCC
value of these windows is called NCC1 (Fig. 4c). The goal
of this scheme is to investigate the behavior of the similarity
metric in the neighborhood of the estimated sample. After
finding eight neighboring windows of Y1 which are called
Y2, Y3, Y4, Y5,Y6, Y7, Y8, Y9 according to Fig. 4b, we
calculate the corresponding NCC between each window and
X, separately. These nine NCC values of each sample (i,j) in
image I1 are called NCCi,i=1,2,...,9 and are shown in Fig. 4c.

A. Feature Selection

Fig. 1 indicates that the probability density function (PDF)
of the peak-hoping samples is randomly distributed, whereas
the PDF of the correct estimated samples is compact. Thus, the
variance and skewness of the nine neighboring samples around
the peak-hoping and correct estimated samples are calculated
to be considered as two features for recognizing the peak-
hoping error.

Assuming that a correct TDE is available for the sample X
at (i, j), NCC1 must be larger than the other four neighboring
NCC values, which are NCC2, NCC3, NCC4, and NCC5

(NCC1 is the similarity calculated at the correct TDE). In
other words, the NCC profile has a local maximum at the
correct TDE as it is shown in Fig. 2. The steepness of the
maximum and convexity of the NCC profile will be used for
identification of the jitter error.

B. Supervised Learning

In this work, Support Vector Machine (SVM) [44] is used as
a binary classifier to find the accuracy map of the elastography
algorithm. SVM is a supervised classification method, and
as such, requires training data. SVM performs non-linear
classification and, therefore, often outperforms linear clas-
sification techniques. In addition, while training a SVM is
computationally intensive, the testing stage is very fast. This is
ideal in ultrasound elastography, wherein SVM can be trained
offline and be used to test the TDE results in real-time. The
flow chart of our approach for obtaining the training data is
shown in Fig. 5. Preparation of the training data, shown as true
and false classes in this figure, is described in the following
section.

C. Training Sets

We require training data that corresponds to correct and
incorrect displacement estimates. For simulation data, the
ground truth TDE is available from our finite element simula-
tion. For phantom experiments and in-vivo data, the ground
truth TDE is not available. Therefore, we use a real-time
elastography algorithm [45], [46] to find TDE between pre-
and post-compression RF data to obtain a silver standard.
This method is based on dynamic programming and analytic
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Fig. 4. (a), (b) I1 and I2 are pre- and post-compressed images, respectively. Windows X and Yi, (i = 1, 2, ..., 9) correspond to the sample (i,j) in I1. (c)
Nine NCC values are illustrated, NCC1 was the only value which was used to asses accuracy.

Fig. 5. Flow chart of the proposed method. I1 and I2 are pre- and post-compressed images, respectively. Displacement field is either available from the
simulation data, or calculated from a displacement estimation algorithm.

minimization (DPAM) of a regularized cost function. We
visually inspect the results to assure that the algorithm has
successfully calculated the displacement field. We also vary
the regularization parameter of DPAM to show that the results
have small variance (Discussion Section). Therefore, for all
the samples in image I1 seven features are extracted by the
correct displacement field that is available from either FEM or
DPAM (Fig. 5) to form the class of correct displacements. The
training set of incorrect displacements is composed of peak-
hoping and jitter samples. For peak-hoping, among all the
samples in I1, we find samples in I2 which have larger NCC
values somewhere far from the correct estimated displacement.
For jitter, uniform noise is added to the rest of samples of
the correct displacement field. The amplitude of this noise
is between 0.4 and 0.6 samples. After creating the incorrect
displacement field (which includes jitter and peak-hoping
samples), we calculate seven features for all samples to form
the class of incorrect displacements (Fig. 5).

D. Classification

The main idea in the proposed scheme is to employ infor-
mation of the neighboring pixels to evaluate the accuracy of
TDE. Therefore, instead of using one NCC value that is called
NCC1 as the only feature, four neighboring NCC values in
addition to skewness and variance of nine NCC values are
used according to Fig. 4(c). Therefore, for each sample (i,j)
in I1, seven features are calculated for training and validation
procedure.

III. RESULTS

The proposed scheme is implemented in MATLAB and is
evaluated employing simulated, phantom and clinical data.
In this study, all the samples of the pre-compressed image
are considered as the training and testing data set. For each
sample (i,j) in I1, windows of size 51 by 1 are taken in
calculating the NCC values. As discussed earlier, the true class
is constructed by the available ground truth or by utilizing the
DPAM method. False class samples are formed by finding the
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peak-hoping samples or adding a uniform random noise to
the rest of samples in the axial and lateral displacements. The
uniform noise is in the range of [0.4 0.6] sample in the axial
and [-0.1 0.1] sample in the lateral direction. Therefore, there
is a minimum of 0.4 sample error in the axial direction in the
false class.

In order to find the accuracy of the classifier for each data
set, 10-fold cross validation is performed for using one NCC
value and seven proposed features. In 10-fold cross validation,
the original data set is partitioned randomly into 10 equal
sized subsets. Each time, one subset is used as the validation
set to test the accuracy of the classifier, and the remaining 9
subsets are utilized as the training set. This will ensure that
the algorithm is not trained and tested on the same data. In
the final step, the averaged accuracy of all 10 experiments is
calculated as the final accuracy of the classifier.

A. Running time

A critical and computationally expensive step in SVM
classification is finding the support vectors, i.e. the training
samples that are close to the decision boundary. As a result,
training the proposed method on 100,000 samples takes 381.02
sec on a single core of an i7 3.4 GHz Intel CPU. This training
can be performed offline. The testing step of SVM is usually
very fast, since the decision boundary is determined in the
training step. In our implementation, evaluating the accuracy
of an image of size 100×100 takes 0.78 sec on the same CPU,
which means that the method can show an accuracy map in
real-time.

B. Simulation Data

Ultrasound data has been created by Field II [47], and
the digital phantoms are deformed using the Finite Element
Method (FEM) by ABAQUS Software (Providence, RI). The
parameters of the ultrasound probe are as follows: The sam-
pling rate is 40 MHz and probe frequency is 7.27 MHz, and
the fractional bandwidth is 60%. A Hanning window is used
for apodization, the single transmit focus is at 22.5 mm, equi-
distance receive foci are from 5 mm to 45 mm at each 5 mm,
the transmit is sequential, and the number of active elements
is 64. This phantom is uniform and is assumed to be isotropic
and homogeneous.

The results show that accuracy of the classifier is substan-
tially increased from about 94% to 98% (Table 1). Receiver
Operating Characteristic (ROC) [48] curves for the simulation
data set are also shown in Fig. 6. It shows that the area under
the curve for using one NCC value and the proposed method
are respectively 0.9606 and 0.9826, a substantial improvement
achieved by using the NCC profile.

C. Phantom Data

An Antares Siemens system (Issaquah, WA) at the center
frequency of 6.67 MHz with a VF10-5 linear array at a
sampling rate of 40 MHz is used to acquire RF data. An RF
data is collected from freehand palpation of a CIRS breast
elastography phantom (CIRS, Norfolk, VA) with a lesion three
times stiffer than the surrounding tissue.

TABLE I
CLASSIFICATION ACCURACY USING ONE NCC VALUE AND THE PROPOSED

METHOD FOR THE SIMULATION DATA.

Data set 1-NCC 7-Features

Simulation data 93.9 98.4

Fig. 6. ROC curve for the simulation data.

The DPAM method [45] is utilized to calculate the displace-
ment field. In Table 2, the overall accuracy of the proposed
classifier by using one NCC value and seven NCC values is
shown. The substantial improvement from 82.2% to 96.7% is
achieved by using the seven features. The ROC curves are
shown in Fig. 7. The areas under curve for the one NCC
method and the proposed method are, respectively, 0.8994 and
0.9846, showing substantial improvement.

D. In-Vivo Data

The RF data was collected by ablation therapy of three
patients with liver cancer using an Antares Siemens (Issaquah,
WA) ultrasound machine and A VF10-5 linear array at the
center frequency of 6.67 MHz with a sampling rate of 40
MHz for the RF data acquisition at John Hopkins Hospital.
The displacement matrix for all the three patients is calculated
by the DPAM method [45].

The overall classification accuracy using one NCC value
and seven NCC values are depicted in Table 3 for all the
three patients. The accuracy is improved by more than 13%
in the average by using the proposed method. Also, for patient
1 with the worst available data set in terms of quality of RF
data, it shows a very high improvement of about 21%. Finally,
the ROC curves for all the three patients are depicted in Fig.
8. The area under the ROC curve is increased from 0.6906
to 0.9255 for patient 1, from 0.8624 to 0.9598 for patient
2 and from 0.9610 to 0.9926 for patient 3. The significant

TABLE II
CLASSIFICATION ACCURACY USING ONE NCC VALUE AND THE PROPOSED

METHOD FOR THE CIRS PHANTOM DATA.

Data set 1-NCC 7-Features

Phantom data 82.2 96.7
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Fig. 7. ROC curve for the CIRS phantom data.

TABLE III
CLASSIFICATION ACCURACY USING ONE NCC VALUE AND PROPOSED

SEVEN FEATURES FOR THREE PATIENT DATA.

Data set 1-NCC 7-Features

Patient data 1 67.6 88.6

Patient data 2 79.3 92.2

Patient data 3 90.6 98.2

Average 79.2 93.0

improvement in the results is obtained by exploiting the NCC
profile around the estimated displacement field.

E. Accuracy Map in Region of Interest (ROI)

The proposed method has been quantitatively validated
in the previous sections. To visualize the performance of
the proposed method, we show the map of the accuracy
assessment. In Figs. 9 (a) and (b), the red boxes in the figures
indicate the tumor region in the B-mode ultrasound strain
images for patient 3. The displacement field is calculated using
DPAM and is visually checked. Therefore, all samples belong
to the true set and the classifier should label those pixels as
the true displacement estimate. Figs. 9 (c) and (d) show the
results of the proposed method using one NCC and seven NCC
values. Blue samples denote successfully classified regions and
yellow samples show the unsuccessfully classified samples. In
a second experiment, all the samples are either peak-hopping
samples or are corrupted by the jitter error. Therefore, the algo-
rithm should classify all the samples as incorrect displacement.
Figs. 9 (e) and (f) show the result of the proposed method for
using one NCC and seven NCC values, respectively. Again,
blue and yellow respectively represent correct and incorrect
classification. The results of this figure clearly demonstrate
that the proposed method substantially improves the results.

The accuracy maps are created for the True Positive (TP)
and False Positive (FP) cases around the tumor. The tumor
region is chosen as region of interest to locally show the
performance of the classifiers using one NCC value or the
seven proposed features. It is important to note that the
samples in this region (i.e. the vicinity of the tumor) are not
used for training and are only used in the testing stage. In
the TP case, all the samples in the tumor region have correct

(a) patient 1

(b) patient 2

(c) patient 3

Fig. 8. ROC curves for three patients.

displacement estimates, which are obtained using DPAM. For
the FP case, all the samples of the validation set have incorrect
displacement estimates in the form of either peak-hoping or
jitter error. These incorrect displacements are generated by the
procedure described in Section II.C.

IV. DISCUSSION

The information around TDE is always informative in
discriminating the correct versus incorrect displacement esti-
mates. Since estimation of the displacement is generally more
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(a) Bmode Image (b) Strain Image

(c) TP1 (d) TP7

(e) FP1 (f) FP7
Fig. 9. Accuracy map in tumor region for patient 3 is shown in red boxes for true and false positive cases.

difficult close to boundaries between different organs or tissue
types, it is more likely to find an incorrect displacement in
these regions. Therefore, our method is more invaluable in
these regions wherein incorrect displacement estimates may
lead to incorrect diagnosis or surgical planning.

Although there is no gold standard for displacement fields
for phantom and in-vivo data set, time-delay estimates are
inspected visually to be accurate enough. In this paper, TDEs
are obtained by DPAM, which is a promising method to obtain
accurate displacement fields. In order to show that the obtained
TDE is accurate, we changed the axial regularization weight
by 20% in five equal steps (20 to 24) and ran the DPAM code.
The mean squared error (MSE) for those displacement values
is on average less than 0.02 sample (0.0004 mm) for all data
sets (Table IV). The small MSE of the displacement fields
quantitatively shows that the DPAM displacement estimates

TABLE IV
THE MEAN SQUARED ERROR (MSE) OF DISPLACEMENT VALUES
OBTAINED USING DPAM FOR ALL DATA SETS USING DIFFERENT

REGULARIZATION WEIGHTS.

Phantom Patient1 Patient2 Patient3

0.0204 0.0172 0.0054 0.0039

have a low variance. Note that the 0.02 sample variance is
substantially smaller than the 0.4 to 0.6 samples that are added
to the correct displacement field to generate jitter.

In order to improve the accuracy of the classifier, the
proposed seven features are utilized instead of using one NCC
values at the estimated time-delay estimate. The results show
that using the seven features improves the performance of the
classifier substantially. However, one might consider additional
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features that further improve the performance of the classifier.
Future work will utilize a Random Forest [49] classifier to
determine the most informative features [50].

The proposed automatic quality assessment of TDE is a
novel approach which can play an important role in industrial
and academic applications of ultrasound imaging specifically
in quasi-static elastography. This method can be applied as a
promising approach to quantitatively compare the performance
of TDE algorithms, since it is more reliable than solely using
the value of NCC at the estimated displacement. Moreover, this
method is suitable for real-time applications, and therefore, can
be used to train sonographers to obtain higher quality strain
images by displaying the accuracy map instantaneously. Un-
supervised classification methods, such as k-nearest neighbors
(KNN) [51] have an advantage over the proposed method in
that they do not require training data. However, they need
to search for nearest neighbors in high-dimensional feature
spaces and are not usually suitable for real-time applications.
In contrast, the proposed supervised technique based on SVM
runs in real-time, and therefore, provides clinically a more
relevant solution.

V. CONCLUSIONS

We have presented a novel method for accuracy assessment
of TDE using NCC profile around the estimated displacement
value, which can be used to mask out the erroneous regions of
the strain image. It can further reduce the user-dependace of
strain imaging and help train the sonographer. Our technique
is based on SVM classification, a nonlinear classifier that often
substantially outperforms linear classifiers. Training our SVM
classifier is computationally expensive, but it can be performed
offline. Once trained, our classifier is computationally efficient
and can classify the accuracy of TDE in real-time. The
performance of the proposed method is validated through
simulation, phantom and in-vivo data.
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