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Fast Multi-Focus Ultrasound Image Recovery
Using Generative Adversarial Networks

Sobhan Goudarzi, Amir Asif Senior Member, IEEE, and Hassan Rivaz Senior Member, IEEE

Abstract—In conventional ultrasound (US) imaging, it is com-
mon to transmit several focused beams at multiple locations to
generate a multi-focus image with constant lateral resolution
throughout the image. However, this method comes at the expense
of a loss in temporal resolution, which is important in applications
requiring both high-frame rate and constant lateral resolution.
Moreover, relative motions of the target with respect to the
probe often exist due to hand tremors or biological motions,
causing blurring artifacts in the multi-focus image. This paper
introduces a novel approach for multi-focus US image recovery
based on Generative Adversarial Network (GAN) without a
reduction in the frame-rate. Herein, a mapping function between
the single-focus US image and multi-focus version for having
a constant lateral resolution everywhere is estimated through
different GANs. We use adversarial loss functions in addition to
Mean Square Error (MSE) to generate more realistic ultrasound
images. Moreover, we use the boundary seeking method for
improving the stability of training, which is currently the main
challenge in using GANs. Experiments on simulated and real
phantoms as well as on ex vivo data are performed. Results
confirm that having both adversarial loss function and boundary
seeking training provides better results in terms of the mean
opinion score test. Furthermore, the proposed method enhances
the resolution and contrast indexes without sacrificing the frame-
rate. As for the comparison with other approaches which are not
based on NNs, the proposed approach gives similar results while
requiring neither channel data nor computationally expensive
algorithms.

Index Terms—Ultrasound imaging, focal point, frame-rate,
GAN, adversarial loss.

I. INTRODUCTION

THE main Ultrasound (US) imaging techniques are: (1)
Classical focused transmission (also known as line-per-

line acquisition) which is the transmit configuration used in
current study; (2) Element-by-element transmissions synthetic
aperture imaging [1], [2], and; (3) Plane-wave transmissions
(also known as ultrafast imaging) [3]. Synthetic aperture
imaging generally has a limited depth of penetration and
also poor signal-to-noise ratio since it uses a single element
for emission [4]. In plane-wave transmission, however, high
frame-rate as well as optimal multi-focus quality can be
accomplished. More specifically, plane-waves transmitted with
different angels can be coherently compounded to reconstruct
US images which are focused everywhere [3]. Notwithstand-
ing, clinical application of this method is costly because it
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needs high data transfer bandwidth, powerful data acquisition
cards, and powerful parallel processing units.

Focused transmission provides better SNR than synthetic
aperture imaging and has a lower computational cost as
compared to plane-wave. More specifically, in focused trans-
mission, transmitted beams are focused in order to have higher
intensity and better lateral resolution at a specific depth.
Indeed, focusing means aligning the pressure fields of all
elements of the aperture to simultaneously arrive at a specific
field point [5]. Focusing can be done through a physically
curved aperture or electronic beamforming. Focused beams
have a complex bowtie shape with side lobes and grating
lobes [6]. In classical focused transmission, it is assumed that
received echoes are brought about by scatterers from within
the main transmitted US beam. However, if there is a strong
reflector outside of the main beam, it may cause detectable
echoes for transducer and will be falsely displayed. This
problem is called beam width artifact [7]. Hence, the narrower
the transmitted beam, the lower the beam width artifacts.

When the beam is focused, the quality of the image is
optimal at the focal point and progressively degrades away
from it. Therefore, in order to preserve optimal lateral res-
olution everywhere along the axial direction, several beams
focused at different depths are often transmitted. Consequently,
the multi-focus US image can be recovered. However, this
approach drastically reduces the frame-rate which is inversely
proportional to the number of transmissions. Therefore, there
is a trade-off between the lateral resolution and frame-rate
in classical focused transmission. It has to be mentioned that
when the depth of imaging is limited, image degradation
due to beam divergence is limited. Therefore, if there is no
clearly discernible target such as a cyst or hyperechoic region,
the difference between the quality of single and multi-focus
images is difficult to observe. Another issue arising in this
method is the assumption of having no relative motion between
the tissue and the probe while transmitting several beams. This
assumption is not practical in several applications such as in
imaging regions close to the heart or a major artery and in
obstetric sonography. For example, in cardiac sonography, the
motion blur is large even in between different lines, which has
led to the advent of multi-line acquisition (MLA) methods [8].
Hand motion and tremor are additional sources of relative
motions. Inspired by the success of deep learning algorithms,
we propose a data-driven method for multi-focus line-per-
line US imaging with only a single focused transmission and
without a loss in frame-rate. More specifically, we train a
Generative Adversarial Network (GAN) [9] to form a mapping
function between non focused and focused US images.

Convolutional Neural Networks (CNNs) are able to effi-
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ciently extract necessary features from raw data, and there is
no need to engineer hand-crafted features anymore [10]. CNNs
have been successfully used in variety of applications such as
classification, super resolution, denoising, and etc. Defining
a proper objective function to minimize during the training
phase is a critical factor that influences the performance of
the network, and is currently an active field of research [11],
[12], [13].

GANs address this issue by using CNNs to automatically
learn an objective function appropriate for satisfying the
specific task. More specifically, GANs consist of generator
and discriminator networks, which compete with each other.
Generally, the generator does a mapping from input space to
a real desired space, and discriminator specifies the quality
of generated data. Hence, the discriminator is the objective
function for generator, and the generator tries to fool the dis-
criminator by generating more realistic data [9]. Both networks
are interestingly trained during the training process, which
entails solving a minimax game to find the Nash equilibrium
of these two competing networks.

Improving the training process and test performance of
GANs is an active field of research [14]. Training dynamics of
GANs were theoretically investigated in [15], which has led
to several contributions in improving the training process [16],
[17], or finding a working architecture [18] tailored for specific
applications. Subsequently, Arjovsky et al. [19] exploited the
concept of integral probability metric [20] and introduced
Wasserstein GAN (WGAN). Although it resolved some issues,
it has a limited success because of using weight clipping
to enforce a Lipschitz constraint on the discriminator. This
problem was solved by penalizing the norm of gradient of the
discriminator over interpolation between generated and real
data [21], [22]. Another notable contribution was proposed
by Roth et al. [23] where a gradient norm penalty similar
to [21] is introduced, except that there is no interpolation and
f-divergences is instead used.

In spite of such important theoretical contributions, there is
still no clear understanding on why the discriminator objective
function is critical in stable training of GANs. Moreover, it has
been shown that most of reviewed models can reach similar
scores with non-saturating GAN introduced in [9], and there is
no evidence that any of them consistently outperforms the non-
saturating GAN. Using a different approach, another method
for training GANs was proposed entitled Boundary-Seeking
GANs (BSGANs) [24]. BSGAN is based on providing a policy
gradient for training the generator that forces the generator to
produce samples which are near the decision boundaries (i.e.,
the discriminator cannot distinguish real or generated data). In
addition to better training behavior, BSGAN works for discrete
as well as continuous data.

Application of GANs to different tasks such as classification
and regression, image synthesis, image to image translation,
and super-resolution is also experiencing a rapidly growing
interest. Herein, we confine our literature review on most
important contributions in the filed of medical imaging. Yang
et al. [25] used WGANs for denoising Low-Dose Computed
Tomography (LDCT) images. They also took advantage of
pretrained VGG-19 network [26] for feature extraction and

defining a perceptual loss function instead of MSE loss
function. However, VGG-19 was trained on color images,
and they duplicated the gray-scale channels to be able to
feed CT images to VGG-19 network [25]. Simultaneously,
another work on LCDT denoising was published which uti-
lizes a Conveying Pathbased Convolutional Encoder-decoder
(CPCE) network as the generator in a WGAN structure
[27]. In another application, conditional GANs were used
for reconstruction of magnetic resonance imaging (MRI) data
recorded for a compressed sensing scenario [28]. The main
idea in conditional GANs is conditioning both the generator
and discriminator networks on some extra information [29].
In this work, frequency-domain information were used for
conditioning the networks in order to have results that are
similar in both time and frequency domains [28]. Nie et al. [30]
used GANs for medical image synthesis. Their method was
validated on reconstruction of MRI images from CT images
and also generating 7T MRI from 3T MRI images. Recently,
Mardani et al. [31] proposed a compressed sensing framework
that uses GAN to remove the aliasing artifacts of undersampled
MRI images.

In line-per-line US imaging, multilayer perceptron (MLP)
was used for correction of phase aberrations [32] a long time
ago. After many years, a deeper version of MLP was used
for US beamforming [33], which trained several networks in
frequency subbands to suppress off-axis scattering and remove
clutter from channel data. This work used fully connected net-
works, which are prone to overfitting compared to CNNs. The
reconstruction of B-Mode images from sub-sampled Radio-
Frequency (RF) data using CNNs was investigated in [34]. Re-
cently, CNNs were used for speckle reduction [35]. In ultrafast
imaging, Gasse et al. [36] recovered high-quality plane-wave
images from a limited number of transmitted angles using
CNNs in a pilot study. Zhou et al. [37] improved the same
idea and used multi-scale structure CNNs on different channels
for recovery. To preserve the speckle information, wavelet
postprocessing was added to the output of the network.As for
the application of GANs in US imaging, in [38], a context-
conditional GAN was used to acquire the quality of 128-
channel B-Mode images from 32 channels. Speckle reduction
was done using GAN in [39]. Recovery of high quality plane-
wave images from a limited number of transmitted angles
using GANs was performed in [40].

As for the purpose of multifocal imaging, Bottenus [41]
proposed a method based on formulating a new frequency
domain transmit encoding matrix that incorporates both delay
and apodization to recover synthetic transmit aperture dataset.
This method allows for synthetic transmit focusing at all
points in the field of view. However, it is originally designed
for phased array sequences in which the radial scan lines
increase in separation in the axial direction. Consequently, this
method was demonstrated on a walking aperture curvilinear
sequence [42]. Using the regularized inverse of encoding
matrix, the possibility of recovering synthetic transmit aper-
ture dataset at each frequency for walking sequences was
demonstrated in [43]. Recently, Ilovitsh et al. [44] proposed
an approach which relies on superposition of axial muti-
foci waveforms in a single transmission. Despite substantially
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advancing the state-of-art, this method has two limitations.
First, superposition can only be completed on a subset of probe
crystals because of the piezoelectric maximal element response
producing nonuniform quality in the axial direction. Second,
it leads to an increase in thermal index due to transmissions
of longer durations.

Herein, the central idea is generating several focal points
by sending only one focused transmit beam. The nonlinear
propagation pattern of the US beam is not stationary along
the axial direction. Accordingly, in order to achieve a narrow
beam everywhere, a mapping function between the single-
focus US image and multi-focus version is estimated through
different GANs. More specifically, the optimal focus depth of
the transmit beam is found to be in the middle of imaging
depth. The number of networks depends on the depth of
imaging. In current study, we consider two networks to recover
shallow and deep regions.

A preliminary version of this work was presented in ISBI
2019 [45]. The comparative analysis between the current work
and previous work presented in [45] can be summarized as
follows:

1) The generator network is significantly improved by
adding residual connections, which enabled us to reduce
the number of generator parameters by a factor of 7. This
leads to better training and testing performance.

2) The training is now performed using BSGAN. The
changes in the architecture and training technique sub-
stantially improved the results. To keep the manuscript
concise, we did not include a comparison with the results
of the ISBI version.

3) The training and test data are substantially extended.
Four different shapes of cysts and highly scattering
regions are simulated. For each shape, five different
sizes are considered. And, for each size, 40 independent
realizations of scatterer are simulated. In comparison,
the ISBI version only contains one shape and size.
Moreover, we wrote a script in Python to collect three
consecutive images at different focal points without al-
tering other imaging settings. This allowed us to collect
consecutive images at a very high frame rate (i.e., more
than 50 frames per second) to minimize the probability
of misalignment between images.

4) The results of the Mean Opinion Score (MOS) test are
added to strengthen validation and allow comparison on
the perception of images.

5) The validation step is extended and now includes ex vivo
experiments with Monte Carlo simulations.

6) As standard image processing metrics alone are not
sufficient to assess US image quality, the results are
extended to assess the performance of the proposed
method in terms of the contrast to noise ratio (CNR)
and full width at half maximum (FWHM) parameter,
which are specialized ultrasound assessment indexes.

7) The results of the proposed approach are now compared
to other multifocal methods which are not based on NNs.

Comprehensive experiments show that high quality multi-
focus US images can be generated without sacrificing the
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Fig. 1: Electronic focusing of the transmit beam by applying
the time delays shown in left.

frame-rate. As part of this manuscript, we will also make our
code as well as all data available online. A copy of it is now
available online for the reviewers in this link: Data-Codes.

II. METHODOLOGY

A. Focusing

In electronic beamforming, in order to focus at a specific
axial depth (z0), a set of excitation pulses with proper time
delays are applied to the crystals. This method, as shown in
Fig. 1, is always used in classical line-per-line imaging. The
highest amplitude of acoustic potentials is achieved at focus
point. Therefore, the distance between two points where the
field on axis is 3dB less than at the focal point is defined as
depth of focus (dz) [6]. The lateral resolution is optimum in
this region. In order to preserve the lateral resolution (having
optimal multi-focus image), the maximum distance between
transmitted focal points has to be equal to the depth of focus.
We formulate our problem as finding a nonlinear mapping
function which transforms the bowtie-shaped focused beam
(with one focal point) to a thin cylindrical beam. However, this
nonlinear function is nonstationary along the axial direction.
In other words, this function varies with depth and cannot
be estimated through only one network. Therefore, different
networks should be trained that correspond to different depths.
Consequently, the proposed method is based on partial estima-
tion of nonlinear function for multiple depth intervals. This
is a common solution for addressing nonstationary problems
such as spectrum estimation. Therefore, we break the image
into limited number of intervals along the axial direction such
that we get closer to the stationary assumption in training
convolutional neural networks and have a lower amount of
variation, and subsequently train a BSGAN for each interval.

B. Proposed recovery method

Let x be a sample of input space, {x(i) ∈ Rr×c}mi=1, which
is an US image with single focus point (m denotes the number
of samples. symbols r and c, respectively, denote the number
of rows and columns), and y be the corresponding sample of
output space, {y(i) ∈ Rr×c}mi=1, which is a multi-focus US
image. We formulate the problem as:

y = F(x) (1)

https://www.dropbox.com/sh/q5wxw8z75d7v519/AACfVUDLiWehLKooU5T1yasVa?dl=0
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Fig. 2: The proposed recovery scheme. The input image is
focused at layer k on which no transformation is applied. All
other unfocused axial layers are transformed through distinct
BSGANs - one for each layer.

where F : Rr×c → Rr×c denotes the recovery function.
Herein, a few main points have to be considered regarding the
proposed recovery scheme. First, we assume that the recovery
function F does really exist which means that it is possible to
recover the multi-focus US image from a single-focus observa-
tion. Second, we assume that F can be estimated, with proper
upper bound error, through GANs. In fact, the manifolds of
input and output are in an unknown high dimensional space
(r × c), and the problem is ill-posed. However, it has been
shown that CNNs are able to efficiently represent the input
data in middle layers and estimate any nonlinear function with
a desired upper bound error [46], [47]. These are reasonable
assumptions that need to be commonly made for deep learning,
and their mathematical proof is beyond the scope of this paper.

Our proposed recovery scheme is summarized in Fig. 2.
First, the single-focus input B-Mode image is broken into a
few axial layers. Then, for all layers where the transmitted
beam is not focused, the mapping to the corresponding focused
layer is achieved through a distinct BSGAN (i.e. a different
network is trained for each axial layer). As the input image
is focused at layer k, the output of this layer is the same as
the input (i.e. an identity function is applied to this layer).
Finally, all of the axial layers are merged together by minimal
blending in small overlapping regions between layers in order
to remove border effects as is the common practice, and multi-
focus B-mode image is recovered.

C. Generative adversarial networks

Our aim is to estimate a nonlinear function that maps the
input space to the target space. This aim can be fulfilled
through CNNs. However, CNNs need an explicit differentiable
objective function which scores the quality of results. There-
fore, we need a distance measure Dist between estimated
output ŷ and desired output y. The problem can then be
formulated as:

θ̂ = argmin
θ

Dist(ŷ, y) (2)

where θ is the parameters of the CNN. A long-running
problem with CNNs is defining an appropriate distance mea-
sure. In other words, we still need to specify what we wish
to minimize. As we will show in the Results Section, the
commonly used MSE produces blurry results [48] because it
averages across pixels. In the context of US imaging, this leads

to incoherent averaging of the data which destroys the speckle
pattern [3]. Fortunately, GANs give us the chance of reaching
the desirable results only by specifying a high-level goal. What
GANs learn is a loss function which classifies whether output
is real or fake (the discriminator network) and a mapping func-
tion to minimize this loss (the generator network). Therefore,
GANs consist of generator and discriminator networks, which
compete with each other.

In classical form, GANs training is a min-max game be-
tween the generator and the discriminator [9]:

min
G

max
D

V (D,G) = Ey∼pdata(y) [log D(y)]

+Ex∼pX(x) [log(1−D(G(x))]
(3)

where y and x are the desired and input respectively with
ŷ = G(x) the estimated/generated output. E denotes the
expected value, and D and G are the discriminator and
generator, respectively, and V (D,G) denotes the objective
function for GAN training. y ∼ pdata(y) means y is a sample
of data generating distribution while x ∼ pX(x) means x is a
sample of input distribution.

D. Boundary seeking generative adversarial networks
It can be shown from Eq. 3 that the optimal discriminator

D∗(y) is given by [9]:

D∗(y) =
pdata(y)

pdata(y) + pg(y)
(4)

Hence, if the optimal discriminator with respect to generator
is known, the global minimum of generator training will be
pg = pdata, wherein the desired distribution of output data
is perfectly estimated by the generator, and the generator
produces samples that are indistinguishable for discriminator.
In practice, however, we are far from optimal case and the true
data distribution, pdata(y), could be achieved by weighting
with the ratio of optimal discriminator as follows [24]:

pdata(y) = pg(y)
D∗(y)

1−D∗(y)
(5)

As the optimal discriminator is also unknown and hard to
estimate, we always work with an approximation of D∗(y).
The intuition in training of GANs is that as we train the
discriminator, it gets closer to D∗(y), and consequently, the
results improve. Eq. 5 means that the optimal generator is what
makes the discriminator 0.5 everywhere, or a coin toss. In fact,
D(y) = 0.5 is the decision boundary for a discriminator. So,
BSGANs are a specific form of GANs in which generated data
are close to the decision boundary of the discriminator [24].

The discriminator parameters ω are trained through the
following optimization problem:

ω̂ = argmin
ω

LD(ŷ, y) =

= argmin
ω

LBCE(D(y), 1) + LBCE(D(ŷ), 0)
(6)

where LD(ŷ, y) is the loss function for the discriminator.
Herein, we used binary cross entropy (BCE) which is defined
as follows:

LBCE(D(y), l) = −
∑
i

[lilog(D(yi)) + (1− li)log(1−D(yi))]

(7)
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Fig. 3: The structure of the proposed BSGANs.

where l is the output label with values of {0, 1}. As can be
seen from Eq. 6, the discriminator is trained to complete a
two-class classification problem wherein the generated (i.e.,
not real) data is assigned to 0, and real data is assigned to 1.

The generator parameters θ are trained through the follow-
ing optimization problem:

θ̂ = argmin
θ

LG(ŷ, y) =

= argmin
θ

λ1 ‖ ŷ − y ‖2 + λ2LBS(ŷ)
(8)

where ‖ . ‖ is the second order norm, and λ1 and λ2 are
regularization coefficients. The first term is the classical MSE
loss function, and the second one LBS(ŷ) is the boundary
seeking loss function which is defined as following:

LBS(ŷ) =
1

2m

m∑
i=1

[log(D(ŷi))− log(1−D(ŷi))]
2 (9)

In other words, we take advantage of both MSE and adversar-
ial objective function to reach desirable results.

E. Proposed network

Our proposed network is shown in Fig. 3. The generator
in Fig. 3 is a fully convolutional network with residual
connections [49] consisting of 9 layers, where the first 8
layers contain 32 filters, and the last layer contains 1 filter.
The first layer contains kernels of size 9 × 9, and other
layers contain kernels of size 3× 3. Each layer also contains
batchnorm layer and a ReLU (Rectified Linear Unit) activation
function except for the last layer which uses tanh activation
function in order to map the output values between [−1, 1].
As shown in Fig. 3, we used both overall and local residual
connections. The discriminator in Fig. 3 consists of 4 layers
containing 32, 64, 128, and 256 convolution filters with the
same kernel size of 3. The first 3 layers have stride of 2,
and the fourth layer has a stride of one. Each layer also
contains LeakyReLU, batchnorm, and dropout (rate = 0.25)
layers. The last layer is flattening with sigmoid activation

for getting the output label. The number of filters and layers
was chosen to maintain a minimum number of parameters for
preserving the generalization performance and a more stable
training. Kernel sizes were chosen empirically. We did not
encounter checkerboard artifacts because the input and output
patches have the same size. In summary, total number of
trainable parameters for generator and discriminator networks
are 68,000 and 400,000, respectively.

III. EXPERIMENTS

A. Datasets

1) Simulated phantom: This dataset contains phantom sim-
ulations using the Field II program [50], [51]. The transducer
configuration is described in Table I. The transducer configura-
tion is described in Table I. The sampling frequency is reduced
to 10 MHz after envelope extraction to reduce the size. The
phantoms typically consist of 100,000 scatterers (more than 30
scatterers per wavelength to ensure fully developed speckles)
and a collection of three point targets, three cyst regions, and
three highly scattering regions in three different axial depths.
Four different shapes of cysts and highly scattering regions are
simulated. For each shape, five different sizes are considered.
Finally, for each size 40 independent realizations of scatterers
are simulated. For each realization (i.e., each phantom), three
different images were simulated by changing the location of

TABLE I: Field II simulation setting

Parameter Value Unit

Array geometry Linear -
Number of elements 192 elements
Center frequency 3.5 MHz
Element width 0.44 mm
Element height 5 mm
Kerf 0.05 mm
Sampling frequency 100 MHz
Number of scan lines 50 lines
Speed of sound 1540 m/s
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Fig. 4: Real phantom experiment setup.

the focal point. Therefore, we have 4*5*40*3=2,400 different
simulated images in total. The size of images is fixed as 40
mm lateral * 60 mm axial. We use line-per-line imaging with
delay and sum beamforming.

2) Real phantom: Multi-Purpose Multi-Tissue Ultrasound
Phantom (CIRS model 040GSE, Norfolk, VA) was used as
real phantom. US images were collected using an E-CUBE
12 Alpinion machine with L3-12H high density linear array
and a centre frequency of 8.5 MHz. The sampling frequency of
the RF data was 40MHz, and 384 RF lines were collected for
each image. 20 independent images were collected at different
locations of the phantom. At each location, three images with
different focal points were collected, while the probe was held
with a mechanical arm to prevent any probe movement during
changing the transmit focus point. This ensured that images
with different focal depths were collected at the same location.
Our setup is shown in Fig. 4. Although more images can be
collected from a phantom, only independent images are of
significance in training process, and repeated similar images
from the same location do not help the generalization ability
of the network.

3) Ex vivo data: These images were collected from a fresh
lamb liver. Imaging parameters are the same as phantom
experiments. Instead of placing the liver in a gel phantom to
minimize its motion during data collection, which may lead
to some loss of blood and other tissue changes, we placed the
liver on a plate and wrote a script in Python (which is the
Alpinion interface for using the machine in research mode)
to collect three consecutive images at different focal points
without altering other imaging settings. This allowed us to
collect consecutive images at a very high frame rate (i.e.,
more than 50 frame per second) to minimize the chance of
misalignment between images. In addition, we attemped to
hold the probe steady during data collection. These steps lead
to a collection of images at different focusing depths with
minimal relative motion between the probe and tissue. To have
independent data points, we repeated the experiment five times
by collecting images from different locations of the lamb liver.

B. Evaluation setting

For evaluation, we placed three real equispaced focal points
in the axial direction of the US images, and blended the
resulting three images by weighted spatial linear averaging as
in commercial US machines. As such, the multi-focus image
(desired) has 3 layers with 2 blended regions (Fig. 5 (b)). One
of the images (Fig. 5 (a)) with the middle focal point is the
input of our model. Therefore, the middle layer of the output
(Fig. 5 (c-f)) is equal to the input, and two other layers are
estimated from related layers of input through two BSGANs.
Each layer was broken into 52×52 patches and fed to the
network. During the test phase, we did not break the image,
and each layer was fed to the generator to prevent the blocking
artifact. For quantitative analysis, we tried to compare the
results of the proposed method in terms of all image quality
metrics. General metrics including Peak Signal to Noise Ratio
(PSNR), Normalized Root Mean Square Error (NRMSE), and
Structural Similarity (SSIM) index were calculated between
ground truth and both of the output of proposed network and
input. Additionally, MOS test was performed to show which
form of network and which type of training is more successful
in recovery of perceptually convincing images. Monte Carlo
simulation was performed on ex vivo data to investigate the
ability of the proposed method on recovering the sharpness
of images in terms of Mean Gradient (MG) index. Afterward,
the proposed method, using specialized ultrasound assessment
indexes including Contrast to Noise Ratio (CNR) and Full
Width at Half Maximum (FWHM), is compared with other
approaches which are not based on NNs. The next subsection
describes details of the MOS comparison.

C. Mean Opinion Score (MOS) testing

As common indices for image quality assessment have a
limited potential to indicate how much an image is perceptu-
ally convincing, we performed an MOS test to improve the
validation step. More specifically, 20 graduate students who
work in the field of US imaging, as raters, were asked to
assign a score from 1 (bad quality) to 5 (excellent quality) to
images. 6 versions of simulated phantom image (Fig. 5 (a-f))
were rated. Images were presented in a randomized fashion
to raters. Raters very consistently rated ground truth image as
excellent quality and the original input image (with only single
focal point) as bad quality. Moreover, we put two identical
images in questionnaire to make sure that answers are reliable.
The summary of all results is reported in Table II.

D. Network training

The entire database was broken into three sets of training,
validation, and test groups with sizes of 70, 15, and 15 percent
of the total size of images, respectively. We first normalized the
intensity input US images to [-1,1]. As it is common in training
GANS [9], in each iteration, the discriminator is trained 3
times (ND), and the generator one time. In all experiments,
the Adam algorithm with learning rate (α = 10−4) was used
for optimization [52]. The training procedure of the proposed
BSGAN is shown in Algorithm 1. The code is implemented
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Algorithm 1 Minibatch stochastic gradient descent training of
BSGANs. The number of steps to apply to the discriminator
ND = 3. All experiments in the paper used Adam parame-
ters, α = 10−4, β1 = 0.9, β2 = 0.99.

Require: set λ1 = 0.4, λ2 = 90.
Require: set the number of total epochs, Nepoch = 100, the

batch size m = 64.
calculate the number of iteration in each epoch
Niter ← total number of training samples/m

Require: ω0, initial discriminator parameters. θ0, initial gen-
erator parameters.
for Nepoch do

for Niter do
for ND do

sample a batch of input patches
{
xi
}m
i=1

sample a batch of ground truth patches
{
yi
}m
i=1

update the discriminator by descending its stochastic
gradient:
∇ω[− 1

m

∑m
i=1 log(D(yi)) + log(1−D(G(xi)))]

end for
sample a batch of input patches

{
xi
}m
i=1

sample a batch of ground truth patches
{
yi
}m
i=1

update the generator by descending its stochastic gra-
dient:
∇θ[λ1

m

∑m
i=1(yi−G(xi))2 +

λ2

2m

∑m
i=1[log(D(G(xi)))−

log(1−D(G(xi)))]
2]

end for
calculate average SSIM index over the validation set.

end for
select the model with highest SSIM index for test.

using Keras library using TensorFlow back-end, and training
was done with an Nvidia Titan Xp GPU.
The solution to training a BSGAN network (which is a game
between two players) is a Nash equilibrium. In fact, by having
the optimal discriminator, the global minimum of generator’s
loss function is achieved if and only if pg = pdata, which
means that the discriminator gives the same probability of 0.5
to both generated and real data. Although the two players may
suddenly reach an equilibrium, the training process oscillates
between two modes and players repeatedly undo each other. In
fact, as we never reach the perfect case (in which pg = pdata),
after finishing training process for a specific number of epochs,
the model which has the best structural similarity to desired
on validation dataset is chosen as final model. The final model
of training is saved and applied to the test set.

For real data (i.e., real phantom, ex vivo experiments),
we used transfer learning to fine tune the networks trained
on simulated data. Transfer learning was done in the same
adversarial manner as before and used for fine tuning the
weights of whole of the layers in generator and discriminator.
More specifically, weights of the best network on simulated
phantom data was used as initial point of training on new
data. As before, model selection was done based on SSIM
evaluation on validation data. Finally, selected generator was
used for test part.

IV. RESULTS

A. Experimental methods

The first network used in comparison is a well-known
structure named Super-Resolution CNN (SRCNN), a rela-
tively shallow network with 3 layers without any residual
connections, about which details can be found in [53]. The
second, entitled Residually connected Fully CNN (RFCNN),
is the generator in our proposed structure shown in Fig. 3,
which is deeper and also has residual connections compared
to SRCNN. Consequently, proposed RFCNN is used in a
basic non-saturating GAN structure [9]. Finally, the basic
GAN is extended to boundary seeking version. It has to be
mentioned that non-GAN networks are only trained with MSE
loss function. It is worth mentioning that in order to better
illustrate the results, the difference maps of Fig. 6, 7, and 9
are provided in the supplementary materials.

B. Comparison on simulated phantom

In the first experiment, the performance of different net-
works is evaluated on the simulated phantom data. As can
be seen in Fig. 5, both SRCNN and RFCNN do not perform
very well and lead to over smooth images. The main reason
for the loss of fine details is that the network is trained with
only MSE as the loss function. In the GAN structure, however,
the image quality is enforced indirectly by the discriminator
in adversarial training, as the generator network tries to make
images that look like real images. Between the basic GAN
structure and the boundary seeking version, the latter works
better because the training process of BSGAN is more stable
and the discriminator is nearer to the optimal case. As can be
seen in Fig. 5, the GAN result has some artifacts in the middle
part of the cyst region. Furthermore, the GAN result has more
contrast, but even more than the ground truth (b). So, as it has
been shown in [24] for general images, GAN results are more
artificial while results of BSGAN are more natural.

In order to provide better comparison among different
methods, quantitative results are presented in Table II in which
the input is a single focus image, and the desired output is
a multi-focus image. As mentioned, common indices do not
illustrate how much an image is perceptually convincing as
these metrics are not developed for US images. Therefore, SR-
CNN and RFCNN have better values on some of those general
indices because their results are very smooth. However, their
poor quality is uncovered by the expert raters, and GAN-based
networks get much better scores. Comparing basic GAN and
BSGAN, the second one has better results with lower standard
deviation.

The second question that should be answered is about the
selection of the input. In fact, we want to know whether the
proposed method depends on the place of focus point in the
input or not. To this end, we ran the algorithm for different
scenarios. Results showed that the best selection is when the
input image is focused at the middle position of axial direction,
as expected. More specifically, we found that when the single
focus point is in the middle part of the image, the similarity
with multi focus image is the highest value. So, this input is
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Fig. 5: Results of the different methods on the simulated phantom data. Blue triangles indicate real transmit focal points, and
green triangles indicate focal points added by the network. (a) Input image with a single focal point. (b) Desired image with
3 focal points. (c) Output of the SRCNN (d) RFCNN (e) GAN (f) the proposed BSGAN. The second row shows a zoomed
in view of the blue rectangle in the first row, and edge spread function of different methods across the vertical line shown in
zoomed view of (a) is in the middle.

the most informative one and the mapping function from the
input space to the output space is more straightforward.

The other important point regarding training the network
on simulation data is training history. As for the MSE loss,
the training and validation curves are provided in supplemen-
tary materials. Please note that the adversarial loss function
does not reveal useful information in training GANs, and,
as such, is not presented in this paper. To check whether
the training has converged or not, generating a few samples
and looking at them during the training phase is instead
commonly performed [16], [54]. In this way, the evolution
of what network learns, as a mapping function between input
and output domains, is illustrated as the output of the network
for a validation sample after different epochs in supplementary
materials. Finally, in addition to the results listed in Table II,
the training history of the non-saturating GAN is also pro-
vided in the supplementary materials to better illustrate the
superiority of using BSGAN.

C. Real phantom results

The proposed method was also validated on real phantom
data. As for real phantom data, whenever the focus point was
set on first or second axial layer, image of the last layer had
a very low quality. Consequently, it is understood as noise by
the network, and discriminator gives the probability of 0.5 to

it which means that the discriminator is uncertain whether it
is real or generated data. For real phantom data, therefore,
the image focused on third axial layer was used as input
and two other layers were estimated using BSGANs although
this was not the best scenario as discussed in last subsection.
Fig. 6 shows the result of different methods on test data, which
depicts the sharp borders of cysts as well as the hyperechoic
regions are preserved only in the output of the proposed
method as the desired image. It can be easily understood that
the proposed method outperforms other approaches noticeably.

As for fine tuning using the real phantom experiment, the
number of images is limited compared to simulation data.
To reduce the risk of overfitting, two common approaches of
training the weights of a specific layer or training for few
epochs are commonly used [55], [56]. We chose the latter. In
this way, we multiplied the learning rate with 0.1 and limited
the number of epochs to 10. This ensures that weights only
change slightly. Finally, in order to understand how much the
fine-tuning impacts the final result, the output of the trained
network on simulation data without fine tuning is presented in
supplementary materials.

D. Ex vivo results

In real tissues, there are two main limitations preventing
the multi-focus desired image to have a noticeable difference

TABLE II: The results of PSNR, NRMSE, SSIM, and MOS between input-desired and output-desired pairs. The best values
(highest mean and lowest std) are in bold font.

data input SRCNN RFCNN GAN BSGAN

index PSNR NRMSE SSIM MOS PSNR NRMSE SSIM MOS PSNR NRMSE SSIM MOS PSNR NRMSE SSIM MOS PSNR NRMSE SSIM MOS

mean 23.27 0.034 0.622 1 26.46 0.023 0.782 3.15 26.78 0.023 0.794 3.15 24.69 0.029 0.773 3.92 25.32 0.027 0.769 4.07
std 1 0.004 0.02 0 0.95 0.002 0.018 0.688 0.932 0.002 0.016 0.89 0.795 0.002 0.01 0.64 0.919 0.003 0.017 0.49
min 20.77 0.026 0.574 1 22.98 0.019 0.729 2 23.44 0.018 0.74 2 22.71 0.022 0.725 3 22.9 0.021 0.723 3
max 25.62 0.045 0.684 1 28.29 0.035 0.824 4 28.56 0.033 0.826 5 26.9 0.036 0.803 5 27.38 0.035 0.797 5

median 23.16 0.034 0.621 1 26.57 0.023 0.784 3 26.92 0.022 0.796 3 24.77 0.028 0.778 4 25.46 0.026 0.775 4
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compared to single-focus input. First, there is no specific
cyst or hyperechoic region in the tissue which makes the
comparison more difficult to clearly visualize the improvement
in the image quality. Second, the depth of imaging is limited
which means the amount of degradation in image quality,
because of beam divergence, may be difficult to notice.

Based on aforementioned reasons, Monte Carlo simulation
is used to better investigate the performance of the proposed
method on ex vivo data. More specifically, a PSF is convolved
with the image to simulate large imaging PSF away from the
focal point. As mentioned in Section II-A, we assume that
changes within each axial layer is negligible and for each axial
layer one GAN is trained. The standard deviation (STD) of
the Gaussian PSF is the parameter which specifies the level of
blurriness and is composed of two deterministic and random
parts as follows:

c = cdet + crand (10)

where c indicates STD of the Gaussian PSF. The deterministic
part of STD (cdet) specifies a minimum level of blurriness
which is set to 1. A positive random number taken from
N (0, σ2) is used as the random component of STD (crand).
The random part is added to the deterministic component
to specify the level of blurriness in each run. Consequently,
Monte Carlo simulation is done for 10 different values of σ.
For each value of σ, 100 runs are performed. Fig. 7 illustrates
the results for ex vivo data. Fig. 7 is shown after convolving
with a Gaussian PSF having a STD of 8. The blurring is
not applied on the correct focused layer because there is no
modification on that. As can be seen in Fig. 7, the proposed
method successfully recovered the multi-focus image, very
similar to the ground truth, while other methods failed to
recover fine details from the blurry input. Fig. 8 summarizes
the observed changes in image quality as the STD of the
simulated Gaussian PSF is increased. More specifically, Fig. 8
illustrates the box plot of image quality indices obtained from

a Monte Carlo simulation comprising of 100 runs for each
value of σ. We want to make sure that the proposed method
preserves its performance over a wide range of simulated
blurriness. As shown in the first row of Fig. 8, the SSIM index
between the blurred input image and desired multi-focus image
rises as the amount of blurriness (c) increases. Therefore, other
indices, such as the Mean Gradient (MG) index, which reflects
the sharpness and texture changes of the image should be used.
As observed in the second row of Fig. 8, the output of the
proposed method is substantially sharper than the input and
much closer to the desired image for all levels of blurriness
that we tested.

E. Comparison with other methods
In this subsection, the result of the proposed method is com-

pared with other multifocal methods which are not based on
NNs. As reviewed in section I, two multi-focal methods were
proposed before us. Comparison with the method proposed
by Ilovitsh et al. [44] was not possible for us because of two
main reasons. More specifically, their method is based on the
summation of electrical stimulation corresponding to different
focused transmissions. So, one multi-focal beam which has a
longer duration of time is transmitted instead of transmitting
several single focus beams. However, the summation causes
not only cross-talk, but also it can only be completed in a
subset of probe crystals because of the piezoelectric maximal
element response which causes nonuniform quality in the axial
direction. This problem makes the comparison impossible.
Moreover, we cannot implement the method on our research
machine. However, the method proposed by Bottenus et al.
named Retrospective Encoding For Conventional Ultrasound
Sequences (REFoCUS) could be applied using a conjugate
transpose (REFoCUS adjoint) [41], or a regularized inverse
(REFoCUS inverse) [43]], of the transmit encoding matrix at
each frequency. Fig. 9 shows the results of our comparison
based on a simulated phantom data with imaging details
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Fig. 6: Results of the different methods on real phantom data. Blue triangles indicate real transmit focal points, and green
triangles indicate focal points added by the network. (a) Input image with a single focal point. (b) Desired image with 3 focal
points. (c) Output of the SRCNN (d) RFCNN (e) GAN (f) the proposed BSGAN. The second row shows a zoomed in view
of the blue rectangle in the first row.
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exactly the same as for the real experiments. Herein, we used
fine-tuned networks on real phantom data. As observed in
Fig. 9, the result of proposed method is much more similar to
the ground truth while other methods exhibit poor performance
at the first row of cysts. In deeper regions, our method gives
result similar to the ground truth while other methods are even
better than the ground truth. In order to better illustrate the
superiority of proposed method, the difference map of Fig. 9
is included in the supplementary material. Our method which
is based on NNs does not require either channel data or any
sort of matrix inversion, which is worth noting for practical
applications since improved inversion matrix techniques are
computationally expensive and time consuming while NNs in
test case are on-line.

F. Ultrasound image quality metrics

The importance of using the adversarial loss function (GAN
structure) as well as the boundary seeking method of training
compared to other cases is demonstrated in subsection IV-A.
The last subsection of the results is dedicated to assess pro-
posed methods in terms of specialized ultrasound assessment
indexes [57]. To this goal, the CNR [57] and the FWHM
indices are calculated. As our method is proposed to preserve
the lateral resolution, we only calculate the FWHM in the lat-
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Fig. 8: Results of Monte Carlo simulation. First row contains
the box plot of SSIM versus σ, and second row illustrates the
box plot of MG versus σ. Green line shows the MG of desired
image.

eral direction. More specifically, for the simulation experiment,
the point spread function of the imaging system is simulated
by placing point targets on different focus points along the
axial direction. Consequently, the FWHM is calculated for the
input single-focus image, ground truth, and the results of the
REFoCUS method. For real experiments, the calculation is
performed using the point targets in the real phantom as shown
in Fig. 4. It has to be mentioned that the comparison with the
REFoCUS method only was possible for the simulation data.
Moreover, we did not have the cyst region on the second axial
layer of the real phantom, so, the CNR is only reported for
the first layer. As it can be seen from Table III, the REFoCUS
method provides better resolution in terms of FWHM while the
proposed method has a better performance in terms of contrast.
However, as it is shown in supplementary materials, the lower
FWHM (narrower main lobe) value for the REFoCUS method
comes at the expense of worse side lobes. Table III also
confirms the improvement of indexes for the real phantom
experiment.

V. DISCUSSION

The results have illustrated that the proposed method based
on BSGAN noticeably outperforms our implementations of
SRCNN, RFCNN and GAN learning structures. Having resid-
ual connections in the fully convolutional generator network
provides better performance because it is easier to learn the
difference between the input and output [49]. The necessity of
using adversarial objective function in training besides basic
MSE loss function for having a sharper image, which is more
perceptually convincing, is rather significant. Moreover, using
the boundary seeking method for training provides a policy
gradient for training the generator, and generates samples
near the decision boundary. This ultimately leads to improved
stability in training.

The proposed method was also tested on real applications.
Transfer learning was successfully performed from the simu-
lated space to real space. In order to provide desired training
data in real experiments, two different settings were used.
First, we used a mechanical arm to prevent any probe move-
ment during changing the transmit focus point. Second, we
wrote a data collection script in Python to alleviate the problem
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Fig. 9: Comparison of results with other methods. Blue triangles indicate real transmit focal points, and green triangles indicate
focal points added by the network.(a) Input image with a single focal point. (b) Desired image with 3 focal points. (c) Output
of REFoCUS inverse (d) REFoCUS adjoint (e) the proposed BSGAN.

of unavoidable movements during data collection. The network
also works well in real experiments. Comprehensive qualitative
and quantitative results with Monte Carlo simulations also
verified the higher quality of recovered multi-focus images
as compared to the single focus inputs.

The results of comparison with other non-NN based method
(REFoCUS) show that the proposed method achieves similar
results while it is faster and does not require matrix inversions.
Moreover, a comparison on specialized ultrasound assessment
indexes shows that the proposed method is able to simul-
taneously improve both resolution and contrast. Moreover,
it is possible to combine the ideas in the proposed method
and REFoCUS to further improve image quality, which is an
interesting avenue for future work. For example, the output of
REFoCUS method can be considered as the ground truth in
the training step.

Currently, most of the commercial scanners are still us-
ing line-per-line acquisition, and plane-wave imaging is pro-
hibitively expensive for affordable point-of-care ultrasound
scanners. Therefore, most future scanner designs are likely to
rely on line-per-line acquisition technique. For example, sev-
eral next generation pocket-size ultrasound machines such as
Extend R2 (GE Vscan), Sonon (Healcerion, USA) and Clarius
all cost less than $5K. In comparison, only the data acquisition
board for plane-wave imaging usually costs approximately
$10K. In addition, plane-wave imaging also requires expensive
computations using high-end GPUs. The proposed method in
this manuscript requires a GPU for training and can be easily
implemented on a CPU in the test phase making it a cost-
effective choice for the next generation pocket-size ultrasound
machines.

As the proposed method works on B-Mode images, its appli-
cation to Doppler imaging and motion estimation algorithms,
which are based on RF data, is limited. Moreover, an important
issue in using machine learning methods for different medical
image processing tasks, such as image synthesis, denoising
and image reconstruction, is the reliability of generated results
for the sake of diagnosis and surgical planning and guidance.
In other words, are these results misleading or helpful for
clinicians? In future, we plan to extend the proposed method to
work on pre-beamformed RF data and test the performance of
the proposed method in in-vivo applications and perform MOS
tests with radiologists. In addition, we will explore training
conditional GAN structures to be able to recover US images
with a specific amount of reliability.

VI. CONCLUSIONS

A reduction in the frame-rate and motion blurs are the main
challenges associated with multi-focus line-per-line imaging
technique. Herein, the proposed alternative works as a non-
linear mapping function from the input space (US image
with one transmitted focused beam) to the optimum multi-
focus output space. As shown above, GANs with boundary
seeking method of training have been adapted to achieve the
quality of multifocus US images without any loss in frame-
rate or appreciable drop in quality due to probe movement.
The experiments confirm that the proposed approach provides
perceptually convincing images with a higher resolution and
contrast, while it is computationally efficient and does not
require channel data. The proposed approach can potentially
be used in applications that require both high frame rate and
lateral resolution.

TABLE III: The results of CNR and FWHM indexes for simulation and real phantom experiments.

method input desired BSGAN ReFOCUS (adjoint) ReFOCUS (inverse)

index FWHM CNR FWHM CNR FWHM CNR FWHM CNR FWHM CNR

simulation layer 1
layer 3

1.3 7.2
2.13 6.29

1.01 8.32
1.88 7.3

1.09 8.02
1.95 6.95

1.15 7.2
1.37 6.9

1.04 7.56
.94 7.7

real phantom layer 1
layer 2

1.52 9.6
.88 -

1.37 11.7
.74 -

1.44 11.1
.83 -

- -
- -

- -
- -
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