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Abstract

Background and Objective: Beamforming in coherent plane-wave compounding

(CPWC) is an essential step in maintaining high resolution, contrast and fram-

erate. Adaptive methods have been designed to achieve this goal by estimating

the apodization weights from echo traces acquired by several transducer ele-

ments.

Methods: Herein, we formulate plane-wave beamforming as a blind source sepa-

ration problem, where the output of each transducer element is considered as a

non-independent observation of the field. As such, beamforming can be formu-

lated as the estimation of an independent component out of the observations.

We then adapt the independent component analysis (ICA) algorithm to solve

this problem and reconstruct the final image.

Results: The proposed method is evaluated on a set of simulations, real phan-

tom, and in vivo data available from the plane-wave imaging challenge in med-

ical ultrasound. Moreover, the results are compared with other well-known

adaptive methods.

Conclusions: Results demonstrate that the proposed method simultaneously

improves the resolution and contrast.

Keywords: Plane-wave imaging, adaptive beamforming, ICA, image quality.

∗Corresponding author
Email address: sobhan.goudarzi@concordia.ca (Sobhan Goudarzi)

Preprint submitted to Computer Methods and Programs in Biomedicine March 5, 2021



1. Introduction

Ultrasound imaging experienced a revolution with the introduction of plane-

wave imaging (PWI) in which frame-rate can reach several thousands per sec-

ond. In contrast to other techniques, PWI fires all elements of the probe simul-

taneously to form a flat wavefront and span the whole region of interest in a5

single shot. This technique has been successfully applied to different applica-

tions such as imaging of shear waves, contrast imaging, and Doppler imaging of

blood flow [1]. Having an unfocused transmitted beam, however, leads to poor

resolution and low contrast in PWI. This drawback was addressed by coherent

compounding of images obtained by several insonifications of different angles [2].10

Consequently, there is always a trade-off between image quality and frame-rate.

Hence, beamforming is witnessing a growing attention in order to enhance the

quality of images without sacrificing the frame-rate.

In PWI, beamforming mainly refers to the method of merging the outputs

of different crystal elements. More specifically, it applies a weighting function15

across the receive aperture which is referred to as apodization. It can also

be used during transmission. Delay-and-sum (DAS) is a classical nonadaptive

beamforming method in which apodization weights for different pixels of the

image are assigned based on the F -number (f#) as well as a predefined window

shape. As known from spectral estimation, there is often a trade-off between the20

width of main lobe and energy of side lobes of the apodization window. When

measured backscattered signals are directly used to optimize the apodization

weights, the beamforming method is considered adaptive.

Capon or minimum variance (MV) is a well-known adaptive method in which

apodization weights are estimated to minimize the variance of output while25

preserving the unity gain in the steering direction [3]. Asl and Mahloojifar [4]

proposed another implementation of the MV, referred to as eigenspace-based

MV (EMV) based on eigenspace and eigenvectors for suppressing off-axis signals.

The main issue with MV is that we cannot estimate the data covariance matrix

accurately. In addition, estimation of the covariance matrix of data is time30
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consuming and makes it impractical for real-time applications [5, 6].

A family of adaptive beamforming algorithms is based on phase coherence.

First, the coherence factor (CF) is defined as the ratio between the coherent

and incoherent energy across the aperture [7] and then used as an adaptive

weight following the DAS beamformer to enhance the image quality [8]. CF35

was generalized to be computed from Fourier spectra over the aperture of the

delayed channel data and in a range of low spatial frequency region [8]. Subse-

quently, Camacho et al. [9] used phase information of aperture data to compute

the adaptive correction weight and proposed phased CF (PCF). However, the

estimated correction weights of CF methods can be affected by speckle noise.40

More recently and specifically for PWI, the MV approach was applied in [10,

11, 12, 13]. Nguyen and Prager [14] proposed extensions to MV for coherent

plane-wave compounding (CPWC). Beamforming based on compressive sensing

for PWI was introduced in [15, 16, 17, 18]. Dei et al. [19, 20] investigated

the performance of their beamforming method entitled aperture domain model45

image reconstruction (ADMIRE) on PWI. Beamforming in Fourier domain on

PWI was first proposed by Lu [21], and then applied with two distinct strategies

by Garcia et al. [22] and Bernard et al. [23]. Beamforming as a regularized

inverse problem was introduced in [24] and applied at different depths separately.

This point of view was extended in [25] to solve inverse problem for all image50

depths jointly. Recently, a statistical interpretation of beamforming entitled

iterative maximum-a-posteriori (iMAP) was introduced in [26].

Herein, we propose a new framework for adaptive plane-wave beamform-

ing wherein apodization weights are estimated through independent component

analysis (ICA). In the field of US imaging, ICA has been mainly used for clutter55

filtering and noise suppression [27, 28, 29, 30, 31, 32]. Recently, ICA was used as

a dimensionality reduction technique to speed up ADMIRE beamforming [33].

An overview of the proposed method is shown in Fig. 1. When an ultra-

sound wave is transmitted into the field, the most popular way to trace back the

backscattered wave corresponding to each pixel of the target is by applying the60

associated propagation delay to each signal recorded by piezoelectric elements
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Figure 1: An overview of the proposed method and its correspondence with classical ICA. In

the top, three sources are reconstructed using three observations. In the bottom, the source is

2D spatial echogenicity map, and the vectorized source s is reconstructed using n observations.

of the probe. Consequently, a discrete spatial map of the target echogenicity can

be constructed as an ultrasound image. However, there is also the possibility

of source ambiguity. More specifically, the backscattered waves from pixels at

equal distances from the piezoelectric element lead to a single sensory data at65

the resulting RF signal. This physical limitation brought about by wave propa-

gation is what motivates us to make use of ICA to suppress the pixel correlation

in the imaging field after spatiotemporal mapping. Fortunately, the group of

pixels which are indistinguishable from the output of each piezoelectric element

are not the same. Therefore, our approach considers the signal recorded by each70

piezoelectric element as a non-independent observation of the target echogenic-

ity and then uses ICA, as an adaptive beamforming method, to extract the

independent spatial map of target echogenicity. Herein, the independency of

spatial map means that each sample contains the trace of only one pixel. In

the proposed method, the apodization window is first estimated using ICA al-75

gorithm, and then it is applied throughout the image based on a predefined

f-number (f#). The performance of the proposed adaptive plane-wave beam-
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forming is evaluated and compared to other methods on a set of simulation,

phantom, and in vivo data provided by PWI challenge in medical ultrasound

(PICMUS) 2016 [34].80

2. Methods

Consider a linear array of n crystal elements, symmetrically distributed on

the x-axis, transmitting along the positive z-axis (Fig. 2(a)). Let us assume

that a plane-wave with angle α spans the domain with a sound speed of c.

The backscattered signals received by crystal element i located at xi is denoted85

by hi(t) (Fig. 2(b)). Without any loss of generality, zcos(α) + xsin(α) is the

transmission distance dt from the origin of the transmitted plane-wave to an

arbitrary point (x, z) in the region-of-interest (ROI) and
√

(x− xi)2 + z2 is

the receiving distance dr from (x, z) to the location of crystal element i (for

more details see [2]). Let us define Ri as a matrix containing the RF data90

recorded by crystal element i corresponding to each point (x, z) in the ROI

and its elements can be found by applying the associated propagation delay to

hi(t) as follows (hereafter, capital and bold font variables represent matrices

and vectors, respectively):

τ(x, z) =
dt + dr

c
=⇒ Ri(x, z) = hi(τ(x, z)), (1)

As shown in Eq. (1), each piezoelectric element gives one RF matrix of the95

ROI (vectorized Ri are denoted by ri and shown in Fig. 2(c)). Therefore, the

beamformed RF matrix S (Fig. 2(f)) is the result of information fusion among

different crystal elements, and each element of S(x, z) can be obtained through

the following weighted summation:

S(x, z) =

n−1∑
i=0

wi(x, z)Ri(x, z), (2)

where w is the apodization window of length n (Fig. 2(e)). In practice, however,100

we utilize dynamic beamforming where the f# is fixed for the entire image.

5



Figure 2: The proposed adaptive beamforming pipeline. (a) Geometrical illustration of the

PWI. (b) The plot of backscattered signals recorded by piezoelectric elements. (c) The plot of

vectorized RF matrices constructed by applying propagation delay to raw RF channel data by

considering the f#. (d) The plot of vectorized cropped RF matrices corresponding to pixels

in the middle of ROI. (e) The observation matrix of ICA constructed by stacking r̄i row-wise.

(f) The estimated apodization window using ICA. (g) The beamformed RF matrix S. (h)

The final B-Mode image.

Therefore, l is defined as the number of crystal elements considered for the

reconstruction of each depth (z) of the image and is calculated as follows [2]:

f# = z/l. (3)

After construction of S, it is subject to envelope detection and log compression

in order to obtain the final B-Mode ultrasound image (Fig. 2(g)). Herein, our105

goal is to estimate the apodization window w using ICA.

2.1. Independent Component Analysis

A full mathematical description of ICA is provided in [35]. We include a

short summary here to make this paper self-contained. Our proposed method

is explained in the next section. ICA is a framework used to separate signal110

components mixed in observations recorded at different transducer elements [35].

Assuming an n-dimensional signal space, i.e., an n-dimensional observed data
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x, n-dimensional independent sources s, and a square transformation matrix W

of size n× n, the mixing model can be written as follows [35]:

s = Wx. (4)

With the assumption of having independent and non-Gaussian sources (at the115

most one independent Gaussian source is allowed), both W and s can be es-

timated using the ICA algorithm. In practice, the objective function for ICA

estimation can be formulated using different measures of non-Gaussianity such

as kurtosis, negentropy, and mutual information. Moreover, it is very useful

to center and whiten the observations before applying ICA. One of the most120

famous algorithms of ICA implementation is FastICA, where a unit vector w is

computed such that the dot product wTx maximizes negentropy. The FastICA

algorithm can be summerized in four steps as follows [35]:

1. Random initialization of vector w.

2. wnew = E{xg(wTx)} − E{g′(wTx)}w125

3. w = wnew/‖wnew‖

4. Return to step 2 until the direction of w does not change.

notation E refers to the expectation operation. Symbols g and g′ are first and

second derivatives of a non-quadratic nonlinear function f , respectively. It was

shown that either of the two functions f is robust for negentropy estimation [36]:130

f(u) =
1

a1
log cosh(a1u), or f(u) = − exp(−u2/2). (5)

where 1 ≤ a1 ≤ 2.

More details regarding the FastICA algorithm can be found in [35].

2.2. Beamforming Using ICA

In general, our goal is to reconstruct a high-quality ultrasound image which135

is a spatial map of the target echogenicity. More specifically, we discretize the

map of scatterers that leads to pixels. Each pixel corresponds to an averaged

tissue reflectivity function over the extent of the pixel. When the RF data
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corresponding to each pixel of the final image is extracted from the output

of each crystal element (using Eq. (1)), there is also the possibility of source140

ambiguity. More specifically, the backscattered waves of at least two different

pixels at equal distances from the piezoelectric element arrive simultaneously

and lead to a single sensory data at the resulting RF signal. In this section, first,

this problem is mathematically demonstrated and then our proposed solution is

explained.145

Without loss of generality, when α = 0, the backscattered waves of two

distinct pixels (with indices 1 and 2) arrive at the same time in crystal element

i if and only if they have the same propagation delay τ . Form Eq. (1) and if

the first pixel is in the lateral position xi, it can be written that:

τ1 = τ2 =⇒ 2z1 = z2 +
√

(x2 − xi)2 + z22 . (6)

Moving z2 to the left side of the equality and squaring both sides, we get:150

4z21 + z22 − 4z1z2 = (x2 − xi)2 + z22 . (7)

Cancelling z22 from both sides, the resulting expression can be rearranged as:

4z1z2 = 4z21 − (x2 − xi)2. (8)

Diving both sides by 4z1 (which is always nonzero) gives:

z2 = z1 −
(x2 − xi)2

4z1
. (9)

So, for z2 < z1, there are a bunch of pixels located on an ellipse, whose reflections

arrive at the same time as for pixel 1. In other words, all those pixels have the

same value in the extracted RF matrix Ri(x, z) from Eq. (1). In the continuous155

case, this problem is fully addressable. In the discrete case, however, there is

the error due to quantization as well. Although this problem was shown for the

specific case of α = 0, the concept can be extended for different angles.

As seen from Eq. (9), the group of scatterers from whom reflections arrive

simultaneously are not the same for each crystal element. In other words, the160
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group of indistinguishable pixels in each Ri(x, z) is distinct. This point pro-

vides the opportunity of source separation using ICA. If we consider each ri as

a non-independent observation of the discretized map of scatterers, our task is

to extract the beamformed RF matrix S out of these non-independent observa-

tions (Eq. (2)). Therefore, we adapt ICA to estimate the apodization window165

w. In the ideal case, the explained pixel correlation in the imaging field after

spatiotemporal mapping is perfectly suppressed, and the desired S contains in-

dependent elements containing the trace of only one distinct pixel. It has to be

mentioned that in practice, the axial and lateral resolutions are based on the

sampling frequency of the system, center frequency of the transmitted wave,170

and transducer design. So, one pixel results in one voxel of the ROI.

In ultrasound beamforming, an issue is that the apodization window is not

fixed throughout the image. More specifically, ICA works with a fixed transfor-

mation matrix W in Eq. (4). In ultrasound images, however, the apodization

weight is not spatially invariant, rendering a different set of weights for differ-175

ent pixels. Two points make the apodization weights spatially variant. First,

for pixels lying at the two lateral ends of the image, there are crystal elements

predominately lying along one side. Second, as explained in Section 2, pixels

at different depths of the image are reconstructed using a different number of

elements to keep the f# fixed across the entire image. Hence, if we do not con-180

sider these points, ICA fails to estimate the source and apodization windows,

leading to images that are even lower in quality than DAS.

To solve the aforementioned problem, first, we consider the f# while con-

structing the Ri(x, z) (Fig. 2(c)). More specifically, Ri(x, z) contains a nonzero

value only if crystal element i is considered for reconstructing depth z of the185

image (Eq. (3)). Second, we consider only the central pixels of the image around

which the crystals are symmetric as the input to the ICA algorithm (Fig. 2(d)).

In this way, the cropped portion of ri is used to construct the observation matrix

X. In our ICA formulation, therefore, the observations are RF data correspond-

ing to central pixels of final image that are recorded by crystal elements of the190

probe. It has to be mentioned that the random initialization of the transforma-
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tion matrix W only affects the number of iterations that the algorithm takes to

converge, and it does not lead to any variation in the results after beamforming.

As shown in Fig. 2, our proposed adaptive beamforming algorithm for PWI

using ICA includes the following steps:195

1. The region of interest is discretized into pixels. By considering a specific

f#, the propagation delays are applied to the raw RF channel data to

generate ri, i = 0, ..., n− 1 (Fig. 2(c)).

2. Each ri is considered as an observation of the field. First, it is cropped (de-

noted by r̄i) and then the observation matrix X is constructed by stacking200

the row vectors (r̄i). Finally, matrix X is centralized and whitened before

running ICA (Fig. 2(d-e)).

3. The independent source and corresponding mixing vector are estimated

using the FastICA algorithm [37] by maximizing Negentropy as the mea-

sure of non-Gaussianity (Fig. 2(f)).205

4. The apodization window (the estimated transformation vector in the last

step) is applied throughout the image based on a predefined f# (Fig. 2(g)).

In step 3, apodization window w is iteratively updated to maximize negentropy

(estimated using f(u) = − exp(−u2/2)) with respect to wTX. More specifically,

the fixed-point iteration scheme [37] uses g and g′ which are first and second210

derivatives of the non-quadratic nonlinear function f to find the optimal value

of w. As discussed in [35], the number of sources, in the ICA algorithm, has

to be equal or less than the number of observations. ICA can be considered

as a variant of the projection pursuit algorithm [38], which enables one-by-one

estimation of the independent components. Herein, the number of indepen-215

dent sources in the ICA algorithm is set to one since we only look for a single

source, which is a collection of all scatterers. This is an important feature that

substantially reduces the computational load.
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2.3. Experiments

2.3.1. Dataset220

In this section, we use a publicly available PWI dataset, entitled PICMUS,

which was provided by the IEEE International Ultrasonics Symposiun (IUS

2016) in order to benchmark novel beamforming methods [34]. The PICMUS

data utilized in this work include:

1. Simulation resolution (SR): A simulated ultrasound image containing point225

targets distributed vertically and horizontally over an anechoic background

designed to assess the performance of beamforming methods in terms of

spatial resolution.

2. Simulation contrast (SC): A simulated ultrasound image containing ane-

choic cysts distributed vertically and horizontally over fully developed230

speckle designed to assess the performance of beamforming methods in

terms of contrast.

3. Experimental Resolution (ER): An experimental ultrasound image was

recorded on a CIRS Multi-Purpose Ultrasound Phantom (Model 040GSE)

in the regions containing several wires against speckle background to assess235

the performance of beamforming methods in terms of spatial resolution.

4. Experimental contrast (EC): An experimental ultrasound image was recorded

on the same phantom as ER but in the regions containing two anechoic

cysts against speckle background to assess the performance of beamform-

ing methods in terms of contrast.240

In addition, PICMUS dataset also contains two in vivo ultrasound images, show-

ing cross-sectional and longitudinal views, recorded on the carotid artery of a

volunteer. All of the phantom and in vivo data were collected using a Verason-

ics Vantage 256 research scanner and a L11 probe (Verasonics Inc., Redmond,

WA). The simulation settings were selected to be as similar as possible to the245

experimental setup.

For each of mentioned groups, a collection of received prebeamformed data

corresponding to 75 steered Plane-Waves covering the angle span from −16◦ to
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16◦ was provided. Both RF and IQ (phase quadrature) formats of data were

provided. The proposed algorithm works on the RF version of data. More250

details regarding PICMUS dataset can be found in [34].

2.3.2. Evaluation Metrics

Contrast and resolution are considered for the sake of evaluation. More

specifically, resolution is estimated as the full width at half maximum (FWHM)

both in axial and lateral directions. The average value of FWHM among all255

scatterers in the image is reported. As for contrast, the contrast to noise ratio

(CNR) is calculated as follows [34]:

CNR = 20 log10(
| µin − µout |√
(σ2

in + σ2
out)/2

), (10)

where µ and σ are the mean gray level and the gray level standard deviation.

Subscribes .in and .out refer to inside and outside of the anechoic cystic region,

respectively. Indexes are calculated on B-Mode images. In order to unify the260

comparison, we use the codes provided by PICMUS to compute the indexes.

2.3.3. Implementation Details

As explained in Section 2.2, the FastICA algorithm is used to estimate the

apodization window. The maximum number of iterations is set to 100 and the

stopping criterion is set to be ε = 10−6. The weights are initialized with random265

numbers extracted from standard distribution. The reduction of dimension

through PCA is not used and the best results which are most reproducible

are attained by considering all eigenvalues in the estimation procedure. We

use the Matlab implementation of the Fixed point ICA, the main algorithm of

FastICA, which is publicly available online http://research.ics.aalto.fi/270

ica/fastica/code/dlcode.shtml.

Throughout the results section, we consider f# = 1.75 and use Tukey (ta-

pered cosine) window with constant parameter set to 0.25 for DAS and other

adaptive methods on top of DAS.

It is not possible to theoretically prove the convergence of FastICA algorithm275

with the mentioned parameters. In practice, however, we set the maximum
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Figure 3: Beamforming results on the single 0◦ plane wave. Columns indicate different image

data sets while rows correspond to beamforming methods.

number of iterations equal to 100 and observe that for all of data sets, the

algorithm converges in a lower number of iterations.

3. Results

3.1. Simulated and Experimental Data280

The results of DAS beamforming versus our proposed method based on ICA

on a single 0◦ plane wave of simulated and experimental data are illustrated

in Fig. 3. As seen from this figure, the proposed beamforming method outper-

forms DAS and improves the resolution as well as contrast on both simulated

and experimental phantom data. In order to better investigate the amount of285

improvement, the quantitative indices are reported in Table 1. What causes

the improvement is the window used for apodization. So, as Table 1 confirms,

improvement in resolution can only be acquired in the lateral direction. The

highest improvement in lateral FWHM is 36.5% on simulated plane-wave data

of only one single transmission. In terms of CNR, approximately 9% of improve-290

ment is achieved on the experimental cyst data of a single transmission while

boarders of the cyst are also sharper. As mentioned before, for pixels lying at
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Figure 4: ICA beamforming using 1, 11, and 75 plane waves. Columns indicate different image

data sets and rows correspond to the number of transmitted plane waves.

the two lateral ends of the image, symmetrical channel data is not available and

data is predominately limited to one side. This point forced us to only consider

the central pixels of the image. Therefore, there will be a reduction in image295

quality in those border regions because the weights are not optimized for those

region. Furthermore, this reduction in quality is more visible in shallow regions

of the image (the reconstructed SR image with ICA in Fig. 3) since a limited

number of elements are considered for the reconstruction of pixel intensities.

It has to be mentioned that this problem is one of limitations of ultrasound300

imaging regardless of the beamforming method.

In order to investigate the effect of CPWC, the results of the proposed

method on higher number of plane waves are illustrated in Fig. 4. The indexes

of Table 1 as well as Fig. 4 confirm that CPWC improves the image quality. As

for CPWC, we do not repeat beamforming for each angle and use the apodiza-305
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Figure 5: Comparison of apodization window estimated using ICA (second row) and Tukey25

(first row) used in DAS. Windows are shown in both space and frequency domains.

tion weights of the 0◦ plane wave for the remaining angles. Moreover, to limit

the sources of achieved improvement, we do not apply any angular apodization.

In fact, our main focus is on beamforming of the received signals.

To better understand the effect of proposed method, Fig. 5 shows a com-

parison between Tukey25 window used in DAS and the apodization weights310

estimated by ICA on ER dataset. The estimated window has a lower leak-

age, calculated as the ratio of power in the sidelobes to the total power, factor

as well as a relative side lobe attenuation while its main lobe is wider. The

Figure 6: Quantitative comparison of beamforming results using different number of plane

waves. Left column indicates SC case while right column corresponds to SR case.

15



Table 1: Quantitative results in terms of CNR and FWHM indexes for simulation and real

phantom experiments.

dataset SR ER SC EC

index FWHMA FWHML FWHMA FWHML CNR CNR

1 PW
DAS

ICA

0.4 0.82

0.39 0.52

0.57 0.88

0.57 0.81

9.95

10.67

8.15

8.9

11 PW
DAS

ICA

0.4 0.54

0.4 0.41

0.56 0.54

0.56 0.51

12.48

12.6

11.25

11.4

75 PW
DAS

ICA

0.4 0.56

0.4 0.42

0.56 0.56

0.56 0.53

15.55

15.96

12

12.1

estimated window is of a different shape which can not be found among prede-

fined common windows. So, this point confirms the necessity of estimating the315

apodization window from the received data.

Fig. 6 demonstrates qualitative improvements with ICA and DAS methods

as a function of the number of PWs. As can be seen in Fig. 6, the proposed

approach achieves better lateral resolution with only 3 plane waves compared

with DAS using 75 angles. In terms of contrast, however, the proposed approach320

achieves better CNR with 51 plane waves compared with DAS using 75 angles.

Therefore, it is possible to reduce the number of plane wave transmits needed

to achieve image quality similar to a fully sampled transmit.

3.2. In vivo Data

In real ultrasound tissues, there are more sources of degradation in image325

quality. In order to make sure that the proposed method also works on in vivo

data, the results of beamforming on real carotid images of PICMUS dataset

are provided in Fig. 7. Visual comparison of beamformed images with different

number of angles reveals that ICA outperforms classical DAS in both cross as

well as longitudinal sections. Furthermore, ICA results in sharper images with330

a better contrast.
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Figure 7: Beamforming results on in vivo data using 1, 11, and 75 plane waves. Two columns

in left indicate cross-section images while left two columns correspond to longitudinal-section.

Rows denote different number of transmitted plane waves used in beamforming.

3.3. Comparison with Other Adaptive Methods

As mentioned before, our focus in current study is on beamforming of the

received signals. So, comparison with other adaptive approaches is of cru-

cial importance. In this way, we present the results of five well-known ap-335

proaches, namely MV [3], EMV [4], CF [8], generalized CF (GCF) [8], and

PCF [9]. The comparison with these methods was not possible without using

codes provided by Rindal et al. [39] in ultrasound toolbox repository ( http:

//www.ustb.no/publications/dynamic_range/). The parameters used in the

MV and EMV methods are specified next to enable interested readers to re-340

produce the presented results. The subarray size equals half of the number of

crystal elements (64 in our case), the temporal averaging factor is given by 1.5,

and the regularization factor (i.e., the diagonal loading) is 0.01. In the EMV

17
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Figure 8: Results of other adaptive beamforming methods on the single 0◦ plane wave.

Columns indicate different image data sets while rows correspond to different adaptive beam-

forming methods.

approach, all eigenvectors of the covariance matrix are considered in creating

the signal subspace. Fig. 8 shows the result of different adaptive beamforming345

algorithms on a single 0◦ plane wave of simulated and experimental data. The

quantitative comparison is provided in Table 2. The EMV method outperforms

all other methods, even our proposed method, in terms of indices. However,

methods based on the MV are very time consuming and are not practical for

online applications. In terms of computational time, our proposed method typ-350

ically takes 75 milliseconds to estimate the apodization window while MV and

EMV take a few minutes, and CF methods take one second. The approaches

based on CF outperform the proposed approach in terms of FWHM index while

are worse in terms of contrast.
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Table 2: Quantitative results of other adaptive beamforming methods in terms of CNR and

FWHM indexes for simulation and real phantom experiments.

dataset SR ER SC EC

index FWHMA FWHML FWHMA FWHML CNR CNR

1 PW

MV

EMV

CF

GCF

PCF

0.41 0.1

0.39 0.09

0.32 0.44

0.32 0.43

0.29 0.37

0.59 0.43

0.58 0.33

0.48 0.47

0.48 0.47

0.46 0.41

11.1

12

8.2

8.1

6.9

7.95

8.1

6.3

6.3

5.2

11 PW

MV

EMV

CF

GCF

PCF
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0.4 0.09

0.37 0.37

0.38 0.36

0.37 0.3

0.59 0.29

0.56 0.28

0.55 0.37

0.55 0.37

0.55 0.31

11.4
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11.9

11.8

11

9.8

11.5

10.2

10.2

9.05

75 PW

MV

EMV

CF

GCF

PCF

0.43 0.1

0.4 0.09

0.4 0.38

0.4 0.38

0.39 0.29

0.58 0.31

0.56 0.29

0.56 0.38

0.56 0.38

0.56 0.32

14.7

17

14.05

13.9

14.13

11

10.4

10

10

10.3

4. Discussion355

If we do not consider the f# in constructing the observation matrix, all pixels

contribute equally in specifying the elements’ weights. In practice, the backscat-

tered signals from pixels located at shallow regions are recorded precisely by a

small subset of elements close to the pixel location. The backscattered signals

originating from the subordinate pixels, however, can be properly recorded by360

most of the elements. Therefore, it makes more sense to restrict the trace of

each pixel only to its corresponding elements. Otherwise, ICA fails to estimate

the source and apodization windows, leading to images that are even lower in

quality than DAS.

Using a part of samples of each channel which only correspond to the middle365

part of the final image is important from two aspects. First, it removes the effect

of incomplete data of borders on the ICA performance. Second, the FastICA

algorithm converges faster as it works with a lower amount of data. Note that

the estimated apodization weights and its specifications such as width of main
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lobe or the amount of side lobe attenuation in each dataset are different. So,370

it can be concluded that there is not a unique solution that works for all data.

It is worth mentioning that although the f# is applied before ICA, it does not

imply that some of the probe elements are ignored completely. More specifically,

as shown in Fig. 2, the entire aperture is used in constructing the observation

matrix X. The trace of considered pixels, therefore, may be in some or all of ri375

depending on the location of the pixel.

The algorithm can be separately applied to estimate weights associated with

different insonification angles. However, the weights for different angles are not

much different, overall improvement is negligible, and processing time is in-

creased by a multiple equal to the number of angles. The angular apodization380

can also be estimated using ICA for CPWC. However, the main focus of this

study was apodization of the received signals. To limit the sources of improve-

ment, the angular weights are not used which also makes the comparison with

other approaches possible.

As for the agreement between ICA assumptions with the nature of our prob-385

lem, it is shown in [40] that the underlying statistics of ultrasound pressure field

is Gaussian. However, as mentioned in Section 2.1 and shown in [35], the ICA

can still be used even if only one of the independent components is Gaussian.

Therefore, we can use the ICA algorithm to estimate the desired discretized

map of scatterers as the only Gaussian component. In future, we plan to use390

IQ data using the FastICA algorithm developed for complex-valued data [41].

5. Conclusions

We have proposed a new beamforming approach for ultrasound plane-wave

imaging based on ICA. Beamforming has been formalized as the estimation

of one independent image out of several non-independent observation and the395

apodization weights have been estimated based on collected data. The images of

one single plane-wave transmission as well as multiangle plane-wave acquisitions

have been successfully reconstructed. Results show that the proposed method
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simultaneously improves the resolution and contrast while the resulting image

is also visually appealing.400

6. Declaration of Competing Interest

All authors declare that the manuscript is not affected by any conflict of

interests, financial and personal relationships with other people or organisations

that could inappropriately influence this work.

Acknowledgements405

This project was funded by NSERC Discovery grants RGPIN-2020-04612

and RGPIN-2017-06629. The authors would like to thank the organizers of

the PICMUS challenge as well as the ultrasound toolbox for providing publicly

available codes and data.

References410

[1] M. Tanter, M. Fink, Ultrafast imaging in biomedical ultrasound, IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 61 (1)

(2014) 102–119. doi:10.1109/TUFFC.2014.2882.

[2] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, M. Fink, Coherent plane-

wave compounding for very high frame rate ultrasonography and transient415

elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-

quency Control 56 (3) (2009) 489–506. doi:10.1109/TUFFC.2009.1067.

[3] J. Synnevag, A. Austeng, S. Holm, Benefits of minimum-variance beam-

forming in medical ultrasound imaging, IEEE Transactions on Ultra-

sonics, Ferroelectrics, and Frequency Control 56 (9) (2009) 1868–1879.420

doi:10.1109/TUFFC.2009.1263.

21

https://doi.org/10.1109/TUFFC.2014.2882
https://doi.org/10.1109/TUFFC.2009.1067
https://doi.org/10.1109/TUFFC.2009.1263


[4] B. M. Asl, A. Mahloojifar, Eigenspace-based minimum variance beamform-

ing applied to medical ultrasound imaging, IEEE Transactions on Ultra-

sonics, Ferroelectrics, and Frequency Control 57 (11) (2010) 2381–2390.

doi:10.1109/TUFFC.2010.1706.425

[5] J. F. Synnevag, A. Austeng, S. Holm, Adaptive beamforming applied to

medical ultrasound imaging, IEEE Transactions on Ultrasonics, Ferro-

electrics, and Frequency Control 54 (8) (2007) 1606–1613. doi:10.1109/

TUFFC.2007.431.

[6] A. C. Jensen, A. Austeng, An approach to multibeam covariance matrices430

for adaptive beamforming in ultrasonography, IEEE Transactions on Ul-

trasonics, Ferroelectrics, and Frequency Control 59 (6) (2012) 1139–1148.

doi:10.1109/TUFFC.2012.2304.

[7] R. Mallart, M. Fink, Adaptive focusing in scattering media through sound-

speed inhomogeneities: The van cittert zernike approach and focusing cri-435

terion, The Journal of the Acoustical Society of America 96 (6) (1994)

3721–3732. doi:10.1121/1.410562.

[8] Pai-Chi Li, Meng-Lin Li, Adaptive imaging using the generalized coherence

factor, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control 50 (2) (2003) 128–141. doi:10.1109/TUFFC.2003.1182117.440

[9] J. Camacho, M. Parrilla, C. Fritsch, Phase coherence imaging, IEEE Trans-

actions on Ultrasonics, Ferroelectrics, and Frequency Control 56 (5) (2009)

958–974. doi:10.1109/TUFFC.2009.1128.

[10] N. Q. Nguyen, R. W. Prager, Minimum variance beamformers for coher-

ent plane-wave compounding, in: N. Duric, B. Heyde (Eds.), Medical445

Imaging 2017: Ultrasonic Imaging and Tomography, Vol. 10139, Inter-

national Society for Optics and Photonics, SPIE, 2017, pp. 254 – 263.

doi:10.1117/12.2254293.

22

https://doi.org/10.1109/TUFFC.2010.1706
https://doi.org/10.1109/TUFFC.2007.431
https://doi.org/10.1109/TUFFC.2007.431
https://doi.org/10.1109/TUFFC.2007.431
https://doi.org/10.1109/TUFFC.2012.2304
https://doi.org/10.1121/1.410562
https://doi.org/10.1109/TUFFC.2003.1182117
https://doi.org/10.1109/TUFFC.2009.1128
https://doi.org/10.1117/12.2254293


[11] O. M. H. Rindal, A. Austeng, Double adaptive plane-wave imaging, in:

2016 IEEE International Ultrasonics Symposium (IUS), 2016, pp. 1–4. doi:450

10.1109/ULTSYM.2016.7728906.

[12] A. M. Deylami, J. A. Jensen, B. M. Asl, An improved minimum variance

beamforming applied to plane-wave imaging in medical ultrasound, in: 2016

IEEE International Ultrasonics Symposium (IUS), 2016, pp. 1–4. doi:

10.1109/ULTSYM.2016.7728895.455

[13] F. Varray, M. Azizian Kalkhoran, D. Vray, Adaptive minimum variance

coupled with sign and phase coherence factors in iq domain for plane wave

beamforming, in: 2016 IEEE International Ultrasonics Symposium (IUS),

2016, pp. 1–4. doi:10.1109/ULTSYM.2016.7728903.

[14] N. Q. Nguyen, R. W. Prager, A spatial coherence approach to minimum460

variance beamforming for plane-wave compounding, IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control 65 (4) (2018) 522–534.

doi:10.1109/TUFFC.2018.2793580.

[15] Congzhi Wang, Xi Peng, Dong Liang, Hairong Zheng, Plane-wave ultra-

sound imaging based on compressive sensing with low memory occupation,465

in: 2015 IEEE International Ultrasonics Symposium (IUS), 2015, pp. 1–4.

doi:10.1109/ULTSYM.2015.0309.

[16] G. David, J.-l. Robert, B. Zhang, A. F. Laine, Time domain compressive

beam forming of ultrasound signals, The Journal of the Acoustical Society

of America 137 (5) (2015) 2773–2784.470

[17] A. Besson, M. Zhang, F. Varray, H. Liebgott, D. Friboulet, Y. Wiaux,

J. Thiran, R. E. Carrillo, O. Bernard, A sparse reconstruction framework

for fourier-based plane-wave imaging, IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control 63 (12) (2016) 2092–2106.

[18] A. Besson, D. Perdios, F. Martinez, Z. Chen, R. E. Carrillo, M. Arditi,475

Y. Wiaux, J. Thiran, Ultrafast ultrasound imaging as an inverse problem:

23

https://doi.org/10.1109/ULTSYM.2016.7728906
https://doi.org/10.1109/ULTSYM.2016.7728906
https://doi.org/10.1109/ULTSYM.2016.7728906
https://doi.org/10.1109/ULTSYM.2016.7728895
https://doi.org/10.1109/ULTSYM.2016.7728895
https://doi.org/10.1109/ULTSYM.2016.7728895
https://doi.org/10.1109/ULTSYM.2016.7728903
https://doi.org/10.1109/TUFFC.2018.2793580
https://doi.org/10.1109/ULTSYM.2015.0309


Matrix-free sparse image reconstruction, IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control 65 (3) (2018) 339–355.

[19] K. Dei, J. Tierney, B. Byram, Aperture domain model image reconstruction

(ADMIRE) with plane wave synthesis, in: N. Duric, B. Heyde (Eds.),480

Medical Imaging 2017: Ultrasonic Imaging and Tomography, Vol. 10139,

International Society for Optics and Photonics, SPIE, 2017, pp. 244 – 253.

doi:10.1117/12.2255526.

URL https://doi.org/10.1117/12.2255526

[20] K. Dei, J. E. Tierney, B. C. Byram, Model-based beamforming with plane485

wave synthesis in medical ultrasound, Journal of Medical Imaging 5 (2)

(2018) 1 – 12. doi:10.1117/1.JMI.5.2.027001.

[21] Jian-Yu Lu, 2d and 3d high frame rate imaging with limited diffraction

beams, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control 44 (4) (1997) 839–856. doi:10.1109/58.655200.490

[22] D. Garcia, L. L. Tarnec, S. Muth, E. Montagnon, J. Porée, G. Cloutier,

Stolt’s f-k migration for plane wave ultrasound imaging, IEEE Transactions

on Ultrasonics, Ferroelectrics, and Frequency Control 60 (9) (2013) 1853–

1867. doi:10.1109/TUFFC.2013.2771.

[23] O. Bernard, M. Zhang, F. Varray, P. Gueth, J. Thiran, H. Liebgott, D. Fri-495

boulet, Ultrasound fourier slice imaging: a novel approach for ultrafast

imaging technique, in: 2014 IEEE International Ultrasonics Symposium,

2014, pp. 129–132. doi:10.1109/ULTSYM.2014.0033.
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