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Global Time-Delay Estimation in
Ultrasound Elastography

Hoda S. Hashemi and Hassan Rivaz

Abstract—A critical step in quasi-static ultrasound elastogra-
phy is estimation of time-delay between two frames of radio-
frequency (RF) data that are obtained while the tissue is undergo-
ing deformation. This paper presents a novel technique for time-
delay estimation (TDE) of all samples of RF data simultaneously,
thereby exploiting all the information in RF data for TDE. A
nonlinear cost function that incorporates similarity of RF data
intensity and prior information of displacement continuity is
formulated. Optimization of this function involves searching for
TDE of all samples of the RF data, rendering the optimization
intractable with conventional techniques given that the number
of variables can be approximately one million. Therefore, the
optimization problem is converted to a sparse linear system of
equations, and is solved in real-time using a computationally
efficient optimization technique. We call our method GLUE
(GLobal Ultrasound Elastography), and compare it to Dynamic
Programming Analytic Minimization (DPAM) [1] and Normal-
ized Cross Correlation (NCC) techniques. Our simulation results
show that the Contrast to Noise Ratio (CNR) values of the axial
strain maps are 4.94 for NCC, 14.62 for DPAM, and 26.31 for
GLUE. Our results on experimental data from tissue mimicking
phantoms show that CNR values of the axial strain maps are
1.07 for NCC, 16.01 for DPAM, and 18.21 for GLUE. Finally,
our results on in-vivo data shows that CNR values of the axial
strain maps are 3.56 for DPAM and 13.20 for GLUE.

Index Terms—Quasi-static elastography, Real-time elastog-
raphy, Ultrasound, Time-delay estimation, TDE, Regularized
elastography

I. INTRODUCTION

Ultrasound elastography reveals viscoelastic properties of
tissue, which are often correlated with pathology, and is
therefore of significant clinical importance. Elastography has
evolved into several different techniques, but it can broadly
be grouped into dynamic and quasi-static elastography [2]–
[7]. Dynamic elastography techniques include shear wave
imaging [8] and acoustic radiation force imaging [9], which
generate deformation in the tissue using ultrasound and pro-
vide quantitative mechanical properties of tissue. This work
focuses on quasi-static elastography, and more particularly on
free-hand palpation elastography, wherein tissue deformation
is slow and is generated by slowly palpating the tissue with
the hand-held ultrasound probe.

Free-hand elastography and shear wave elastography each
has its own strengths. Free-hand strain imaging does not
provide quantitative elasticity measures, unless it is combined
with an inverse problem approach [10]–[14] that solves for
tissue elasticity, whereas shear-wave elastography techniques
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provide quantitative values of tissue elasticity or shear mod-
uli [15]–[17]. An advantage of freehand strain imaging em-
anates from the larger displacement fields compared to that of
shear-wave elastography, which can lead to less noise in the es-
timated displacement field. Although elastography techniques
vary significantly in the way they generate tissue deformation
and in the biomechanical property they investigate, they all
require estimation of tissue displacement, commonly referred
to as Time-Delay Estimation (TDE) using ultrasound radio-
frequency (RF) signal. TDE is challenging and an active
field of research due to various sources of noise and signal
decorrelation. In this paper, we focus on TDE in freehand
palpation elastography [18]–[23]. This approach is attractive
as it works with traditional ultrasound machines and does not
require any additional hardware.

Window-based techniques calculate TDE for small win-
dows (segments) of the RF data, and can be categorized
into amplitude- and phased-based. Amplitude-based methods
maximize cross correlation or normalized cross correlation
(NCC) [24]–[27], whereas phase-based methods find the zero-
crossing of the phase of the cross correlation [28]–[33].
Window-based displacement estimation techniques can also
be categorized by the dimensionality of the search range:
1D methods only search in axial directions [18], [34], [35],
and 2D techniques perform a search in both axial and lat-
eral directions [36]–[39]. Since the underlying displacement
field is usually 3D, 2D displacement estimation techniques
generally outperform their 1D counterparts. The importance
of 2D displacement estimation is twofold: it provides more
accurate estimates of axial strain [40], and it can be used for
reconstruction of tissue elastic properties [10]–[14]. One of the
disadvantages of window-based methods is their sensitivity
to signal decorrelation, which can be caused by small out-
of-plane motion of the probe or large deformations. Larger
windows, approximately of the size 10 ultrasound wavelengths
or larger [41], [42], provide more information and hence
reduce the estimation variance, but they result in significant
signal decorrelation and also decrease the spatial resolution.
Remedies for these problems have been proposed such as
warping the data [43]–[45], which are generally computation-
ally expensive.

An attractive alternative approach to correlation-based meth-
ods is minimization of a regularized cost function [3],
[46]–[50]. These methods exploit the prior information that
tissue deformation is smooth, and therefore are robust to
signal decorrelation. A disadvantage of these methods is their
computational complexity, and as such, they are not readily
suitable for real-time implementation. We proposed a real-
time technique for estimating fine subpixel tissue displacement
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(a) NCC: displacement of win-
dows are estimated indepen-
dently

(b) DPAM: displacement of en-
tire RF-line is estimated inde-
pendently

(c) GLUE: displacement of all
RF-lines are estimated simulta-
neously

(d) NCC strain (e) DPAM strain (f) GLUE strain

Fig. 1. Comparison of NCC, DPAM and GLUE algorithms, with the corresponding strain images in the second row. In (a) to (c), each circle shows an RF
sample that is utilized in TDE. Each grid point corresponds to a sample in RF data. Few samples are shown here to ease visualization; real RF data contains
significantly more samples. In (a), few samples are grouped together to form a window, which is used to calculate NCC. The displacement of all samples in
an entire RF-line in DPAM (b) or the entire image in GLUE (c) are estimated together. (d) to (f) show strain images of a homogeneous phantom. Note that
the average strain is 8%. GLUE substantially outperforms both NCC and DPAM by utilizing all data in the RF-frame.

maps using Dynamic Programming and Analytic Minimization
(DPAM) of a regularized cost function [1], [51], whereby
displacements of all the samples in an RF-line are estimated
simultaneously. This simultaneous estimation results in both
more robust and accurate displacement estimates compared to
NCC-based methods that only utilize data within a window.
In [1], the subpixel displacement of a seed-line is calculated
first, and is used as an initial estimate for neighboring RF-
lines. This algorithm, however, has three drawbacks. First,
the simultaneous estimation is limited to individual RF-lines,
thereby only utilizing a small fraction of the information
available from the entire image. Second, displacement esti-
mates are discontinuous between adjacent RF-lines, creating
artifacts in the form of vertical streaks in the strain image.
And third, displacement estimation in each line depends on
the initial estimate, i.e. the displacement of the previous RF-
line. Hence, if there is large decorrelation or noise in an RF-
line that results in failure of its displacement estimation, the
erroneous displacement propagates to the consequent RF-lines.
We present herein a novel method for estimating accurate
2D displacement maps wherein the displacement of the entire
image is estimated simultaneously. We call the new method
GLobal Ultrasound Elastography (GLUE). Figure 1 provides
a schematic comparison of three different methods:

(a) Window-based methods, which calculate the displace-

ments of each correlation window independently typically
of the size about 50 samples.

(b) DPAM, which uses the information of an RF-line typ-
ically of the size about 1000 samples, to acquire the
displacements of all samples of the RF data.

(c) GLUE, which utilizes the information of all image sam-
ples typically of the size 1000×100 = 105, and calculates
TDE of all the samples of the RF frame simultaneously.

GLUE calculates the axial and lateral displacements of all
samples of RF data by minimizing a nonlinear cost function.
Therefore, for a typical RF frame of size 1000×100, there
are 2×105 variables in the cost function. Typical optimization
methods can be intractable in terms of both processing and
memory requirements. We convert the optimization problem
into a system of equations which entails solving a sparse linear
system, and as such, is computationally efficient. We show
that our method substantially outperforms previous work using
simulation, phantom and in-vivo liver data. An executable
implementation of GLUE can be found at https://users.encs.
concordia.ca/~hrivaz/Ultrasound_Elastography/.

The in-vivo data in this paper is obtained from patients
with liver tumor who underwent radiofrequency (RF) ablation
surgery. Qualitative and quantitative imaging techniques for
staging of liver diseases have been implemented on ultra-
sound, computed tomography (CT), and magnetic resonance

https://users.encs.concordia.ca/~hrivaz/Ultrasound_Elastography/
https://users.encs.concordia.ca/~hrivaz/Ultrasound_Elastography/
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(a) Axial FEM strain, sim. 1 (b) NCC (Ax.), sim. 1 (c) DPAM (Ax.), sim. 1 (d) GLUE (Ax.), sim. 1

(e) Lateral FEM strain, sim. 1 (f) NCC (Lat.), sim. 1 (g) DPAM (Lat.), sim. 1 (h) GLUE (Lat.), sim. 1

Fig. 2. Field II and FEM simulation results. (a) is the axial ground truth strain. (b) to (d) show the axial strain images of the first simulation. (e) is the lateral
ground truth strain. (f) to (h) show the lateral strain images of the first simulation. GLUE substantially outperforms NCC and DPAM in all results. Target and
background windows used for CNR calculation are shown in red. The SNR is calculated for the background window.

imaging (MRI) scanners to address the limitations of liver
biopsy. Among these techniques, ultrasound elastography is
the most widely used clinically [52]. Liver stiffness estimated
by elastography techniques is used to evaluate the severity of
the underlying chronic liver disease, guide treatment decision,
assess disease outcome, and evaluate response to therapy [7].

II. METHODS

In this section, we first briefly describe the closely related
previous work [1]. We then present GLUE, and derive equa-
tions that enable us to globally calculate TDE of all samples
of the RF data simultaneously.

A. Dynamic Programming Analytic Minimization (DPAM)

Let I1 and I2 be images of size m × n corresponding to
before and after some deformation. In DPAM [1], first the ini-
tial integer displacement estimates in the axial (ai) and lateral
(li) directions are calculated using dynamic programming (DP)
for all i = 1, · · · ,m samples of an RF-line, which is called
a seed-line. DP only provides integer displacement estimates,
which are not accurate enough for elastography. Therefore, by
minimizing the following regularized cost function, the sub-
sample ∆ai and ∆li values are calculated such that the duple
(ai + ∆ai, li + ∆li) gives the axial and lateral displacements
at the sample i of the seed-line:

Cs(∆a1, · · · ,∆am,∆l1, · · · ,∆lm, ) =∑m
i=1{[I1(i, s)− I2(i+ ai + ∆ai, s+ li + ∆li)]

2

+α(ai + ∆ai − ai−1 −∆ai−1)2

+βa(li + ∆li − li−1 −∆li−1)2

+β′l(li + ∆li − li,s−1)2}

(1)

where s indicates the lateral position of the seed RF-line (i.e.
A-line number). The regularization weight α determines how
close the axial displacement of each sample should be to its
neighbor on the top, and the weights βa and β′l determine
how close lateral displacement of each sample should be to
its neighbors on the top and left. The displacement of the
rest of the lines is calculated similar to the seed-line, except
that the initial displacements are set to that of the previous
line (instead of DP). Since we perform the calculations for
one RF-line at a time, we drop the index s to simplify the
notations: ai , li , ∆ai and ∆li are in fact ai,s , li,s , ∆ai,s
and ∆li,s . Using 2D Taylor expansion of the data term in (2)
around (i+ ai, j + li) gives:

I2(i+ai+∆ai, j+li+∆li) ≈ I2(i+ai, j+li)+∆aiI
′
2,a+∆liI

′
2,l

(2)
where I ′2,a and I ′2,l are the derivatives of the I2 at point (i+
ai, j + li) in the axial and lateral directions respectively. The
optimal (∆ai,∆li) values occur when the partial derivatives
of Cs with respect to both ∆ai and ∆li are zero. Setting
∂Cs

∂∆ai
= 0 and ∂Cs

∂∆li
= 0 for i = 1, · · · ,m and stacking the 2m

unknowns in ∆d = [∆a1 ∆l1 ∆a2 ∆l2 · · · ∆am ∆lm]T and
the 2m initial estimates in d = [a1 l1 a2 l2 · · · am lm]T [1]:

A∆d = b, (3)

where A is a coefficient matrix of size 2m × 2m, and b
is a vector of length 2m. An important characteristic of A
is that it is penta-diagonal. Therefore, we used the Thomas
algorithm [53] in DPAM to efficiently optimize Eq 3. In
summary, solving Eq. 3 provides TDE for all samples of
an RF-line, and for each A-line, this equation is solved
independently. We now propose GLUE, a new technique that
provides TDE of all RF samples within an image.
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(a) B-mode (b) NCC (Ax.), sim. 2 (c) DPAM (Ax.), sim. 2 (d) GLUE (Ax.), sim. 2

(e) B-mode (f) NCC (Lat.), sim. 2 (g) DPAM (Lat.), sim. 2 (h) GLUE (Lat.), sim. 2

Fig. 3. Field II and FEM simulation results. A vertical slippage exists in the motion field at the middle of the image. (a) is the first ultrasound image. (b)
to (d) are the axial strain images. (e) is the second ultrasound image. (f) to (h) are the lateral strain images. Target and background windows used for CNR
calculation of the GLUE results are shown in red. The SNR is calculated for the background window.

B. Global Time-Delay Estimation (GLUE)

Similar to DPAM, GLUE calculates TDE by optimization
of a cost function that incorporates both amplitude similarity
and displacement continuity. The difference is that GLUE cost
function is formulated for the entire image instead of a single
RF-line. In GLUE, we use Taylor expansion similar to DPAM
to arrive at a linear system of equations similar to Eq. 3.
However, as we will elaborate, the coefficient matrix will
not become penta-diagonal, and therefore, the linear system
of equations cannot be efficiently solved using traditional
methods such as the Thomas algorithm [53]. We will therefore
borrow an efficient optimization method from the big data
field. The outline of our proposed technique is as follows:

1) Estimation of integer displacements using DP [49].
2) Refinement of DP estimates using GLUE.
3) Strain estimation by spatially differentiating the displace-

ment field.
We now elaborate the second step, which is the main

contribution of this work. Let DP initial estimates be ai,j and
li,j . Our cost function is

C(∆a1,1, · · · ,∆am,n,∆l1,1, · · · ,∆lm,n) =∑n
j=1

∑m
i=1{[I1(i, j)− I2(i+ ai,j + ∆ai,j , j + li,j + ∆li,j)]

2

+α1(ai,j + ∆ai,j − ai−1,j −∆ai−1,j)
2

+β1(li,j + ∆li,j − li−1,j −∆li−1,j)
2

+α2(ai,j + ∆ai,j − ai,j−1 −∆ai,j−1)2

+β2(li,j + ∆li,j − li,j−1 −∆li,j−1)2}
(4)

where α and β are regularization terms for axial and lateral
displacements respectively. Note that this function has mn
variables of ∆ai,j and mn variables of ∆li,j , resulting a total
of 2mn variables. The first difference between this equation

and Eq. 1 is that here, data in all samples are exploited to in
the right hand side (note two summations here over m and
n, compared to one summation in Eq. 1 over only m). The
second difference is that the left hand side has 2mn variables,
compared to 2m in Eq. 1. In other words, all samples of the
RF data are utilized in the cost function, and the displacement
of all samples are calculated simultaneously.

Using 2D Taylor expansion around (i + ai,j , j + li,j), we
have

C(∆a1,1, · · · ,∆am,n,∆l1,1, · · · ,∆lm,n) =∑n
j=1

∑m
i=1{[I1(i, j)− I2(i+ ai,j , j + li,j)

−∆ai,jI
′
2,a −∆li,jI

′
2,l]

2

+α1(ai,j + ∆ai,j − ai−1,j −∆ai−1,j)
2

+β1(li,j + ∆li,j − li−1,j −∆li−1,j)
2

+α2(ai,j + ∆ai,j − ai,j−1 −∆ai,j−1)2

+β2(li,j + ∆li,j − li,j−1 −∆li,j−1)2}.

(5)

Since ai,j and li,j are not integer, interpolation is required
to calculate I ′2,a and I ′2,l at the point (i + ai,j , j + li,j).
Setting ∂Ci,j

∂∆ai,j
= 0 and ∂Ci,j

∂∆li,j
= 0 for i = 1, · · · ,m,

j = 1, · · · , n, and stacking the 2mn unknowns in ∆d =
[∆a1,1 ∆l1,1 ∆a1,2 ∆l1,2 · · ·∆a1,n ∆l1,n ∆a2,1 ∆l2,1 ∆a2,2

∆l2,2 · · ·∆am,n ∆lm,n]T , and the 2mn initial estimates in
d = [a1,1, l1,1, a1,2, l1,2, . . . , am,n, lm,n]T , we have:

(H +D)∆d = H∗µ−Dd, (6)

where

D =



Q R O O . . . O
R S R O . . . O
O R S R . . . O
...

. . .
. . .

. . .
O O . . . R S R
O O . . . O R Q

 , (7)
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Q =



α1 + α2 0 −α2 0 0 . . . 0
0 β1 + β2 0 −β2 0 . . . 0
−α2 0 α1 + 2α2 0 −α2 . . . 0

0 −β2 0 β1 + 2β2 0 . . . 0
0 0 −α2 0 α1 + 2α2 . . . 0
...

. . .
0 0 0 . . . α1 + α2 0
0 0 0 . . . 0 β1 + β2


, (8)

S =



2α1 + α2 0 −α2 0 0 . . . 0
0 2β1 + β2 0 −β2 0 . . . 0
−α2 0 2α1 + 2α2 0 −α2 . . . 0

0 −β2 0 2β1 + 2β2 0 . . . 0
0 0 −α2 0 2α1 + 2α2 . . . 0
...

. . .
0 0 0 . . . 2α1 + α2 0
0 0 0 . . . 0 2β1 + β2


. (9)

Q is a pentadiagonal matrix of size 2n× 2n, and O is a zero
matrix of size 2n× 2n and

R = diag(−α1,−β1,−α1,−β1, . . . ,−α1,−β1). (10)

where H = diag(h′2(1) . . . h′2(m)) is a symmetric tridiag-
onal matrix with

h′2(i) =

[
I ′2,a

2
I ′2,aI

′
2,l

I ′2,aI
′
2,l I ′2,l

2

]
(11)

blocks on its diagonal entries where I ′2,a and I ′2,l are the
derivatives of the I2 at the point (i + ai,j , j + li,j) in the
axial and lateral directions, and

H∗ = diag(I ′2,a(1, 1), I ′2,l(1, 1), I ′2,a(1, 2), I ′2,l(1, 2), . . . ,

I ′2,a(m,n), I ′2,l(m,n))

and
µ = [g1,1, g1,1, g1,2, g1,2, . . . , gm,n]

T
, (12)

gi,j = I1(i, j)− I2(i+ ai,j , j + li,j). (13)

It is important to note that the coefficient matrix in the left
hand side of Eq. 6 is a large matrix of size 2mn × 2mn.
For a typical RF frame of size 1000× 100, this amounts to a
matrix of size 200, 000× 200, 000, which requires 320 GB of
memory for storage in double precision floating point format,
significantly more than 8 GB that is available in a typical
machine. Fortunately, this is a band matrix wherein nonzero
elements are confined within a diagonal band of length 4n+1,
thereby significantly reducing the memory requirement. It is
important to compare the size of the diagonal bands in the
coefficient matrices of Eq. 3 and 6: 5 for DPAM and 4n+ 1
for GLUE. Hence, it is computationally too demanding to
use the Thomas algorithm [53] as we did in DPAM to solve

Eq. 6. Instead, we use the successive over-relaxation (SOR)
method [54], an iterative algorithm for solving linear systems
of equations. SOR is significantly faster than traditional meth-
ods especially for systems with many variables. It has been
applied to various computationally expensive problems such
as low-rank factorization [55], support vector machines [56]
and computational vision [57].

Once the displacement field is estimated, it is common to
estimate its spatial gradient to generate strain images. We
consider several displacement measurements and perform a
least square regression to calculate the strain image. The
smoothness of the strain is obtained from the analytic formula-
tion of the cost function which incorporates the displacement
continuity in axial and lateral directions, and the regularization
coefficients make it possible to adjust the smoothness to the
desired level.

III. RESULTS

In this section, we present results of simulation, phantom
and in-vivo experiments. Our implementation of the proposed
method in MATLAB takes approximately 0.7 sec on a 4th gen-
eration 3.6 GHz Intel Core i7 to estimate the 2D displacement
fields of size 1000×100 for an image of the same size. Faster
performance can be achieved by using an implementation in
MATLAB MEX functions.

In all simulation and phantom experiments, the tunable
parameters of the GLUE algorithm are set to α1 = 5, α2 = 1,
β1 = 5, β2 = 1, the tunable parameter of the DP [49] is
αDP = 0.2. In the in-vivo ablation experiments, α1 and β1

are increased to 20 due to the high level of noise in the
RF data. The tunable parameters of the DPAM algorithm are
always set to α = 5, βa = 10, βl = 0.005 and T = 0.2 [1].
Ultrasound machines have pre-settings for imaging different
organs and applications, and the elastography parameters can
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TABLE I
THE SNR AND CNR VALUES OF THE SIMULATION EXPERIMENT. TARGET

WINDOWS (5MM X 5MM) AND BACKGROUND WINDOWS (3MM X 3MM)
USED FOR CNR CALCULATION ARE SHOWN IN FIGURE 2. THE SNR IS

CALCULATED IN THE BACKGROUND WINDOW. MAXIMUM VALUES ARE IN
BOLD FONT.

SNR CNR
Experiment 1 Axial Lateral Axial Lateral

NCC 2.14 0.52 4.94 7.69
DPAM 5.29 4.50 14.62 10.87
GLUE 44.63 4.61 26.31 11.03

TABLE II
THE SNR AND CNR VALUES OF THE SIMULATION EXPERIMENT. TARGET

WINDOWS (5MM X 5MM) AND BACKGROUND WINDOWS (3MM X 3MM)
USED FOR CNR CALCULATION ARE SHOWN IN FIGURE 3. THE SNR IS

CALCULATED IN THE BACKGROUND WINDOW.

SNR CNR
Experiment 2 Axial Lateral Axial Lateral

NCC Fails Fails Fails Fails
DPAM Fails Fails Fails Fails
GLUE 43.70 4.41 17.45 6.72

also be tuned based on the application. The desired parameters
for a new application (breast, thyroid, prostate, etc.) can be
obtained by visually inspecting the displacement map: if the
map is too noisy or too smooth, the regularization weight
should be respectively increased or decreased.

Estimation of lateral displacement is significantly more
difficult mainly due to the poor resolution of ultrasound images
in this direction, thereby limiting most of the previous work to
only calculate axial strain images. Simultaneous estimation of
the displacement filed for the entire image, however, allows us
to substantially improve the quality of both axial and lateral
displacements. Therefore, we calculate both axial and lateral
strains in simulation and phantom experiments. The unitless
metrics signal to noise ratio (SNR) and contrast to noise ratio
(CNR) are used to quantitatively compare the results [2]:

CNR =
C

N
=

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, SNR =
s̄

σ
(14)

where s̄t and s̄b are the spatial strain average of the target and
background, σ2

t and σ2
b are the spatial strain variance of the

target and background, and s̄ and σ are the spatial average
and variance of a window in the strain image respectively.
The SNR and CNR are calculated for the results using small
windows which are located in approximately uniform regions,
and therefore, strain is expected to be relatively constant within
each window.

A. Simulation Results

Field II software [58] is used to simulate ultrasound im-
ages, and ABAQUS (Providence, RI) software is used to
estimate deformations in a digital phantom using finite element
method (FEM). The displacement and strain fields are then
calculated from the simulated ultrasound images using DPAM
and GLUE. For the purposes of comparison, strain images
were also calculated using a standard cross correlation method

TABLE III
THE SNR AND CNR OF THE STRAIN IMAGES OF THE EXPERIMENTAL

PHANTOM. TARGET AND BACKGROUND WINDOWS USED FOR CNR
CALCULATION ARE SHOWN IN FIGURE 4. THE SNR IS CALCULATED FOR

THE BACKGROUND WINDOW. MAXIMUM VALUES ARE IN BOLD FONT.

SNR CNR
Axial Lateral Axial Lateral

NCC 2.20 3.60 1.07 0.39
DPAM 26.21 4.77 16.01 3.25
GLUE 29.85 7.22 18.21 4.09

with 80% overlap and a nine point 2D parabolic interpolation
to find the 2D sub-sample location of the correlation peak.
Figure 2 shows the results of the first simulation experiment.
The axial and lateral strains are depicted in (a) to (d), and
(e) to (h) respectively. (a) and (e) are the ground truth axial
and lateral strain images simulated using FEM. The axial
strain images obtained by cross correlation, DPAM and GLUE
are shown in (b), (c) and (d), respectively. The second row
shows the corresponding lateral strains. It is clear that GLUE
significantly outperforms DPAM and NCC in both reducing
noise and improving contrast.

In the second simulation (Figure 3), we consider tissue slip-
page which might happen in real world, e.g. at the boundary
of different organs such as prostate and rectum [59] or for
lesions that are not connected to the surrounding tissue. In this
experiment, the ultrasound image related to pre-compression
is the same as before, whereas a vertical slippage occurs
in the second image. The average axial strains to the left
and right of the slippage line are respectively 1% and 2%.
The strain images generated using cross correlation, DPAM
and GLUE are depicted in (b), (c) and (d) for axial strain
and (f), (g) and (h) for lateral strain respectively. As one
can see, NCC and DPAM fail in this situation while GLUE
accurately computes TDE despite the large discontinuity in the
underlying deformation field.

The corresponding SNR and CNR values are measured
for both simulation experiments. CNR values are calculated
between the target (tumor) and background (outside the target)
windows each of size 5 mm × 5 mm and 3 mm × 3 mm
respectively, and are provided in Table I and Table II. SNR
values are also shown in the table, which are calculated for
the background windows. GLUE provides substantially higher
SNR and CNR values compared to both NCC and DPAM.

B. Phantom Results

For experimental evaluation, RF data is acquired from a
CIRS elastography phantom (Norfolk, VA) using an Antares
Siemens system (Issaquah, WA) at the center frequency of 6.67
MHz with a VF10-5 linear array at a sampling rate of 40 MHz.
The results of NCC, DPAM and GLUE methods are shown in
Figure 4, along with the target and background windows used
for SNR and CNR calculation. SNR is only calculated for the
background window. The results are summarized in Table III.
Again, GLUE substantially improves both SNR and CNR in
both axial and lateral strain images.
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(a) Ax. (NCC) (b) Lat. (NCC)

(c) Ax. (DPAM) (d) Lat. (DPAM)

(e) Ax. (GLUE) (f) Lat. (GLUE)

Fig. 4. Results of the phantom experiment. Axial and lateral strain images as
well as the target and background windows (in red) for calculation of SNR
and CNR are shown (see Table III for results). The hard lesion is spherical
and has a diameter of 1 cm. The axial and lateral strain scales are identical
for NCC, DPAM and GLUE to ease comparison, and are shown in the right
column.

C. In-vivo Results

The In-vivo data is acquired from four patients undergoing
open surgical radiofrequency thermal ablation for primary or
secondary liver cancers. This data is collected as follows at
Johns Hopkins Hospital: for the first patient, ultrasound RF
data is acquired only after ablation. For the second, third, and
fourth patients, ultrasound RF data is collected both before and
after ablation. Data collection from the tumour involved hold-
ing the probe is hard-to-reach locations and angles, which lead
to unwanted out-of-plane motions of the probe. In addition,
microbubbles and high temperature gradients created by the
ablation process add noise in the the RF data. Furthermore, the
pulsation of hepatic vessels create complicated deformation
fields. Therefore, the pre- and post-compression images suffer
from high levels of decorrelation. Traditional NCC failed to
estimate the displacement field, and therefore, we only show
GLUE and DPAM results in this data.

Figure 5 shows B-mode scans, strain images and computed
tomography (CT) scans obtained after RF ablation in all

TABLE IV
THE SNR AND CNR VALUES OF THE STRAIN IMAGES OF THE in-vivo DATA
IN FIGURE 5. THE SNR IS CALCULATED FOR THE BACKGROUND WINDOW

OF SIZE 6 MM × 6 MM. MAXIMUM VALUES ARE IN BOLD FONT.

SNR CNR
DPAM GLUE DPAM GLUE

P1 7.94 56.21 3.73 13.64
P2 3.34 13.04 1.46 12.42
P3 4.47 23.29 5.45 20.14
P4 3.22 10.11 3.60 6.62

average 4.74 25.66 3.56 13.20
improv. % - 441 - 271

TABLE V
THE SNR AND CNR OF THE STRAIN IMAGES OF THE in-vivo DATA IN
FIGURES 6 AND 7. THE CNR CALCULATED FOR THE TARGET AND
BACKGROUND WINDOW EACH OF SIZE 6MM × 6MM. THE SNR IS

CALCULATED FOR THE BACKGROUND WINDOW. MAXIMUM VALUES ARE
IN BOLD FONT.

SNR CNR
DPAM GLUE DPAM GLUE

P2 12.52 17.71 11.27 13.72
P3 8.39 30.15 4.32 12.92

P4 (US 1&2) 16.68 23.23 2.19 13.29
P4 (US 3&4) 9.97 26.21 1.38 14.03

average 11.89 24.32 4.79 13.49
improv. % - 105 - 182

four patients. Note that the extent of the ablation is almost
completely invisible in B-mode images. The coagulated tissue
is clearly visible in strain images, and is marked with red
arrows. The CNR values of the ablation lesion are calculated
between the target (inside the ablation lesion) and background
(outside the target) windows, each of size 6 mm × 6 mm.
The SNR values are calculated for the background windows.
Table IV shows that we obtain approximately 5-fold and 4-
fold improvements in SNR and CNR respectively by utilizing
GLUE method instead of DPAM. The ablation lesion in strain
images corresponds well to the post-operative CT images
shown in the right column.

Figure 6 and 7 show pre-ablation results obtained by DPAM
and GLUE in second, third and fourth patients. In Figure 6, the
tumors are marked with red arrows, and are hardly visible in
the B-mode images in (a) and (d). The strain images provide a
significantly improved contrast between the tumor and healthy
tissue. CNR values are calculated between target (inside the
tumor) and background (outside the target) windows, each
of size 6 mm × 6 mm. The SNR values are calculated
for the background windows (Table V). Again, we see large
improvements with GLUE as a result of utilizing all the data
in the RF frames.

Figure 7 shows the B-mode, strain, and CT images of
Patient 4. All images are obtained before ablation. In (a),
the tumor is not visible in the B-mode image. A and B are
veins which compress easily due to their low pressure. In
contrast, C, D (Arteries) and E (middle hepatic vein) pulsate
with the heart beat and may have low or high pressure. The
probe motion and variations in the diameter is shown in graph
(d). Two ultrasound images US 1 and US 2 (see part (d)) are
obtained while the vein diameter variation and probe motion
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(a) B-mode patient 1 (b) DPAM (c) GLUE (d) CT patient 1

(e) B-mode patient 2 (f) DPAM (g) GLUE (h) CT patient 2

(i) B-mode patient 3 (j) DPAM (k) GLUE (l) CT patient 3

(m) B-mode patient 4 (n) DPAM (o) GLUE (p) CT patient 4

Fig. 5. In-vivo images of the ablation lesion acquired after ablation of liver tumours. Each row corresponds to one patient. The first column shows ultrasound
images, and the second and third columns respectively show the results of DPAM and GLUE. The ablation lesion is marked with red arrows, and is clearly
visible in strain images. CT images with the delineated ablation lesions are shown in the right column.
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(a) B-mode (b) DPAM (c) GLUE

(d) B-mode (e) DPAM (f) GLUE

Fig. 6. B-mode and strain images of the patient data before ablation. First and second rows respectively correspond to patients 2 and 3. The red arrows point
to the tumours. The strain images provide a substantially improved visualization of the tumours compared to the B-mode ultrasound images.

are in the same direction due to high blood pressure. Another
pair of ultrasound images, US 3 and US 4, are acquired at
low blood pressure when they are pointing to the opposite
side in graph (d). Thus, we acquired two paired ultrasound
frames at two different phases of the heart beat. The result of
DPAM and GLUE using US 1 and 2 are shown in (b) and
(e) respectively. US 3 and US 4 are used to obtain DPAM
and GLUE strain images in (c) and (f). It is very interesting
to compare the middle hepatic vein (marked as E in (a)) in
strain images in the second and third columns: E looks hard in
the second column, and soft in the third column. The reason
lies in large pulsation of the middle hepatic vein due to heart
beats. CT scans corresponding to two different phases of the
heart beat are depicted in (g) and (h). Here, A to D mark the
same anatomy as (a).

Table V summarizes the SNR and CNR values of patients
2 to 4. Average values for DPAM and GLUE are shown in the
fifth row. GLUE outperforms DPAM by approximately 2-fold
and 3-fold improvements in SNR and CNR values.

IV. DISCUSSION

Incorporating the prior information of displacement continu-
ity generally improves the TDE. Window-based methods en-

force continuity in a small window, DPAM utilizes continuity
in a single RF-line, and GLUE utilizes displacement continuity
throughout the image. This is a reason for the improvement
from window-based methods to DPAM to GLUE. However,
there is also a disadvantage of using prior information, which
is rooted in the bias-variance trade-off [60], [61]. The prior
information decreases the variance, but it increases the bias.
The increase in the bias can lead to strain images with lower
contrast. Nevertheless, the substantial improvement in the
CNR shows that GLUE strikes a balance between bias and
variance.

In order to image some of the tumors during the inter-
vention, the ultrasound probe had to be held at difficult
angles, which lead to unwanted out-of-plane motion of the
probe during the palpation. Furthermore, ablation creates mi-
crobubbles and high temperature gradients, which add high
levels of noise to the RF data. Therefore, the pre- and
post-compression images suffer from high decorrelation. An
advantage of DPAM and GLUE lies within the simultaneous
displacement estimation of several samples and exploitation of
the continuity prior. As such, both of these methods generate
displacement fields from such noisy data, whereas traditional
window-based methods calculate the displacement of each
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(a) B-mode (b) DPAM (US 1&2) (c) DPAM (US 3&4)

(d) probe motion (e) GLUE (US 1&2) (f) GLUE (US 3&4)

(g) arterial phase CT (h) venous phase CT

Fig. 7. B-mode and strain images of patient 4 before ablation. (a) shows B-mode image, and (b) and (c) show the strain images from the DPAM method
using US 1 and 2 frames (for b) and US 3 and 4 frames (for c). (d) shows the motion of the probe and the variation in the diameter of the arteries due to
the heart beat. (e) and (f) show results of the GLUE method. (g) is the arterial phase and (h) is the venous phase contrast CT images. The tumor is marked
with red arrows in (b), (c), (e), and (f).

window independently and can fail for decorrelated windows.
An example of the output of the traditional NCC-based TDE
method on this liver data is shown in [46].

The regularization term in the GLUE cost function en-
forces displacement continuity. The strain field is the spatial
derivative of the displacement field, and as such, is piecewise
continuous in theory (i.e. strain can be discontinuous). This is
in fact desired since the strain field can be discontinuous in
the boundary between two different types of tissue. In practice,
however, large kernels are commonly used for performing the

spatial gradient operation to alleviate noise amplification of the
derivative operator. This large kernel guarantees smooth strain
fields, but has the disadvantage of blurring the boundary of two
different types of tissue. We have proposed Kalman filter [1]
and bilateral filter [62] to generate piecewise continuous strain
fields that are sharp at the boundary of two different tissue
types but are smooth within each type of tissue.
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V. CONCLUSION

In this paper, we introduced GLUE, a novel technique for
calculating both axial and lateral displacement fields between
two frames of RF data. We estimated the displacement field
of the entire image simultaneously, which led to substantial
improvement over previous work. An unoptimized implemen-
tation of the proposed method in MATLAB takes only 0.7
sec on a typical CPU. Therefore, our technique is highly
suitable for implementation in commercial ultrasound systems.
An implementation of GLUE is publicly available from the
website of the corresponding author.
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