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Sub-Pixel Shear Wave Tracking
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Abstract—Ultrasound elastography is a convenient and af-
fordable method for imaging mechanical properties of tissue,
which are often correlated with pathologies. An emerging novel
elastography technique applies an external acoustic radiation
force (ARF) to generate shear wave in the tissue, and uses
ultrasound imaging to track the shear wave. Accurate tracking
of the small tissue motion is a critical step in shear wave
elastography, but is challenging due to various sources of noise in
the ultrasound data. We formulate tissue displacement estimation
as an optimization problem and propose two computationally
efficient approaches to estimate the displacement field. The
first algorithm is referred to as dynamic programming analytic
minimization (DPAM), which utilizes first order Taylor series
expansion of the highly nonlinear cost function to allow for its
efficient optimization, and was previously proposed for quasi-
static elastography. The second algorithm is a novel technique
that utilizes second order derivatives of the non-linear cost
function. We call the new algorithm second-order analytic
minimization elastography (SESAME). We compare DMAP and
SESAME to the standard normalized cross correlation (NCC)
approach in the context of displacement and speed estimation
of wave propagation in shear wave elastography (SWE). The
results of micrometer-order displacement estimation in a uniform
simulation phantom illustrate that SESAME outperforms DPAM,
which in turn outperforms NCC in terms of signal to noise ratio
(SNR) and jitter. In addition, the relative difference between true
and reconstructed shear modulus (averaged over excitations at
different focal depths and several scatterer realizations at each
depth) is approximately 3.41%, 1.12% and 1.01%, respectively,
for NCC, DPAM and SESAME. The performance of the proposed
methods is also assessed with real data acquired using a tissue-
mimicking phantom, wherein, in comparison to NCC, DPAM
and SESAME improve the SNR of displacement estimates by
7.6 dB and 9.5 dB, respectively. Experimental results on a tissue-
mimicking phantom also show that shear modulus reconstruction
substantially improved with the proposed DPAM technique over
NCC, and with some further improvement achieved by utilizing
the second order Taylor series approximation in SESAME instead
of the first-order DPAM.

Index Terms—Shear wave elastography (SWE), Acoustic radi-
ation force, Regularized cost function, Dynamic programming.

I. INTRODUCTION

DURING the past two decades, several ultrasound imag-
ing techniques have been proposed to investigate the

mechanical properties of the tissue [1]–[7]. These techniques
are generally referred to as ultrasound elastography and can
be broadly categorized into two different groups of quasi-
static and dynamic elastography approaches. In quasi-static
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elastography [2], [8], a slow, relatively static compression
is applied to the tissue and the ultrasound Radio Frequency
(RF) signals acquired before and after the compression are
correlated to estimate tissue displacements. In dynamic elas-
tography [1], [3]–[6], [9], tissue deformation occurs at a faster
rate and the propagation of mechanical waves are used to
derive the mechanical properties of the tissue. Although both
static and dynamic approaches use ultrasound to track the
displacements, the difference lies in the applied perturbation,
which can be either quasi-static or time-varying. Depending
on the type of excitation, dynamic elastography itself can be
further categorized into several subgroups, including radiation-
force-based imaging which generates a deep “push” in the
tissue by utilizing a non-invasive focused acoustic radiation
force (ARF) to a focal point in the tissue [1], [3]–[6], [9], [10]
in order to deform tissue and subsequently track the deforma-
tion for estimating tissue elasticity E, both quantitatively and
qualitatively. Mathematically, the force generated by acoustic
radiation in soft tissue is expressed as

F =
2αI

c
, (1)

where I denotes the temporal average intensity at a given point
in space, α is the absorption coefficient of the medium, and c
the speed of sound. For a given region of excitation (ROE), the
radiation force is uniform if all three parameters {I, α, c} are
relatively constant across the ROE. Alternatively, variations in
these parameters represent the inhomogeneity in the medium
and can be used to derive the mechanical properties of the
tissue.

Tissue response to the ARF can be monitored using the
ultrasound RF data collected immediately before and after the
ARF excitation. Depending on where the resulting disturbance
is monitored, two imaging approaches are proposed [11]: 1)
Acoustic radiation force impulse (ARFI) imaging, wherein
tissue deformation is tracked within the ROE. 2) Shear wave
elastography (SWE), which unlike ARFI monitors the tissue
response away from the ROE to quantitatively estimate the tis-
sue properties from the estimated shear wave speed (SWS) [3],
[9], [12]. In this paper, our focus is primarily on SWE.

In SWE, a localized and focused radiation force F is applied
to the ROE to induce a shear wave that travels away from the
ROE within the region of interest (ROI). During the propaga-
tion phase, the displacement field and associated attenuation
of the propagating wave contain useful information about the
local mechanical properties of the tissue. The displacement
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field in the tissue is often tracked by high frame rate imaging
by exploiting plane-wave imaging [9], [13]. By comparing
frames following the excitation to the reference frame (imaged
when the tissue is at rest), the tissue displacement profile or
alternatively the propagation velocity of the shear wave can
be determined in both spatial and temporal domains [1], [10],
[11], [14]. In an elastic isotropic medium, the relationship
between the shear modulus and wave propagation speed is
given by the expression

cT =

√
µ

ρ
, (2)

where cT , µ and ρ represent the propagation speed, tissue shear
modulus and tissue density, respectively. Recently, numerous
advances have been made in recovering the shear modulus
from the displacement fields [1], [5], [15]–[18]. The algebraic
inversion of the Helmholtz equation has been successfully
applied in MR elastography [19]–[22]. However, this tech-
nique has achieved limited success in ultrasound elastography
since it involves second-order derivatives and 3D displacement
estimates [3], [5], [15], [23]. Therefore, estimation of the SWS
is a more common approach, which entails calculating the
wavefront arrival time at different lateral positions (i.e., time-
of-flight (TOF)) [16], [24]–[28].

Both inversion of the Helmholtz equation and estimation
of the TOF require an accurate and precise displacement
estimation, which is challenging since these displacements
are very small and the data is noisy. Several post processing
techniques have, therefore, been proposed to limit the effect of
incorrect displacement estimates [27], [29], [30] or generate
confidence index in SWE [31]. The development of accurate
displacement estimation techniques remains an active field of
research.

The correlation-based approaches are commonly used for
displacement estimation, wherein RF data is divided into
small windows and displacement is estimated by maximiz-
ing cross correlation metrics [32]–[34]. These methods are
computationally efficient and have been widely used for
estimating displacement fields in the SWE. However, they
may generate incorrect estimates mainly due to insufficient
information in the correlation window and have a higher
Cramer Rao lower bound (CRLB) implying more mean square
error. To address these issues, references [35], [36] proposed
incorporating knowledge of adjacent displacement estimates
into the final estimate of a displacement. In another work,
Byram et al. [37] proposed Bayesian speckle tracking (or
Bayesian regularization) to improve the displacement field
using a priori knowledge of the estimation, and showed that
with a simple prior scheme, the CRLB can be surpassed.
Dumont & Byram [38] expanded this work and proposed a
Bayesian estimator that uses a generalized-Gaussian Markov
Random Field (GGMRF) prior that can automatically adjust
the distribution of the prior function. While this method
produces high quality displacement maps, it is not immediately
suitable for real-time displacement estimation due to its high
computational complexity. To overcome these limitations and
to further improve the accuracy of the displacement estimation,

we adopt the dynamic programming analytic minimization
(DPAM) framework, originally proposed for quasi-static elas-
tography [39], [40], in SWE. A cost function that incorporates
RF data and prior information of displacement continuity is
optimized to calculate the displacement field. Nonlinear terms
in the cost function are linearized using their first order Taylor
series approximations to allow for efficient optimization of the
cost function.

The paper seeks to further improve the accuracy of the
displacement field estimate over [39], [40] by incorporating
a higher order Taylor series expansion into the cost function.
Since inclusion of these terms makes the optimization problem
intractable, we propose a novel approach to substantially re-
duce the computational complexity. We refer to our method as
second-order analytic minimization elastography (SESAME).
Incorporating second order derivatives was recently proposed
in a short abstract [41] in quasi-static elastography. Both
DPAM and SESAME generate high quality displacement
maps in real time and are, therefore, suitable for their online
implementation.

The contributions of this work are twofold. First, we extend
the DPAM framework, proposed previously for quasi-static
elastography, for the first time in SWE. Second, we introduce
SESAME, a novel technique for tracking displacements using
RF data. A short version of this paper is published recently in
a conference paper [42]. This paper is organized as follows.
We first describe Dynamic Programming (DP), which provides
the initial step in the proposed methods. Then we outline the
details of DPAM and SESAME algorithms for tracking shear
wave and then describe our approach for generating simulation
and experimental data in Section II. We validate the proposed
algorithms in Section III, provide discussions of the results in
Section IV, and conclude the paper in Section V.

II. METHODS

In SWE, a reference ultrasound frame is initially collected
from the tissue. An ARF excites a small region (shown as the
yellow ellipse in Fig. 1 (a)), which is followed by collecting
multiple ultrasound frames as shown in Fig. 1 (b) to monitor
the propagation of the shear wave. The reference frame is
collected before applying the ARF, while the remaining frames
are collected during the wave propagation phase.

Let I1(i, j) and I2(i, j) be two ultrasound frames prior to
and during deformation as shown in Fig. 1 (c)-(d). Symbol I
denotes the intensity of a discretized sample of the RF signal
with i = 1, · · · ,m and j = 1, · · · , n representing respectively
the axial (z) and lateral (x) locations of the pixel. The goal
of the tracking method is to find two matrices A and L such
that their (i, j)th elements, i.e., a(i, j) ∈ A and l(i, j) ∈ L
provide estimates of the axial and lateral displacement for
pixel (i, j). Note that the traditional window-based techniques
calculate displacement for each window, whereas our goal is
to estimate displacement for each pixel. Our algorithm has two
main parts. In the first part, global optimization is performed
using DP to estimate displacement for one “seed” RF-line.
The location of the “seed” RF-line location is not a factor
that impacts the results of the proposed approach. As a matter
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(a) SWE setup (b) Ultrasound frames (c) Pre-ARF (reference frame) (d) Post-ARF

Fig. 1. Schematics of SWE. In (a), ARF generates excitation in the ROE (shown as a yellow ellipse) resulting in the propagation of shear
waves from the ROE to the sides. The reference tissue is imaged at the cross section specified by red dashed lines in (a), which generates
a sequence of ultrasound images shown in (b). To track the associated wave propagation, displacements for sample (i, j) (marked by a red
star in (c)) in the reference frame are calculated by matching it with its corresponding point (marked by another red star in (d)).

of fact, any vertical column in the image can be used as the
initial “seed” RF-line. The only limitation is that “seed” RF-
line should not be chosen on the ARF focal point, which
undergoes complex motions. This is an integer optimization
wherein the displacement map is restricted to integer values. In
the second part, a local optimization step, DPAM or SESAME,
is carried out to generate sub-integer displacement maps. Since
the RF data alone can be noisy and insufficient at certain
locations for the estimation of the displacement field, we
incorporate the prior information of displacement continuity
as a regularization term. The combination of global and local
optimization, as well as this regularization term, makes our
algorithm robust to noise and artifacts in the RF data. Below,
the DP, DPAM and SESAME approaches are introduced next.

A. Dynamic Programming (DP)
To describe the DP formulation [43], we consider a single

column j (RF-line j) of the image I1(i, j) prior to excitation
as highlighted with blue colour in Fig. 1 (c)-(d). For sample i,
we denote the axial and lateral displacements by {ai, li}. The
prior information (referred to as the regularization term) is

R(ai, li, ai−1, li−1) = αa(ai − ai−1)2 + αl(li − li−1)2, (3)

which restricts displacements {ai, li} of sample i to values
close to the displacements {ai−1, li−1} of the previous sample
i − 1 . Symbols {αa, αl} are axial and lateral regularization
weights. For column j, the regularized cost function in DP is
recursively formulated as

C
(p)
j (ai, li, i) =

[
I1(i, j)− I2(i+ ai, j + li)

]2
+ min
da,dl

(4)

[C(p)
j (da, dl, i−1) + C

(p)
j−1(da, dl, i)

2
+R(ai, li, da, dl)

]
where superscript p refers to the estimated pixel displacements
(as opposed to subpixel/subsample estimates) and {da, dl} are
the optimization parameters corresponding to axial and lateral
displacements used to minimize the term within the bracket.

Likewise, terms ai, li, da and dl denote integer displacements.
After calculating C(p)

j , for i = 2, · · · ,m, the cost function is
minimized at i = m with respect to integer values for am and
lm for all samples of the jth line. Unlike [40], which calculates
integer displacements for the entire image, we only utilize DP
on a single line, referred to as the “seed” line. As described
next, the integer displacement is refined to sub-pixel values.

B. DPAM: Dynamic Programming Analytic Minimization

Given the foregoing DP axial and lateral displacement
estimates {ai, li}, our goal is to find ∆ai and ∆li such that
(ai + ∆ai, li + ∆li) are subsample values of axial and lateral
displacements. We define a regularized cost function

C
(s)
j (∆a1, · · · ,∆am,∆l1, · · · ,∆lm) = (5)

m∑
i=1

{
[I1(i, j)− I2(i+ ai + ∆ai, j + li + ∆li)]

2

+ α(ai+∆ai−ai−1−∆ai−1)2+βa(li+∆li−li−1−∆li−1)2

+ β′l(li + ∆li − li,j−1)2
}
,

where superscript s refers to subsample cost function and
{α, βa, β′l} are regularization weights. To simplify the no-
tation, we have dropped the index j in terms ai and li in
Eq. (5). In other words ai, li, ∆ai and ∆li represent the
displacements of sample (i, j). Symbol li,j−1 is the lateral
displacement of the previous RF-line. Note that li,j−1 denotes
the total lateral displacement of the previous line, i.e., when
the displacement of the (j − 1)th line was calculated, li,j−1
was updated with li,j−1+∆li,j−1. Eq. (5) is nonlinear because
the variables ∆a and ∆l appear inside the nonlinear function
I2. In addition, typical RF data contains around m = 2000
samples per line, leading to 4000 unknowns in Eq. (5) (taking
into account the axial and lateral displacements for each
sample). Consequently, the optimization of the cost function
in Eq. (5) is intractable. In [44], we proposed to approximate
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Algorithm 1 SESAME
1: procedure SESAME (A(i, j), L(i, j))
2: Pick a “seed” RF line for DP
3: ai ← Integer axial Disp. using DP
4: li ← Integer lateral Disp. using DP
5: (ai, li)← Linear interpolation of the integer values
6: ∆ai & ∆li ← SESAME with (ai, li)
7: ai ← ai + ∆ai , li ← li + ∆li
8: for <all RF lines> i do
9: ai+1 ← ai , li+1 ← li

10: ∆ai+1 & ∆li+1 ← SESAME with (ai+1, li+1)
11: ai+1 ← ai+1 + ∆ai+1 , li+1 ← li+1 + ∆li+1

12: end for
13: end procedure

the summation term in Eq. (5) involving I2 with the following
first order Taylor series expansion

I2(i+ ai + ∆ai, j + li + ∆li) ≈ (6)
I2(i+ ai, j + li) + ∆aiI

′
2,a + ∆liI

′
2,l,

where I ′2,a and I ′2,l are, respectively, the axial and lateral
derivatives of I2. Substituting the above expression in Eq. (5)
results in a quadratic equation, which can then be converted
into a linear system of equations by setting its partial deriva-
tives with respect to the optimization variables equal to zero.
The linear system of equations has a sparse coefficient matrix,
which can be exploited to solve the system in real time on a
typical desktop computer [44].

C. SESAME: 2nd Order Analytical Minimization Elastography

The omission of higher order terms in the Taylor series
expansion makes Eq. (6) less accurate, whereas inclusion
of higher order terms renders the cost function intractable.
In this section, we propose to include information from the
second order derivative of the cost function while keeping the
optimization problem tractable. The outline of our algorithm
is presented in Algorithm 1.

The second order Taylor series expansion of term I2(i+ai+
∆ai, j+li+∆li) in Eq. (5) contains ∆a2i and ∆l2i . Substituting
these terms into Eq. (5) results in a polynomial cost function
of order 4. Optimization of such a high dimensional 4th-order
polynomial cost function is intractable. Instead of directly
incorporating the second-order Taylor series term, we propose
to penalize samples where this term is large and the first-order

Taylor expansion is not accurate. The revised cost function is

C
(s)
j (∆a1, · · · ,∆am,∆l1, · · · ,∆lm) = (7)

m∑
i=1

{
wi,j [I1(i, j)− I2(i+ ai + ∆ai, j + li + ∆li)]

2

+α(ai+∆ai−ai−1−∆ai−1)2+βa(li+∆li−li−1−∆li−1)2

+βl(li + ∆li − li,j−1)2
}
,

where wi,j =
1

ε+ |I ′′2,a(i, j)|+ |I ′′2,l(i, j)|
, (8)

and ε a small positive constant to prevent the denominator from
becoming zero. Symbols |I ′′2,a(i, j)| and |I ′′2,l(i, j)| denote the
absolute values of the second-order derivatives of the intensi-
ties in the axial and lateral directions respectively. Intuitively
speaking, incorporation of wi,j in the cost function penalizes
samples that have a high curvature and, therefore, cannot be
linearized.

If the displacement estimates associated with the previous
line are inaccurate, they will affect the displacements of the
next line through the last term in the right hand side of Eq. (7).
We avoid propagating this error to the neighbouring RF lines
by replacing βl with

β
(1)
l =

βl
1 + |ri,j−1|

, (9)

where ri,j−1 is the residual associated with the displacement
of sample i of the previous line. When there is a large residual,
β
(1)
l will be small and its influence on the next line is reduced.

The optimal (∆ai,∆li) values will make the partial
derivatives of Cj with respect to ∆ai and ∆li equal to
zero. Setting ∂Cj/∂∆ai = 0 and ∂Cj/∂∆li = 0, for
i = 1 · · ·m, and stacking the 2m unknowns in ∆d =
[∆a1,∆l1,∆a2,∆l2, · · · ,∆am,∆lm]T and 2m initial esti-
mates in d = [a1, l1, a2, l2, · · · , am, lm]T results in the matrix-
vector representation

(I′22 + D1 + D2)︸ ︷︷ ︸
A

∆d = I′2e−D1d︸ ︷︷ ︸
B

(10)

where I′22 = diag[J′2(1) · · ·J′2(m)] is a symmetric tridiagonal
matrix of size (2m× 2m) with

J′2(i) =

[
I ′22,a I ′2,aI

′
2,l

I ′2,aI
′
2,l I ′22,l

]
(11)

blocks on its diagonal entries where I ′2,a and I ′2,l are the
derivatives of I2 at point (i+ai, j+ li) in the axial and lateral
directions,

D1 =



α 0 −α 0 0 0 · · · 0
0 βα 0 −βα 0 0 · · · 0
−α 0 2α 0 −α 0 · · · 0
0 −βα 0 2βα 0 −βα · · · 0
0 0 −α 0 2α 0 · · · 0

··
·

· · ·
0 0 0 · · · −α 0 α 0
0 0 0 · · · 0 −βα 0 βα


,

(12)
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and D2 = diag(0, β′l, 0, β
′
l, · · · , 0, β′l) is a diagonal matrix

with dimensions (2m× 2m). Similarly, matrix I′2 is diagonal
with the structure

I′2 = wi,j× (13)
diag(I ′2,a(1), I ′2,l(1), I ′2,a(2), I ′2,l(2), · · · I ′2,a(m), I ′2,l(m))

where I ′2,a(i) and I ′2,l(i) are calculated at site (i+ai, j+li) and
e = [e1e1 · · · emem]T with ei = wi,j(I1(i, j)− I2(i+ ai, j +
li)). Having ∆d = [∆a1,∆l1,∆a2,∆l2, · · · ,∆am,∆lm]T

and 2m initial estimates in d = [a1, l1, a2, l2, · · · , am, lm], we
will find the 2m axial and lateral displacements for i = 1 · · ·m
for line j. Afterwards, we follow the same procedure for the
neighbouring line and consider the calculated displacement on
line j as its initial value. Repeating this algorithm gives us both
axial and lateral displacement values for the entire image.

On a related note, we observe Eq. (10) contains diag-
onal matrices (D2,∆d, I′2,d), tridiagonal matrix I′22 ), and
pentagonal matrix D1. Using notations A and B in (10),
the equation is formulated as A∆d = B, which can be
efficiently solved since A is highly sparse. More specifically,
Eq. (10) can be solved for d in 9m operations since the
coefficient matrix A is pentadiagonal and symmetric. The
number of computations is substantially less than (2m)3/3,
the number of operations required to solve a full linear system
of simultaneous equations.

D. Numerical Simulations

Simulation data was used to assess the precision and ac-
curacy of both DPAM and SESAME approaches. The probe
specifications are listed in Table I. In order to model the
tissue, a uniform phantom of dimension (100 × 50 × 20)
mm in axial, lateral and out-of-plane directions, respectively,
with a constant attenuation coefficient of 0.45 dB/MHz/cm
is considered. A minimum of 11 scatterers per resolution
cell [34], [45] are uniformly distributed in the phantom with
Gaussian scattering strengths [46]. Field II software [47] is
used for the ultrasound simulation as is the case in [48]. The
finite element ground truth displacement fields for shear wave
propagation are provided by Quantitative Imaging Biomarkers
Alliance (QIBA) [49], [50]. For each scatterer, the displace-
ment is computed by interpolating the displacements of its
neighbouring nodes using bilinear interpolation. The second
image is generated after displacing all scatterers using Field
II software. This procedure is repeated such that n total
images are simulated during shear wave propagation. All
simulations are repeated for point shear wave excitation at
three different focal depths of 30, 50, and 70 mm, and for four
different mediums having shear modulus of 1, 2, 5 and 10 KPa
respectively. In addition, 25 independent speckle realizations
were generated in all configurations using Field II.

E. Phantom Studies

A custom-made CIRS phantom (Norfolk, VA) with Young’s
modulus of 7KPa in the background including two lesions with
different elasticities and material density of 1.03g/cm3 is used
in our studies. The lesions are placed far apart from each other

TABLE I
PARAMETERS FOR THE ARF SIMULATIONS.

Probe Parameters Value
Center freq 3 MHz
Samp. freq 30 MHz

element height 14 mm
Element pitch 0.477 mm

Speed-of-sound 1540 m/s
Frac. bandwidth 100%
Elevation focus 50 mm
No. of elemets 128
Active elements 64

Fig. 2. Setup for phantom studies: The probe is hand-held during
data collection from a CIRS elastography phantom. An excitation
with period of 160µs at the focal depth of 20mm is applied as ARF
and a set of 80 RF frames were acquired to monitor the shear-wave.

TABLE II
PARAMETERS FOR THE CUSTOM SHEAR-WAVE PHANTOM WITH LESION.

Young’s modulus (KPa) Speed of Sound (m/s)
Background 7 1535

Lesion 1 21 1545
Lesion 2 45 1562

in the phantom. Therefore, the presence of a second lesion
introduces little mutual interaction and has negligible impact
on the first lesion. Young’s modulus and speed of sound related
to all the regions in the phantom are presented in Table II. In an
isotropic medium, Young’s modulus is approximately 3 times
shear modulus. Thus in this paper we use shear modulus for
comparison.

An Alpinion ECUBE R12 ultrasound machine (Bothell,
WA) and an L3-8 transducer operating at frequency of 8MHz
were used for data collection. The associated ARF parameters
are listed in Table III. As shown in Fig. 2, the probe is hand-
held during the data collection phase. Separate experiments
are done on every region of the phantom (background, lesion
1, lesion 2) and results are compared using the proposed
methods. Due to poor lateral resolution of ultrasound images
(caused partly by the large pitch of the L3-8 transducer), up-
sampling by a factor of 3 in the lateral direction is performed
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TABLE III
PARAMETERS FOR THE REAL PHANTOM EXPERIMENTS.

Probe Parameters Value
Excitation pulse length 160 µs

Aperture size 64
Samp. freq. (fc) 40 MHz

PRF 12 KHz
Element pitch 0.3 mm

Excitation focal depth 2 cm

for all methods. This is limited to experimental data, and no
upsampling is performed for the simulated data. The SWS and
shear modulus are related according to Eq. (2), which is used
to estimate the shear modulus from SWS.

F. Validation Method

Normalized cross correlation (NCC) with a window-size of
(70×10) samples and 98% kernel overlap with 2-dimensional
parabolic interpolation of order 2 for estimation of subsample
displacements was used for comparison. The selection of
values of the NCC parameters, such as the window size,
kernel overlap and interpolation method, are based on pre-
viously reported work [34], [38], [51]. A large kernel overlap
generally improves the results but increases the computational
complexity. We therefore used a large overlap to attain good
results. A larger window-size usually reduces variance but
increases the bias. We used larger windows than those reported
in previous work to reduce the variance to the same order
of magnitude as DPAM and SESAME. The displacement
estimation results with a smaller NCC window-size is reported
in the Supplementary Materials.

We calculate both axial and lateral displacements using
NCC, DPAM or SESAME. The lateral displacement is only
calculated to improve the quality of axial displacement es-
timates and is not used for calculating TOF. To calculate
TOF and SWS, we follow the steps outlined in [26]. For
quantitatively comparison, the SNR is calculated using the
following equations [52]

SNR =
µ2

MSE
and MSE = E[(de − d̄)2], (14)

where µ is the mean displacement value at a specific axial
location on the excitation trajectory averaged over all the
realizations, MSE denotes mean square error, and {de, d̄}
are, respectively, the estimated and ground truth displacement
fields. In experimental phantom study d̄ is unknown. There-
fore, an average of 50 displacement estimates using NCC is
used as the ground truth for d̄. Results for each configuration
included in the paper is based on 25 independent speckle
realizations generated using Field II. For each configuration,
we run the proposed methods and NCC on the 25 realizations.
The statistical parameters, (e.g. mean, standard deviation, and
their variations) are calculated based on the results of the 25
realizations for each configuration.

G. Execution Time

The NCC is implemented directly in MATLAB while the
DPAM and SESAME algorithms are implemented in C++ as
MATLAB Mex functions. An Intel i5-4690 3.50GHz CPU
with 16GB of memory is used for signal processing. For the
RF data of size (1388 × 150), NCC, DPAM and SESAME
take 42.4, 0.035 and 0.042 seconds, respectively. The NCC
window-size is (70 × 10) samples and the overlap between
successive windows is 98%. All reported execution times
are calculated based on 150 independent executions of the
programs in our Monte Carlo simulations.

III. RESULTS

A. Simulation Results

Fig. 3 shows the axial displacement field at 4ms following
the excitation in the simulation phantom with the shear mod-
ulus of 10KPa and focal configuration of F/3.5. The phantom
is excited at the focal point of 30mm. The FEM ground truth
as well as the NCC, DPAM and SESAME displacement fields
are shown. The colorbar is displayed in µm and represents the
common dynamic range used to plot the displacement frames.
In Fig. 4, it is clear that both DPAM and SESAME outperform
NCC in term of wavefront tracking which is quite significant
for accurate SWS calculation.

Fig. 4 corresponds to axial displacement estimated from a
uniform medium with a 10KPa shear modulus excited at the
focal depth of 70mm. Displacement is plotted as a function of
lateral direction calculated at the same depth as the excitation
point in a range of 2-23mm for three different time instances of
1.5, 4, and 6.5ms following the excitation. Solid lines represent
ground truth displacement, and the blue dotted, red and green
dashed lines show displacement calculated using NCC, DPAM
and SESAME methods, respectively. As observed, both DPAM
and SESAME estimators outperform NCC in three aspects: 1)
A displacement profile similar to the ground truth; 2) less
underestimation (bias), and; (3) less jitter.

The SNR values associated with the displacements of the
uniform phantom with the shear modulus of 10KPa at the ARF
focal depths of 70mm are shown in Fig. 5 as a function of
time. Error bars represent mean and standard deviation over
25 independent speckle realizations simulated using different
random distribution of the scatterers. Results using the DPAM
and SESAME estimators show the SNR improvement is
achieved over the entire period of time. The error bars are
large at the beginning (t < 1 ms) and at the end (t > 3 ms)
of the plot in all cases. The reason is that tracking is difficult
immediately following ARF due to initialization, and also a
long time following the application of ARF due to attenuation
of the shear-waves.

Fig. 6 depicts time-step displacements for four independent
materials with four different shear moduli of 1, 2, 5, 10KPa
at a focal depth of 70mm and a lateral offset of 2.5mm
from the excitation point. Higher shear modulus means that
tissue is stiffer, which translates to a smaller displacement
and consequently higher SWS which is what we expect.
Comparison of the displacement profiles from (a) to (d) shows
that, as expected, the shear wave propagates as µ is increased.
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(a) FEM (b) NCC (c) DPAM (d) SESAME

Fig. 3. Simulation results for a uniform medium with a shear modulus of 10KPa and F/3.5 focal configuration of 4ms following the excitation.
Plot (a) shows the FEM (ground truth) axial displacement field while plots (b)-(d) are the corresponding displacement fields obtained from
NCC, DPAM and SESAME, respectively. The focal excitation point is specified by a red square in plot (a) at a depth of 30mm. The common
colorbar (shown on the extreme right hand side) for all plots is shown in µm and illustrates the dynamic range used to display the plots.

(a) Focal Disp. (t = 1.5 ms) (b) Focal Disp. (t = 4 ms) (c) Focal Disp. (t = 6 ms)

(d) Jitter (t = 1.5 ms) (e) Jitter (t = 4 ms) (f) Jitter (t = 6 ms)

Fig. 4. Displacement field (first row) and jitter (second row) measured at a horizontal line located at the ARF depth at three different time
instances following ARF.
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Fig. 5. Displacement SNR as a function of time following the
excitation at the focal depth of 70 mm in a uniform simulation
phantom with shear modulus of 10 KPa. Error bars show mean and
variance over 25 independent realizations.

TABLE IV
PERFORMANCE OF THE PROPOSED METHODS AND NCC QUANTITATIVELY.

NCC DPAM SESAME
SNR mean (dB) 7.5 20.4 24
%SNR variance 42 18 14
µ mean (KPa) 10.71 10.21 10.14
%µ variance 3.41 1.12 1.01

Execution time (s) 42.4 0.035 0.042

NCC suffers from a relatively large underestimation because
it assumes constant displacement within the NCC window. In
contrast, DPAM and SESAME estimate the displacement field
for all samples of the RF data, and as such, the underestimation
in displacement is substantially smaller.

In Fig. 7, the reconstructed shear moduli of the simulation
phantom with 10KPa shear modulus is presented. The results
are presented for point shear wave excitation at three focal
depths of 30, 50, and 70mm. The TOF is estimated from
the tracked displacement data [26], which yields SWS and
subsequently the shear modulus (Eq. (2)). The results clearly
demonstrate that both DPAM and SESAME substantially out-
perform NCC in both recovering the correct value of the shear
modulus and producing a small estimation variance. The dif-
ference between reconstructed µ averaged over three different
depths and true shear modulus are respectively 3.41%, 1.12%,
and 1.01% of true µ for NCC, DPAM and SESAME. As the
results of this figure corroborate, smaller shear modulus is
estimated in deeper tissue, which is also observed in previous
work [53].

Table IV quantitatively reports performance of the proposed
methods and NCC using simulation data with shear modulus
of 10KPa at depth 30mm. SNR value and its variation are
calculated 2ms following the excitation using Eq. 14. Mean
and variance of the estimated shear modulus are also reported
in this table. All the variation are calculated over 25 indepen-
dent realizations of the experiment. Execution times with the
parameters mentioned in II-G are also reported. The difference
in memory usage of DPAM and SESAME is negligible.

B. Experimental Phantom Results

Fig. 8 plots the signal-to-noise ratio (SNR) as a function
of time following the ARF excitation focused at a depth

of 2cm. The experiment is repeated 25 times by randomly
relocating the ultrasound probe. Blue, red and green curves
correspond to the SNR values obtained from NCC, DPAM
and SESAME, respectively. The error bars in Fig. 8 represent
standard deviations over 25 experiments. Both DPAM and
SESAME outperform NCC substantially and, on average, yield
respective improvements of 7.6dB and 9.5dB in the displace-
ment SNR. In addition, the results illustrate that approximately
7ms following the excitation, NCC SNR drops below 0dB
while DPAM and SESAME maintain relatively high SNR
values.

Fig. 9 shows reconstructed shear modulus µ of the phantom
with a ground truth value for µ of 2.33KPa and material
density of 1.03g/cm3. For the four depths of 18, 19.5, 21, and
22 mm, µ is calculated from SWS. The ground truth value is
shown with a dashed line, and the results obtained from the
NCC, DPAM and SESAME results are displayed in blue, red
and geen lines, respectively. The values of the bars from top to
bottom respectively correspond to maximum, 75th percentile,
median, 25 percentile and minimum measurements. Both
DPAM and SESAME estimators yield a better performance in
terms of both bias and variance. A comparison between DPAM
and SESAME shows further improvements in estimating shear
wave modulus and corresponding SNR in favour of DPAM in
our experiments.

In the final experiment, we image a region of the phantom
that contains a lesion to show the performance of the algorithm
in more complex wave patterns. The CIRS phantom has two
lesions with properties reported in Table II. ARF is applied
at the depth of 30mm where both lesions are located. We
repeat the imaging with focus at the same depth for 25 times
by placing the probe at different locations over either of the
two lesions. In Fig. 10, plot (a) represents reconstructed µ
in lesion 1. Blue, red and green bars respectively represent
reconstructed values using NCC, DPAM and SESAME. These
methods are used for deformation tracking and TOF method
is applied then to measure SWS and then µ. Horizontal black
dashed-line shows the real value of the µ, which is provided by
the manufacturer. Plot (b) is the same as plot (a) but the exper-
iment is done on lesion 2 which contains a material with shear
modulus of µ = 15KPa. The values of the bars from top to
bottom respectively correspond to maximum, 75th percentile,
median, 25th percentile and minimum measurements. Both
DPAM and SESAME estimators yield a better performance in
terms of both bias and variance. Furthermore, a comparison
between DPAM and SESAME shows notable improvements
in estimating shear modulus using SESAME over DPAM.

IV. DISCUSSIONS

On one hand, we incorporate prior information of displace-
ment continuity into the cost function to prevent estimating
physically unrealistic displacement fields and augment the RF
data. On the other hand, we perform global minimization of
the cost function to ensure that the optimization procedure is
not trapped at a local minima. Our displacement estimation
is, therefore, accurate and robust. In contrast to the window-
based tracking methods [27], [29], no post-processing step is
needed in the proposed approaches.



IEEE TRANS. UFFC 9

(a) µ = 1 KPa (b) µ = 2 KPa

(c) µ = 5 KPa (d) µ = 10 KPa

Fig. 6. Displacement profile in the simulation experiment at z = ARF depth and 2.5 mm lateral ofset from the ARF focus. Results for four
simulation phantoms with different shear modulus (µ) of 1, 2, 5 and 10 KPa are shown. Error bars represent standard deviation of calculated
displacements over 25 independent speckle realization. Greater µ relates to stiffer medium which yields faster wave propagation.

Fig. 7. Reconstructed shear moduli using displacement estimated
using NCC (blue), DPAM (red) and SESAME (green) estimators
for a uniform simulation phantom for excitation at three different
focal points of 30, 50 and 70 mm. True shear modulus is 10 KPa.
Bars and error bars respectively represent mean and variance over 25
independent realization.

In our experimental studies, the ground truth for displace-
ment is unfortunately unknown. Therefore, it is common in the
literature [38] to repeat the experiment for 25 times and use
the mean of the results as the ground truth. Such an approach
eliminates jitter in NCC estimates to a large extent but has little
impact on the bias. See [34] for further discussion on the bias
and variance of the NCC estimates. We have results from 50
experiments (instead of 25) to further reduce the variance of
the estimated mean.

Fig. 8. Displacement SNR as a function of time following the
excitation at the focal depth of 20 mm in the ROIin the background
of the experimental phantom. Error bars show mean and variance
over 25 data collections from the same phantom. NCC curve falls
under 0 dB approximately after the wave travels for 7 ms due to the
attenuation of the displacement amplitude.

The proposed DPAM and SESAME outperform NCC in
two different aspects. First, the underestimation of the peak
displacement field is much smaller because the displacements
are estimated for each sample. In contrast, the window-based
methods in essence calculate the average displacement within
a window. Therefore, the estimate of the peak displacement
is severely biased by the neighbouring samples that have
lower displacements. As discussed in detail in [34], this issue
is more important in SWE than in quasi-static elastography,
since the displacement field is much more uniform in the
latter. As verified experimentally, DPAM generates accurate
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Fig. 9. Reconstructed shear moduli measured in ROI at four different
depths. The excitation is at 20 mm depth. Tracking wavefront is
done using NCC (blue), DPAM (red) and SESAME (green) in a
tissue-mimicking phantom with given shear modulus of 2.33 KPa
(black horizontal dashed line). Data collection is repeated 25 times
at different locations of the phantom. From top to bottom, each bar
shows maximum, 75%, median, 25% and maximum values.

displacement fields for quasi-static elastography and is more
suitable for SWE. Second, less noisy displacement fields are
generated with DPAM and SESAME with no need for post-
processing to eliminate outliers or measurements with higher
levels of noise.

We derive a nonlinear cost function with close to a million
variables, which is intractable in its original form. We, there-
fore, linearize the derivative of the cost function to allow for
efficient optimization. DPAM ignores second-order derivatives
of the nonlinear terms, whereas SESAME takes into account
the curvature of the nonlinear terms when linearizing the
cost function. An important feature of SESAME is that the
derivative of the cost function remains a linear and sparse
system despite considering higher order derivatives. Therefore,
SESAME outperforms DPAM with only a slightly higher
computational complexity.

Both proposed methods are fast enough and suitable for
real-time implementation. For instance, to find displacement
field between two RF frames of size (1388 × 150), the
DPAM and SESAME estimators on average take 35 and 42ms,
respectively, on a single core of a desktop CPU.

Figs. 3, 4, and 5 demonstrate accurate displacement estima-
tion using DPAM and SESAME in a variety of simulations
with acoustic radiation force focusing on different excitation
regions. In comparison with NCC, the proposed estimators
track displacements more accurately such that smaller jitter
and higher SNR are obtained. Fig. 6 illustrates that NCC,
DPAM and SESAME predict faster SWS in a medium with
higher elasticity.

The results of Fig. 7 demonstrate less variability and more
accurate µ estimation using the proposed methods compared
to NCC. The dependency of shear modulus estimation on
excitation focal depth is also described in [53]. Overall, the
estimated values of µ averaged over three examined depths are
10.34, 10.11, and 10.10KPa using NCC, DPAM and SESAME
for a phantom with a ground truth value of µ = 10KPa.

Regions with large values of the second order derivative are
high in texture and can aid tracking. However, there are two
reasons that we penalize these regions. First, cost function

of DPAM makes the assumption that RF data around each
sample is linear. Regions with a high second-order derivative
render this assumption inaccurate. In other words, Eq. 5 is not
a good approximation for Eq. 4, and therefore, its optimum
value is not an optimum value of Eq. 4. Selecting linear
regions of the image that are suitable for the optimization
technique has been shown to improve tracking results in
the field of computer vision [54]. Second, penalizing regions
with high second-order derivative does not deprive SESAME
from suitable regions for tracking. SESAME utilizes regions
of the RF data that have high derivative values (positive or
negative). Since SESAME considers the entire RF data set for
the purpose of optimizations, these regions with negative and
positive derivatives provide SESAME with texture needed for
tracking accurately.

The large improvement in displacement estimation in
DPAM and SESAME is a result of the spatial regularization
in the cost function, which strikes a balance between data and
smoothness terms. We expect that regularization in the tempo-
ral domain, which considers the equations of wave motion, to
further improve the results. Moreover, temporal regularization
can distinguish motions caused by wave propagation from
physiological motions since the physics that governs these
motions are different. This is an interesting avenue for future
work.

V. CONCLUSION

We proposed two methods, DPAM and SESAME, for esti-
mating sub-pixel tissue displacements in shear wave elastog-
raphy. The associated cost function used to estimate the axial
and lateral displacement fields is non-linear and has high-
dimensions with close to a million variables. We simplified
both approaches into linear systems of equations with sparse
matrix-vector representations that can be solved in real time
in a few milliseconds on a typical desktop computer. DPAM
approximates the nonlinear terms using a first order Taylor se-
ries expansion, whereas SESAME takes into account second-
order derivatives of the nonlinear terms. DPAM and SESAME
have similar computational complexity though SESAME out-
performs DPAM in terms of estimation bias and variance.
Both approaches are suitable for real-time implementation on
commercial ultrasound machines and will hopefully lead to
more robust SWE for clinical adoption.
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