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Abstract—We have previously developed regularized 2D and [5]. Phase zero estimation methods require an estimateeof th
3D elastography methods using Dynamic Programing (DP) [1], center frequency of the ultrasound RF signal, which varies
[2]. A cost function which incorporates similarity of echo ampli- with depth due to frequency-dependent attenuation in gissu

tudes and displacement continuity was minimized using DP to - . o . . .
obtain the displacement map. In this work, we present a novel [7]. This variation can be signi cant in RF ablation, leadin

hybrid method for calculating the displacement map betweeriwo 0 poor displacement estimation [7].
ultrasound images. The method uses DP in the rst step to nd dynamic programming (DP) has been used recently for

an initial estimate of the motion eld. In the second step, we robust displacement estimation [8], [1], [2]. DP is moreusb
assume a linear interpolation for the reference image and dain 1, gjgna| decorrelation than standard cross-correlatiethods

a closed-form solution for a subpixel accuracy motion eld.The d is theref d didate f blati itori
closed-form solution enables fast displacement estimatio We and IS thereiore a good candidate for ablation monitoring

present threein-vivo patient studies of monitoring liver ablation ~Where being real-time and robustness to noise are criticall
with the hybrid elastography method. The thermal lesion was important. Here, we introduce a hybrid method that uses DP
not discernable in the B-mode image but it was clearly visit® for an initial displacement estimation and re nes the eatien
in the strain image as well as in validation CT. We also presen ., oqtimizing a regularized cost function. We use the method
3D strain images from thermal lesions inex-vivo ablation. We f ing 2 d 3D d f lculati .
introduce a novel volumetric rendering model for visualizaion O Processing 2D and 3D data for calculating 1D strain. We
of the volumetric B-mode images. We exploit strain values in reportin-vivo patient results on monitoring RF ablation with
the opacity of the volumetric B-mode data to better classifysoft elastography and corroborate the results with CT scanilyf-in
tissue. It is possible to observe the surface of the hard lesis, \ve use a 3D probe to acquire 3D data and show that 3D
its size and its appearance from a single 3D rendering pictig. elastography can be successfully used to monitor ablation i
3D using our novel visualization technique.

I. INTRODUCTION

Ultrasound elastography has emerged as a useful augmenta- [I. HYBRID DISPLACEMENT ESTIMATION

tion to conventional ultrasound imaging [3]. Elastograpiag We provide an overview of the DP method rst, followed

been used for monitoring RF ablation [4], [5] by observin y the description of the closed form solution for motion

that ablated region is harder than surrounding tissue. én t stimation. Compared to other optimization techniques, DP

most common variation of elastography, ulirasound images % an ef cient non-iterative method of global optimizati{®i,

captured while the _tissue is. being comp_ressed, and imagesEb]_ In DP elastography, a cost function which incorposate
processed to pr.owde a grid of local displacement measu ?rhilarity of echo amplitudes and displacement continuity
ments. These displacement elds are then used to determ,gue

the elasti i f the ti t h arid locatiore T minimized. Since data alone can be insuf cient to solve
€ elastic properties of the tissue at each grid locall ambiguities of motion tracking due to signal decorrelation

grid of the eIaSti.C properties_ can be displgyed as an ir_nage e physical priors of tissue motion continuity increades t
Elgstography IS com_pqtaﬂonally EXPENSIVE, makmg it ch obustness of the technique [1]. We have showed that DP
lenging to d'Sp""?y stra|r_1 Images in real-t|_me. Real-t_lmedfe enerates high quality strain images of freehand palpation
Igack, however, is reql_Jlred for_ image guided _ablatlon ope lastography with up to 10% compression, indicating that
tions. Another aspect is that signal decorrelation betwben the method is more robust to signal decorrelation (caused

pre- and post-compression images induces signi cant rlO'Seby scatterer motion in high axial compression and non-axial

the obta_Lined displacement map and is one of the major."miti?notions of the probe) in comparison to the standard coioslat
factors in elastography [6]. Methods based on cross-atioel techniques. The 2D method operates in less than 1sec and is

and phase zero estimation are currently the most popular r€R s also suitable for real time elastography
time elastography technigues which provide fast and ateura We now overview the formulation of 3D D'P Lg}‘(i) be
motion tracking. In RF ablation, however, high decorrelati . . th T
L . the intensity of thei™ sample (axial direction)j™ A-line
between pre- and post-compression images results in higlt, -, direction) anck™ frame (out-of-plane direction) of
noise in the strain images obtained using cross-correlati ) 4.0
the pre-compression ultrasound volume. Igﬁfd| (i + dy)
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sum of absolute differences (SAD), which is computatignalprevious A-line on the same plane. For memoization [g],

inexpensive and is robust against outliers [11]: | and . values that minimize the cost function are stored:
. Mf(i;di;di;de) =arg min  C @)
(Bjkdaidide) = g() g7a (i+d) (1) | | VU
_ _ The cost functionCf is calculated fori = 1 m,
where the axial, lateral and elevational search ranges ge = d,. ., Oamax » i = Qrmin dimax and de =
limited by da;min da da;max » Oi:min d dimax de:min de:max - The minimum cost ai = m gives the
anddemin e dejmax - displacement of this point, which is traced backite= 1
R(da ;0 ;de:da ,:dh ,ide )= u;singt_thel\fldfunlction to (t:gl(cul(aée tdhedtr;;ee axial, lateral and
elevational displacement® (= i :
(o o )Z+(d, d, )P+(de o ) (2) P N
_ o _ Df(i)=arg min  C{(da;di;de;i) ; i=m
is the smoothness regularization. The cost function at each da;di;de
pointi, j andk is D]-k(i)= M(i+1;D]-"(i+1)); i=1 m 1 (8)

This gives all three displacements simultaneously, in et
7 (3) with other 3D elastography methods which give displacement
in each direction in separate steps.
) _ ) 1 . Further speed-up is achieved by downsampling the signal
Ci(ar i esi 1+ Cf 1+ C ~ (al 15 1) g(i) in the axial direction by a factor of to g (i), and com-
3 paring it with the unaltered signgf(i). This is done by simply
+ WR(da;di;de; a; 15 e) (4) skipping 1 samples frong(i) and performing DP on the
. . . . th sample. This generatésteger displacemengstimations
wherew is a weight for enforcing smoothness. The inclu-, = ) . .
. : : A atm= samples. The displacement of the skipped samples is
sion of the costs of the previous poij‘(( a1 el . . . ; .
. ) K S : then simply approximated by the linear interpolation of two
1)), previous line € 1( a; 15 e;i)) and previous plane - . ; .
K1, , , neighboring points whose displacements are calculatednas
(G “( a5 17 eji)) guarantees smoothness in the axial, later

: LI . _ itial guess for the next step.
and eleva!tlonal directions _respectlvely. Th_|s formG)fhpw- The displacement estimations from Equation 8 are used to
ever requires the cost function of the all A-lines of the 0e8  qiimate a subpixel displacement estimation by minimitieg
plane to be stored in the memory. We use an alternative fofmlowing cost function:

which requires storing only the cost function of the pregiou h o iy
A-line on the processing plane: C(fi; fm) = M df() gjk:gle (i + da(i) + f)
fowlda@+fi dali D fia® (9

wheref; is the fractional displacement in the axial direction
that is added tad,(i) at each samplé to obtain the nal

Cjk(da;d|;de;i):( i;j;k;da;di;de)+ min - C

as |y e

CcC =

Cf(da;di;de;i) = ( i;j;k;d a;di;de)
+ WiR(da;di;de;dk L;df Ldk D+ min C (5)

e displacement eld.w is again the regularization wieght. The
C( a1t i D+ CK (a0 o) cost function corresponds to th& A-Iin% in the k™ plane.
c = Jtabe 5 pa b e Assuming linear interpolation fog! ", the above cost
function becomes a parabolic function 6f; i =1 m,
b WoR(dai 0 et ol 1} ) (6) P o

which has a closed form solution. Because of space limitatio
wherew; is a weight for governing smoothness in the elevanore details of the algorithm cannot be presented here ahd wi
tional direction andw, is a weight for governing axial and be published in a subsequent article.
lateral smoothness. Equation 3 is preferred over Equation 5
since a wrong displacement estimation does not affect the l1l. 3D VISUALIZATION
neighboring A-line's displacement estimation. However we Rendering 3D models from 3D ultrasonic data is a compli-
use the latter because of the memory limitations. Generalated task due to the noisy and fuzzy nature of ultrasound
the optimum values of 5; |;  should be sought in theimages. Ultrasound images contain considerable amount of
entire [damin = damax ] [dimin dimax 1 [demin demax ] NOise, artifacts, and speckle. As reported in [12], ultumsb
space. However, since the strain value is low in elastograpimaging posses features that cause well-known visuadizati
it is expected and desired that at each sample of RF datghniques to fail. Among these features are signi cantamo
the change between the displacement of a sample andotsioise and speckle, lower dynamic range, and high variatio
previous sample is not more than 1. Therefore, the seainhthe intensity of neighboring voxels.
range is limited to the nine values bfl;, 1; dy; da + 19 Our visualization algorithm is based on the standard volume
fd 1;,d; d+1gf do 1; de; de +1g, which resultsin rendering pipeline. We introduced a new element to this
a signi cant gain in speed. This limit on the search rangesdoalgorithm by using strain values in the opacity function to
not affect the results even in a high strain of 10%d is zero Dbetter classify soft tissues: The new opacity functionisrired
for nine samples and one for the tenth sample on avera§jem both B-mode and strain values. The current volume
We also limit the search range of each A-line td of the rendering algorithm is implemented using GPU.
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Fig. 1. In-vivo images of the thermal lesion produced by RF ablation thetdpiver cancer. First, second and third column correspanthé rst, second
and third patients. (a) - (c) B-scan after RF ablation. Thedskv in (a) and (c) indicates the presence of thermal lesida.almost impossible to ascertain
the size and position of the thermal lesion from the B-scéas- (f) Strain images after RFA ablation, generated usiBgDP elastography and freehand
palpation of the liver tissue. The thermal lesion is visilsledark surrounded by normal tissue in white. (g) - (i) Pd#ition CT scans, with the delineated
thermal lesions (The non-unity aspect ratio in the axes @fBkhmode and strain images should be considered when caorgpduem with the CT scans).

IV. RESULTS not possible to ascertain the size and position of the therma

We rst presentin-vivo elastographic monitoring of RF Iesion_s from B-mode imaggs. In addition, the thermal lesion
ablation therapy of liver cancer in human during surgermgisi has dlﬁerer_lt appearances in the three B-sgans. _Howe\er, Fh
the novel elastography method. RF ablation was admin'[.ttefgermal IeS|on.s show very well as hard IeS|0ns_ n the strain
using the RITA Model 1500X RF generator (Rita Medic mages. The size of the_ thermal lesion in the strain imagds an
Systems, Fremont, CA). Ultrasound RF data is acquired frafh cT scans are falso_ln accordance. It seems that the strain
an Antares Siemens system (Issaquah, WA) with a 7.27MHPa9€S prov_lde W'_th higher contrast of the the_rm_al lesiod an
linear array at a sampling rate of 40MHz. The strain images prer_ hoise In the image, compared t_o the sfrain images of RF
generated of ine. We have an active IRB protocol for patierﬂblat'o.n obtained .W'th cross-corre lation methods. Howeare
studies and we have monitored ablation in 5 patients to d aore rigorous Va|ldi.itIOI"l of the size and shapt_a of the ablated
However, we show the results from only 3 patients dueal sion in the regularized elastpg_raphy method is neces"ﬁary
space limitations. Figure 1 shows the B-mode scan, thenstr i€ best of our knowledge, this IS 6.“50 the rst demonstmtp
image obtained using our elastography method and CT scé)liéhe_ success of elastog_raphy in imaging the thermal lesion
performed after RF ablation ( rst, second and third column§ @nin-vivo human experiment.

corresponding to rst, second and third patients respebtjv For 3D elastography, we use a 3D probe that consists of a
Tissue is simply compressed freehand with the ultrasoundrvilinear array that is mechanically rotated to scan an.
probe without any attachment. The shadow in Figure 1(a) ditrasound RF data is acquired from an Ultrasonix system
20mm depth is produced by the thermal lesion. Note that it (§ancouver, BC) at 4.5MHz frequency, 20MHz sampling rate
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Fig. 2. Ex-vivoliver RF ablation experiment. (a) The experimental setue passive arm is holding the 3D probe and the liver is coathin the phantom.
(b) The liver sample after ablation, cut into four piece$.&qd) 3D B-mode and strain images after ablation. (e) - (g)@Djections of the 3D strain image.

and 30% bandwidth. A Radionics device (Valleylab, Boulde
CO) is used forex-vivo RF ablation. The ablation power is
set to 8W for 10min and the cooler is turned off througho
the experiment. Target temperature reacé@dC in 3min and

was kept constant in the next 7min of ablation. Figure 2 sho
the experimental setup and results. There is a good agréeer
between the size of the lesion in the axial and lateral doast

in the strain images and gross pathology. The ablation g
beyond the probe's eld of view in the elevational directior
Figure 3 shows the volume rendering of the ultrasound ime

after ablation, clearly showing the ablated lesion. Fig. 3. Ex-vivoliver RF ablation experiment. Volume renderings of the 3D
B-mode image using 3D strain in the opacity function.

V. DiscussiON ANDCONCLUSION

Strain images in Figure 1 demonstrate that the propo:s
regularized elastography method can be used to visualeze challenging during ablation because of the dynamic changes
ablated region immediately after RF ablation. Elastogyaph in the image during thermal power deposition. We are cur-



rently working on implementing our method on the ultrasounde are planning for a comprehensive comparison of the 3D
machine to enable real-time monitoring of the ablation. Telastography method with other 3D strain imaging techrsque

examine the feasibility of such monitoring, we have cobelct

[13], [14] and with 3D temperature imaging implementations

real-time strain images using Siemens Antares El (Elagtis[15]. The lateral and elevational search is performed oaly t
Imaging) module in one of the patient studies. Figure 4 (&)crease the quality of the axial strain: the lateral andale
shows three small ablated lesions around ablator tineghwhtional displacements are integer values and are not seifabl

are grown over time to a large hard lesion in Figure 4 (c).

(@
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Fig. 4. RF ablation monitoring in m-vivo patient study. B-mode and strain

images are shown in the left and right respectively. Theetlimeages in (a) to
(c) are acquired at three stages of the ablation (times sluoweach image).

calculating strain.

Good volumetric CNR between the thermal lesion and
background suggests that the regularization is not adyerse
affecting CNR. However, a study similar to [1] on the effect
of the 3D regularization on the CNR and resolution should
be done. Having an elastography system for 3D ablation
monitoring with promisingex-vivo results, in-vivo patient
studies under our active Institutional Review Board (IRB)
approval are to commence.
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