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Abstract— Although a variety of techniques have been 

developed to reduce the appearance of B-mode speckle, 
quantitative ultrasound (QUS) aims at extracting hidden 
properties of the tissue. Herein, we propose two novel techniques 
to accurately and precisely estimate two important QUS 
parameters, namely the effective attenuation coefficient and the 
backscatter coefficient. Both techniques optimize a cost function 
that incorporates data and continuity constraint terms, which we 
call AnaLytical Global rEgularized BackscatteR quAntitative 
ultrasound (ALGEBRA). We propose two versions of ALGEBRA, 
namely 1D- and 2D-ALGEBRA. In 1D-ALGEBRA, the 
regularized cost function is formulated in the axial direction, and 
QUS parameters are calculated for one line of radiofrequency 
(RF) echo data. In 2D-ALGEBRA, the regularized cost function is 
formulated for the entire image, and QUS parameters throughout 
the image are estimated simultaneously. This simultaneous 
optimization allows 2D-ALGEBRA to “see” all the data before 
estimating QUS parameters. In both methods, we efficiently 
optimize the cost functions by casting it as a sparse linear system 
of equations. As a result of this efficient optimization, 1D-
ALGEBRA and 2D-ALGEBRA are respectively 600 and 300 times 
faster than optimization using the dynamic programing method 
previously proposed by our group. In addition, the proposed 
technique has fewer input parameters that require manual tuning. 
Our results demonstrate that the proposed ALGEBRA methods 
substantially outperform least-squares and dynamic 
programming methods in estimating QUS parameters in phantom 
experiments. 

Index Terms— Quantitative ultrasound (QUS), Global QUS, 
Regularization, Attenuation, Backscatter coefficient. 
 

I. INTRODUCTION 

As any imaging modality, ultrasound imaging has its own 
advantages and disadvantages. Although it is a real time, 
portable, and safe imaging modality, it provides a qualitative 
representation of the tissue, and as such, can be subject to 
different interpretations by different clinicians. Quantitative 
ultrasound (QUS) has emerged to resolve the aforementioned 
issue and quantitatively characterize tissue. Spectrum-based 
QUS techniques [1]–[4] investigate the Fourier transform of the 
radiofrequency (RF) data to estimate acoustic properties of 
tissue such as the effective scatterer diameter [5]–[10], 
scattering strength and acoustic concentration [3, 11], mean 
scatterer spacing [12]–[15], effective attenuation aeff (average 
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attenuation from intervening tissues) [16, 17], and backscatter 
coefficient (BSC) sb [18]. Assessment of renal microstructure 
[4, 19, 20], fat infiltration [21, 24], structural evaluation of the 
uterine cervix during pregnancy [25, 26], and cancer therapy 
monitoring and assessment [27, 28] are some of its applications. 
In addition to testing new clinical applications, a growing 
attention has focused on improving QUS techniques. Recent 
work has demonstrated that the accuracy and precision of 
backscatter QUS parameters can be improved by regularizing 
the depth variation of estimates of tissue properties, based on 
the hypothesis of piece-wise variability with depth [29]–[33] or 
by regularizing lateral and axial variation [34]. Moreover, our 
group recently showed that using dynamic programming (DP) 
substantially improves estimates of aeff and sb [35] compared 
to a least square (LSQ) method previously devised to estimate 
the same parameters [36]. LSQ and regularized algorithms 
based on DP were previously employed to estimate attenuation 
and BSCs. LSQ minimizes a cost function based on the 
squared-difference between the measured backscatter spectrum 
and a theoretical model to extract the values of the depth-
averaged attenuation coefficient and the magnitude and 
frequency dependence of the BSC. DP follows a similar 
strategy, but includes a regularization term in the cost function 
that assumes piece-wise continuity in the values of the depth-
averaged attenuation and the magnitude and frequency 
dependence of the BSC. To reduce the computational burden, 
the dynamic programing strategy stores minimized values of 
the cost function to avoid recomputing them at each spatial 
position. 
However, the DP method faces three major issues:  
1) It is a discrete optimization method. This means that the 
solution is based on minimizing the cost function from a set of 
discrete values defined by a search range and step size for the 
acoustic properties. A small step size improves the results by 
reducing the quantization error at the expense of increasing the 
computational complexity. This issue is exacerbated when 
processing a large field of view (i.e., abdominal or obstetric 
imaging). This limits the real-time applicability of DP. In 
addition, the step size must be defined by the user, adding to the 
complexity of its implementation. 
2) A search range must be defined by the user. If ranges of 
values for the parameters of interest are not available for the 
tissue under study, a very large search range should be used, 
which further increases the computational complexity.  
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3) A fundamental problem of DP is that the graph formed by 
regularization costs must be a tree, and cannot have a cycle. As 
such, DP cannot consider the entire data. In other words, DP is 
applied on a 2D (axial vs lateral) array of power spectra but 
considers regularization only over depth for each lateral 
location independent from the others.  
To cope with these issues, here we propose two versions of a 
novel technique which we call fast AnaLytical Global 
rEgularized BackscatteR quAntitative ultrasound, or 
ALGEBRA. ALGEBRA solves the regularized cost function 
analytically and does not need search ranges and step sizes. The 
first version of ALGEBRA, 1D-ALGEBRA, minimizes exactly 
the same cost function as DP [35], where 1D refers to 
regularization in one (axial) direction. The second version is 
called 2D-ALGEBRA and performs a global regularization in 
both axial and lateral directions. 1D- and 2D-ALGEBRA are 
inspired by state of the art regularization strategies used in 
ultrasound elastography [36, 37]. 1D- and 2D- ALGEBRA are 
about 600 times and 300 times faster than DP [35], respectively, 
and also provides more accurate and precise QUS estimates. 
 
In Sections II and III, we describe the mathematical background 
of ALGEBRA. In section IV, the performance of 1D- and 2D-
ALGEBRA is compared with that of DP and LSQ on four 
tissue-mimicking phantoms. We demonstrate that both versions 
of ALGEBRA provide more accurate and precise estimates of 
the effective attenuation and the BSC than DP, and in a 
significantly shorter time. 

II. ALGORITHMS 

The application of ALGEBRA on QUS is based on the 
reference phantom method (RPM) [39] to provide system- and 
operator- independent QUS parameter estimation. According to 
the RPM, the ratio of the power spectrum 𝑆!(𝑓, 𝑧) of a sample 
s (phantom or tissue with unknown attenuation coefficient 𝛼! 
and BSC 𝜎",!) to the power spectrum 𝑆$(𝑓, 𝑧) of a reference 
phantom r (with known 𝛼$ and 𝜎",$, and similar sound speed to 
the sample, and where subscript r indicates “reference”) [40] 
can be modeled as:  
 

										
𝑆!(𝑓; 𝑧, 𝑥)
𝑆$(𝑓; 𝑧)

=
𝜎",!(𝑓; 𝑧, 𝑥)𝐴!(𝑓; 𝑧, 𝑥)

𝜎",$(𝑓)𝐴$(𝑓, 𝑧)
																									(1) 

where f, z, and 𝑥 are frequency, depth, and lateral position, 
respectively. The factor A accounts for total attenuation of the 
acoustic pulse from the transducer to depth 𝑧: 
 

		𝐴(𝑓; 𝑧, 𝑥) = 𝑒𝑥𝑝 1−44 𝛼(𝑓; 𝑧%, 𝑥)𝑑𝑧′
&

'
7.																	(2) 

 
where 𝛼 is in Np.cm-1. Assuming that the attenuation coefficient 
varies linearly with frequency [35], i.e., 𝛼(𝑓; 𝑧, 𝑥) = 𝛼'(𝑧, 𝑥)𝑓, 
where 𝛼' in Np.cm-1 MHz-1 is the specific attenuation as 
defined by the International Electrotechnical Commission [41], 
then Eq. (2) can be expressed as: 
 

	𝐴(𝑓; 𝑧, 𝑥) = 𝑒𝑥𝑝 1−4𝑓4 𝛼'(𝑧%, 𝑥)𝑑𝑧′
&

'
7																						 

 
																							𝐴(𝑓; 𝑧, 𝑥) = 𝑒𝑥𝑝:−4𝑓𝛼())(𝑧, 𝑥)𝑧;																			(3)        
 
where 𝛼()) is the effective attenuation equal to the average 
specific attenuation along the propagation depth 𝑧.	 
 

	𝛼())(𝑧, 𝑥) = 4 𝛼'(𝑧%, 𝑥)𝑑𝑧′
&

'
																							(4) 

In the case of the homogeneous reference, the effective 
attenuation 𝛼()) [cm-1 MHz-1] is equal to its local attenuation 
coefficient 𝛼',$. Note that 𝛼, 𝛼', and 𝛼()) can also be expressed 
in dB cm-1 or dB cm-1 MHz-1 by multiplying their numerical 
value by 8.686. 
We employ a power law model to parameterize the frequency 
dependence of 𝜎"(𝑓; 𝑧, 𝑥) as follows: 
 

																							𝜎"(𝑓; 𝑧, 𝑥) = 𝛽(𝑧, 𝑥)𝑓*(&,,)																								(5) 
where 𝛽 and 𝜈 indicate the value of the BSC at 1MHz and its 
frequency dependence, respectively. After substituting Eqs. (2)-
(4) into (1) and taking the natural logarithm from both sides 
similar to [35], we have: 
 

𝑋(𝑓; 𝑧, 𝑥) = ln C			
𝑆!(𝑓; 𝑧, 𝑥)
𝑆$(𝑓; 𝑧, 𝑥)

D																													 

𝑋(𝑓; 𝑧, 𝑥) = −4𝑎(𝑧, 𝑥)𝑓𝑧 + 𝑏(𝑧, 𝑥) + 𝑛(𝑧, 𝑥) ln 𝑓						(6) 
where  

𝑎(𝑧, 𝑥) = 𝛼())(𝑧, 𝑥) − 𝛼',$                          	 
𝑏(𝑧, 𝑥) = ln𝛽!(𝑧, 𝑥) − ln𝛽$ ,	 
𝑛(𝑧, 𝑥) = 𝜈!(𝑧, 𝑥) − 𝜈$ .																													(7) 

 
Both 1D- and 2D-ALGEBRA make use of a cost function 
containing a data term, D, and a regularization term, R: 

																																	𝐶 = 𝐷 + 𝑅.																																										(8) 

A. 1D-ALGEBRA 
The ALGEBRA methods are applied to an 𝑁. ×𝑁/ ×𝑁0 
power spectra matrix, where 𝑁. is the number of rows 
corresponding to different axial positions, 𝑁/ is the number of 
columns corresponding to different lateral positions, and 𝑁0 is 
the number of frequency bins within a useable frequency range. 
In 1D-ALGEBRA, one column (or lateral position) of power 
spectra is considered and regularization is performed in the 
axial direction to estimate 𝑎, 𝑏, and 𝑛 at different axial positions 
along that column. In 2D-ALGEBRA, the entire array of power 
spectra is used in a 2D regularization strategy.  
 
Removing the 𝑥 dependence in (5), data and regularization 
terms  𝐷 and 𝑅 in 1D-ALGEBRA are defined as follows: 

𝐷 =QQ(𝑋(𝑓1 , 𝑧2) − 𝑏2 − 𝑛2ln(𝑓1) + 4𝑎2𝑓1𝑧2)3				(9)
4!

256

4"

156

 

𝑅 =QQ𝑤7(𝑝2 − 𝑝286)3
4!

253

9

756

																						(10) 

where i and l refer axial location and frequency indices, 
respectively. Index 𝑝	refers to the three parameters (𝑝=1 for 𝑎, 
2 for	𝑏, and 3 for	𝑛) and 𝑤7 is the regularization weight for 
parameter 	𝑝. 
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As Fig 1(a) and Eq. (10) show, regularization is employed in 
the axial direction. To obtain the optimum parameters, we 
calculate the partial derivatives of the cost function with respect 
to 𝑎2, 𝑏2, an 𝑛2 and set them to zero. After some manipulations, 
we arrive at a set of simple linear equation as follows: 
 
																																																	UY=T.																																											(11) 
 
𝐘 is a column vector with 3𝑁. components containing the 
parameters to be estimated at different depths, i.e., 𝑎2, 𝑏2, an 𝑛2: 
 

 	𝐘 = Y𝑎𝟏, ⋯ , 𝑎4! , 𝑏𝟏, ⋯ , 𝑏4! , 𝑛𝟏, ⋯ , 𝑛4![
⊺,												(12) 

 
where superscript ⊺ indicates transposition. 𝐔 is a 3𝑁. × 3𝑁. 
matrix which can be separated into two 3𝑁. × 3𝑁. matrices 
named 𝐂 and 𝐖:  
 
																																															𝐔 = 𝐂 +𝐖.																																			(13)  
Matrix	𝐂 is formed of 6 component matrices: 
 

																																							𝐂 = `
𝐂𝟏 𝐂𝟐 𝐂𝟑
𝐂𝟐 𝐂𝟒 𝐂𝟓
𝐂𝟑 𝐂𝟓 𝐂𝟔

a																													(14) 

 
and 𝐂𝐣, 𝑗 = 1, . . ,6, are 𝑁. ×𝑁. diagonal matrixes: 
 

𝐂𝟏 = :16∑ 𝑓13
4"
156 ;𝐙𝟐,									𝐂𝟐 = :−𝟒∑ 𝑓1

4"
156 ;𝐙𝟏, 

 
𝐂𝟑 = :−𝟒∑ 𝑓1	ln 𝑓1

	4"
156 ;𝐙𝟏,					𝐂𝟒 	= 	 (𝑁0)𝐈	,  

	
𝐂𝟓 = :∑ ln 𝑓1

4"
156 ;𝐈, 				𝐂𝟔 = :∑ (ln 𝑓1)3

4"
156 ;𝐈,        (15) 

 
where 𝐈 is the 𝑁. ×𝑁. identity matrix and 
 

𝐙𝟏 = g

𝑧6 0 … 0
0 𝑧3 … 0
⋮
0

⋮
0

⋱ ⋮
⋯ 𝑧4!

k,  𝐙𝟐 =

⎣
⎢
⎢
⎡𝑧6
3 0 … 0
0 𝑧33 … 0
⋮
0

⋮
0

⋱ ⋮
⋯ 𝑧4!

3 ⎦
⎥
⎥
⎤
 .    (16) 

 
Matrix 𝐖 is defined as: 

																																𝐖 = `
𝐖𝐚 𝐎 𝐎
𝐎 𝐖𝐛 𝐎
𝐎 𝐎 𝐖𝐧

a																													(17) 

 
where 𝐖𝐚,𝐖𝐛, and	𝐖𝐧 are 𝑁. ×𝑁. matrices given by: 
 

			𝐖𝐩 = 𝑤7𝐁																																					(18) 
where 

𝐁 =

⎣
⎢
⎢
⎢
⎡
1 −1 0 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −1 1⎦

⎥
⎥
⎥
⎤
 

 
and 𝐎 is a 𝑁. ×𝑁.	matrix with zero elements.	 
 

𝐓 in (11) is a 3𝑁. vector containing three vertically-
concatenated 𝑁. × 1 column vectors, 𝐓𝟏, 𝐓𝟐, and 𝐓𝟑 as 
follows: 
 

𝐓 = `
𝐓𝟏
	𝐓𝟐
𝐓𝟑

a,                             (19)  

 
whose ith components are given by: 
 

𝑇12 = −4𝑧2 ∑ 𝑋(𝑓1 , 𝑧2)𝑓1
4"
156 , 
 

𝑇22 = ∑ 𝑋(𝑓1 , 𝑧2)
4"
156 , 

 
𝑇32 = ∑ 𝑋(𝑓1 , 𝑧2) ln 𝑓1

4"
156 .                   (20) 

 
The values of 𝑎2, 𝑏2, an 𝑛2 at different depths are obtained by 
solving (11) for	𝐘. 
 

B. 2D-ALGEBRA 
In 2D-ALGEBRA, we have similar data and regularization 
terms: 
𝐷 = ∑ ∑ ∑ :𝑋:𝑓1 , 𝑧2 , 𝑥G; − 𝑏2,G − 𝑛2,Gln(𝑓1) +

4#
G56

4!
256

4"
156

4𝑎2,G𝑓1𝑧2;
3																																																																																		(21) 

 
𝑅 = ∑ ∑ ∑ 𝑤!,#%𝑝$,% − 𝑝$&',%(

( +𝑤!,)%𝑝$,% −
*!
%+(

*"
$+(

,
!+'

𝑝$,%&'(
(																																																																																															(22) 

where j refers to the lateral location index. The indices of the 
regularization weights indicate (𝑧) axial and (𝑥) lateral 
directions. Thus, as Eq. (22) shows, the regularization is 
employed in both axial (𝑧) and lateral (𝑥) directions (Fig 1(b)). 
 
For the 2D regularization the components of 𝐂 have  different 
sizes (𝑁-𝑁. ×𝑁-𝑁.) as each component should also include 
lateral coefficient parameters. Therefore, the size of 𝐂 will be 
3𝑁-𝑁. × 3𝑁-𝑁.. The matrix components of 𝐖𝟐 are defined as 
follows: 
 

																																𝐖𝟐 = {
𝐖𝒂𝟐 𝐎 𝐎
𝐎 𝐖𝐛𝟐 𝐎
𝐎 𝐎 𝐖𝐧𝟐

|																					(23) 

where 
																																																	𝐖𝐩𝟐 = 𝐕+ 𝛒	.																													(24) 
 
𝐕 is a 𝑁-𝑁. ×𝑁-𝑁. matrix defined as 
 

																												𝐕 = g

𝐕𝟏 0 ⋯ 0
0 𝐕𝟐 0 0
0 0 ⋱ 0
0 ⋯ 0 𝐕𝐍𝐂

k																													(25) 

where 𝐕𝟏, 𝐕𝟐, … , 𝐕𝑵𝑪 are 𝑁- ×𝑁-	matrices, and 𝐕𝟐 = 𝐕𝟑 =
⋯ = 𝑽𝐍𝐂8𝟏:  
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                       (a)                                                  (b) 
Fig. 1. Regularization strategies for (a) 1D- and (b) 2D-
ALGEBRA.  

			𝐕𝟏 = g

𝑤7,& +𝑤7,, 0 ⋯ 0
0
⋮

2𝑤7,& +𝑤7,,
⋮

⋱
⋱

⋮
⋮

0 0 ⋯ 𝑤7,& +𝑤7,,

k				(26) 

𝐕𝟐 	

= 		 g

𝑤7,& + 2𝑤7,, 0 ⋯ 0
0
⋮

2𝑤7,& + 2𝑤7,,
⋮

⋱
⋱

⋮
⋮

0 0 ⋯ 𝑤7,& + 2𝑤7,,

k						(27) 

𝐕𝐍𝐂

= g

𝑤7,& +𝑤7,, 0 ⋯ 0
0
⋮

2𝑤7,& +𝑤7,,
⋮

⋱
⋱

⋮
⋮

0 0 ⋯ 𝑤7,& +𝑤7,,

k														(28) 

 
In (26) to (28), except for the first and last elements, all the 
elements of the main diagonal are repeated 𝑁. −2 times. The 
size of matrix ρ in Eq. (29) is 𝑁.	𝑁/ 	× 	𝑁.	𝑁/  same as V. The 
formulation of ρ is as follows: 
 

																						𝛒	 = g

𝐦𝟏 𝐦𝟐 𝐎 𝐎
𝐦𝟐 𝐦𝟏 ⋱ 𝐎
𝐎 ⋱ ⋱ 𝐦𝟐
𝐎 𝐎 𝐦𝟐 𝐦𝟏

k																					(29) 

 
where m1 and m2 are 𝑁. ×𝑁. matrices as follows. Matrix m1 
is repeated 𝑁/ times and matrix m2 is repeated 𝑁/ − 1 times in 
each direction to form 𝝆.  
 

									𝒎𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡
0 −𝑤7,& 0 ⋯ 0

−𝑤7,& 0 ⋱ ⋯ …
0 ⋱ ⋱ ⋱ 0
⋮ … −𝑤7,& ⋱ −𝑤7,&
0 0 0 −𝑤7,& 0 ⎦

⎥
⎥
⎥
⎥
⎤

					(30). 

 

																													𝒎𝟐 = g

−𝑤7,, 0 … 0
0 ⋱ 0 ⋮
⋮ 0 ⋱ 0
0 … 0 −𝑤7,,

k															(31). 

Again, index 𝑝	refers to the three parameters (𝑝=1 for 𝑎, 2 for	𝑏, 
and 3 for	𝑛). It is important to note that Eq. (24) has the same 
functional form for the three parameters 𝑎, 𝑏	and 𝑛 because it 
is expressed in terms of index 𝑝. However, the actual values of 
the matrix 𝐖𝐩𝟐 are different for  different values of 𝑝 due to the 
different values of the weights 𝑤7'and 𝑤7(. Here, we also have 
a similar T vector but with 3𝑁𝑅𝑁𝐶 elements. After solving a 
similar equation to (11), we will solve for all 3𝑁𝑅𝑁𝐶 
parameters. 

III. METHODS 

A. Tissue-mimicking phantoms 
1D- and 2D-ALGEBRA were tested to data acquired from five 
tissue mimicking phantoms with the following properties:  

• Phantom A: Uniform  
o 𝛼',! = 0.654	𝑑𝐵	𝑐𝑚86	𝑀𝐻𝑧86 
o 𝛽! = 1.02 × 108K	𝑐𝑚86𝑠𝑟86𝑀𝐻𝑧8*  
o 𝜈! = 4.16 
o 𝜎",!(6.6MHz)=2.62× 1089	𝑐𝑚86𝑠𝑟86 

• Phantom B: Reference for Phantom A  
o 𝛼',! = 0.670	𝑑𝐵	𝑐𝑚86	𝑀𝐻𝑧86 
o 𝛽! = 8.79 × 108K	𝑐𝑚86𝑠𝑟86𝑀𝐻𝑧8*  
o 𝜈! = 3.14 
o 𝜎",!(6.6MHz)=3.29× 1089	𝑐𝑚86𝑠𝑟86 

• Phantom C: Attenuation step  
Top and bottom layers: 

o 𝛼',! = 0.510	𝑑𝐵	𝑐𝑚86	𝑀𝐻𝑧86 
o 𝛽! = 1.60 × 108K	𝑐𝑚86𝑠𝑟86𝑀𝐻𝑧8*  
o 𝜈! = 3.52 
o 𝜎",!(8.9MHz)=3.52× 1089	𝑐𝑚86𝑠𝑟86 

Middle layer: 
o 𝛼',! = 0.779	𝑑𝐵	𝑐𝑚86	𝑀𝐻𝑧86 
o 𝛽! = 3.22 × 108K	𝑐𝑚86𝑠𝑟86𝑀𝐻𝑧8*  
o 𝜈! = 3.13 
o 𝜎",!(8.9MHz)=3.02× 1089	𝑐𝑚86𝑠𝑟86 

• Phantom D: Backscatter step 
Top and bottom layers 

o 𝛼',! = 0.554	𝑑𝐵	𝑐𝑚86	𝑀𝐻𝑧86 
o 𝛽! = 4.82 × 108L	𝑐𝑚86𝑠𝑟86𝑀𝐻𝑧8*  
o 𝜈! = 3.80 
o 𝜎",!(8.9MHz)=3.52× 1089	𝑐𝑚86𝑠𝑟86 

Middle layer 
o 𝛼',! = 0.58	𝑑𝐵 ∙ 𝑐𝑚86	𝑀𝐻𝑧86 
o 𝛽! = 3.94 × 108K	𝑐𝑚86𝑠𝑟86𝑀𝐻𝑧8*  
o 𝜈! = 3.38 
o 𝜎",!(8.9MHz)=6.37× 1089	𝑐𝑚86𝑠𝑟86 

• Phantom E: Inclusion phantom (Gammex 410SCG 
phantom (Gammex-SunNuclear, Middleton, WI)):  
Background 

o 𝛼',! = 0.5	𝑑𝐵	𝑐𝑚86	𝑀𝐻𝑧86	
o 𝛽! = 2.997 × 108K		𝑐𝑚86𝑠𝑟86𝑀𝐻𝑧8*	
o 𝜈! = 3.34	
o 𝜎",!(8MHz)=3.11× 1089	𝑐𝑚86𝑠𝑟86 

Inclusions 
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o Three	8mm-diameter	cylindrical	
inclusions	with	+12,	+6	and	-6dB	
scattering	with	respect	to	the	background	
	

More details about the composition of phantoms A-D are 
available in [34, 40]. 
Phantom A comprises a water-based agarose-propylene 
combined with filtered milk. Phantom B is composed of water-
based agarose added by graphite powder. Both phantoms 
contain glass-beads with 5-43μm diameter as the source of 
scattering. The ground truth values were obtained with single 
element transducers to measure attenuation and BSC utilizing 
narrowband substitution and broadband pulse-echo techniques, 
respectively [41, 42].  
Phantoms C (uniform BSC) and D (uniform attenuation) are 
water-based phantoms with three layer phantoms composed of 
mixtures of gelatin and unfiltered milk. The concentration of 
scatterers in phantom C is 4g/L in all parts, while in phantom D 
the concentration of scatterers in the second layer is 8g/L which 
is 4 times more than the other two layers. On the other hand, 
molten gelatin and unfiltered milk have been mixed with the 
ratio of 2.1:1 in all layers in phantom D. This ratio in the middle 
layer of phantom C is 1:1 to increase its attenuation with respect 
to the first and third layer, where the ratio is 2.85:1 [40].  

B. Data Acquisition 
1) Homogenous Phantom 
Two phantoms (A and B above) were scanned with a 9L4 linear 
array transducer on a Siemens Acuson S3000 (Issaquah, WA) 
scanner operated at a 6.6MHz nominal center frequency to 
obtain 10 uncorrelated frames of RF data for each phantom 
[35]. Phantom B was used as reference for the characterization 
of phantom A. RF data was accessed through the Axius Direct 
Research Interface [41]. 
2) Layered Phantoms  
10 uncorrelated frames of RF data were acquired from 
Phantoms C and D, using their top layers as references. Both 
phantoms were scanned using a linear array transducer on a 
Siemens Acuson S2000 scanner operated at an 8.9MHz center 
frequency [36].  
3) Different Echogenicity Phantom (Gammex phantom) 
Phantom E was scanned using a Verasonics Vantage 128 
system (Verasonics, Kirkland, WA) with a L11-5v transducer 
operated at 8MHz to obtain 10 uncorrelated frames of RF data. 
Uncorrelated frames from a homogeneous region of the same 
phantom were used as reference. 

C. Power Spectra Estimation 
We applied LSQ, DP, 1D- and 2D-ALGEBRA to 10 
independent frames of RF echo data from each phantom. 
Parameter estimation regions of size 4mm×4mm were swept 
axially and laterally over each frame with an overlap of 85%, 
computing at each position the echo signal power spectrum 
using a multi-taper approach [44]. This procedure resulted in 
power spectra matrices with 40 columns and 74 rows in the 
uniform phantom, 86 columns and 108 rows in the layered 
phantoms, and 55 columns and 103 rows in Phantom E.  
We have solved LSQ analytically. To apply DP, the following 
search ranges were used: 
 

𝛼!_N2O − 𝛼$ − 0.5
8.686 < 𝑎 <

𝛼!_NP, − 𝛼$ + 0.5
8.686  

log0.1
𝛽!_N2O
𝛽$

< 𝑏 < log10
𝛽!_NP,
𝛽$

 

𝜈!_N2O − 𝜈$ − 2 < 𝑛 < 𝜈!_NP, − 𝜈$ + 2 

where min and max indices refer to the minimum and maximum 
ground truth values in the layered phantoms. These values were 
the same in the uniform phantom. 
Tables I(A) and (B) show the regularization weights in each 
method. The weights of 1D-ALGEBRA are same as DP. The 
first and second elements of 2D-ALGEBRA weights 
correspond to the axial and lateral regularizations, respectively. 
In each method, first, the algorithm was executed using weights 
in order of 10. Then, considering the results, the weights were 
increased or decreased. The weights were increased when we 
saw a high variance in results, in other words when results were 
close to LSQ. On the other hand, weights were decreased when 
results were approaching a flat line. The values included in 
Table I(A) and (B) are the final ones. 

TABLE I (A) 
REGULARIZATION WEIGHTS IN FOUR PHANTOMS 

 
  DP  

Phantom 𝑤1 𝑤2 𝑤3 

A 1012 108 108 

C 7×106 101 6×104 

D 7×108 3×101 104 

E 8×102 8×102 8×102 

 
 

TABLE I (B) 
REGULARIZATION WEIGHTS IN FOUR PHANTOMS 

 
  2D-ALGEBRA  

Phantom 𝑤1 𝑤2 𝑤3 

A [1010              1010] [108            108] [108              108] 

C [7×106       109] [101            101] [6×104    6×104] 

D [7×108  7×108] [3×101   3×101] [104              104] 

E [4×102  4×102] [4×102  4×102] [4×102    4×102] 

 
It can be easily shown that a symmetric diagonal dominant 
matrix, where its diagonal entries are positive, is a positive 
definite matrix. In addition, according to a theorem in linear 
algebra [45], the unique solution for equation Ax = b exists if 
and only if A (here, matrix U) is full rank. Therefore, as U is 
full rank, the unique solution exists. 1D- and 2D-ALGEBRA 
were implemented in Matlab R2018a (MathWorks, USA). 
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To obtain Y in Eq. (11), we use the mldivide function "\" in 
Matlab. This operator is time efficient and provides two 
algorithms for full and sparse inputs [46]. 

IV. RESULTS 

A. Phantom A 
Figure 2(a) shows the mean and the standard deviation (error 
bars) of the attenuation coefficient (𝛼!) vs. depth obtained from 
the 400 estimates  using DP (green), 1D-ALGEBRA (blue), and 
2D-ALGEBRA (red). The black dash line refers to the expected 
values. While 1D-ALGEBRA resulted in larger standard 
deviation compared to DP, the standard deviation obtained with 
2D-ALGEBRA was close to that of DP.  
In Fig 2(b), the BSC is reconstructed from the average values 
of the 400 estimates of 𝛽! and 𝜈!. It can be observed that the 
bias of estimation using 1D- and 2D-ALGEBRA is lower than 
LSQ and DP. 
Fig 3 shows the B-mode image of the phantom and parametric 
images of the reconstructed BSC evaluated at 6.6MHz in dB 
scale with respect to 108Q	 cm-1 sr-1 using LSQ, DP, 1D- and 
2D-ALGEBRA. In all phantoms, the range of color bar 
corresponds to the range of values obtained with DP. Visual 
comparison confirms that 1D- and 2D-ALGEBRA have the 
most similarity to ground truth compared to DP and LSQ. 
Quantitative analysis of bias and variance of BSC at center 
frequency reveals that using 1D-ALGEBRA leads to 98% 

decrease in variance and 39% in bias respect to DP. In addition, 
using 2D-ALGEBRA results in 100% and 35% reduction in 
variance and bias, respectively.  
To estimate the QUS parameters in an image with 𝑁. =74 and 
𝑁- =40 using 1D- and 2D- ALGEBRA required 4 and 8 sec, 
respectively. In comparison, a Matlab implementation of DP 
required 2400 second for the same problem.  

B. Phantoms C and D 
Fig 4(a) and 4(b-d) show the average and standard deviation 
(error bars) over 860 estimates of 𝛼()) for Phantom C 
(attenuation step) and the results of the reconstruction of the 
BSC from the average values of 𝛽! and 𝜈! in each layer using 
Eq. (5), respectively. In these figures, the black dashed line is 
the expected value of the parameter. In the case of the effective 
attenuation (Fig 4(a)), there is a smooth transition from the top 
to the middle layer to do the averaging effect of Eq. (4).  Also, 
the standard deviation of DP is lower than 1D- ALGEBRA. On 
the other hand, Fig 5 reveals that the step size in DP had not 
been small enough as we see each layer is not distinguished 
well. Here, to show how different layers are distinguished, we 
created a parametric image of the local attenuation (𝛼1RSP1). The 
following equation shows how 𝛼1RSP1 is obtained from 𝛼()): 

																		𝛼1RSP1(𝑖) =
𝛼())(𝑖)𝑧2 − 𝛼())(𝑖 − 1)𝑧286

𝑧2 − 𝑧286
											(30)	 

 

 
                                                              (a)                                                                            (b) 
Fig. 2. Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) in phantom A (uniform). The error 
bars show the standard deviation over the 400 samples for attenuation coefficient (a) and reconstructed BSC averaged over 400 
samples (b). In (a), blue, red, cyan and black are superimposed. The black dashed line is the ground truth. 
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                                  (a) B-mode                                          (b) Ground truth                                              (c) LSQ 

 
                                               (d)  DP                                        (e)  1D-ALGEBRA                                 (f) 2D-ALGEBRA 

 
Fig. 3. Parametric images of the BSC at the center frequency in phantom A (uniform). Results are shown on a dB scale with respect 
to 108Q	 cm-1 sr-1. The colorbar shows BSC at the center frequency.  
 
Fig 5(f) demonstrates that using 2D-ALGEBRA, 𝛼1RSP1 
estimation agrees well with ground truth. The analysis of bias 
and variance of local attenuation shows that 1D- and 2D-
ALGEBRA yield 81% reduction in bias. The variance of DP 
results is small, but it should not be misinterpreted as we see the 
parametric image of DP is far from the ground truth. This is 
evidence of the drawbacks of DP referred to in the introduction 
section.  
To estimate the QUS parameters in an image with 𝑁. =108 and 
𝑁- =86 required 6 and 12 sec, respectively. In comparison, a 
Matlab implementation of DP required 3600 sec for the same 
problem. 
Fig 6(a) shows the error bars over 860 estimate of 𝛼()) for 
phantom D (backscatter step) and Fig(6-d) shows results of the 

reconstruction of the BSC from the average values of 𝛽! and 𝜈! 
in each layer.  
Fig. 7. shows the B-mode (a) and ground truth (b) as well as 
parametric images of BSC obtained at the center frequency 
using LSQ (c), DP (d), 1D (e)- and 2D-ALGEBRA (f) in 
phantom D (backscatter step). Visual assessment confirms that 
1D- and 2D-ALGEBRA outperform other methods. 
Quantitative assessments of BSC at central frequency disclose 
88% reduction in variance as well as 56% in bias using 1D-
ALGEBRA compared to DP. In addition, using 2D-ALGEBRA 
leads to 99% and 55% decrease in variance and bias compared 
to DP, respectively.  
To estimate the QUS parameters in an image with 𝑁. =108 and 
𝑁- =86 with 1D- and 2D-ALGEBRA took 9 and 18 sec, 
respectively. In comparison, a Matlab implementation of DP 
took 5400 second for the same problem. 
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.   
                                                (a)                                                                                               (b) 

  
                                                (c)                                                                                                  (d) 
Fig. 4. Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) in phantom C (attenuation step). The 
error bars show the standard deviation over the 860 samples for attenuation coefficient (a) and reconstructed BSC averaged over 
400 samples in layer 1 (b), layer 2 (c), layer 3 (d). The black dashed line is the ground truth values. The red curve is superimposed 
by the blue curve.

C. Phantom E 
Fig 8 shows the parametric image of BSC at the center 
frequency. Quantitative assessment of BSC at the center 
frequency reveals that using 1D-ALGEBRA leads to 35% 
reduction in bias in addition to 29% reduction in variance 
laterally compared to DP. Furthermore, using 2D-ALGEBRA 
yields 31% and 25% reduction in variance laterally and axially, 
respectively as well as 26% reduction in bias with respect to 
DP. 
 
 
 
 

 
 
To estimate the QUS parameters in an image with 𝑁. =103 and 
𝑁- =55, required 2 and 4 sec, respectively. In comparison, a 
Matlab implementation of DP took 1200 second for the same 
problem. 
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                                                (a) B-mode                             (b) Ground truth                        (c) LSQ 

 
                                                  (d) DP                                (e) 1D-ALGEBRA                  (f) 2D-ALGEBRA 

             
Fig. 5. Parametric images of the local attenuation (computed from Eq. (30)) of phantom C (attenuation step). The color bar shows 
the value of local attenuation.  
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                                                            (a)                                                                                (b) 

  
                                                             (c)                                                                              (d) 
 
Fig. 6. Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) in phantom D (backscatter step). The 
error bars show the standard deviation over the 860 samples for the effective attenuation (a) and reconstructed BSC averaged over 
400 samples in layer 1 (b), layer 2 (c), layer 3 (d). The black dashed line is the expected value. The red curve is superimposed by 
the blue curve.
 
Figs 9(a) and (b) show two parametric images of phantom E 
using 1D-Algebra with two different sets of weights: [10, 10, 
10] and [104, 104, 104], respectively. Fig 9(b) is smoother than 
Fig 9(a) (less variance), at the expense of blurring the edges of 
the inclusions (larger bias). 
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                                           (a) B-mode                                   (b) Ground truth                                    (c) LSQ 
 

 
                                                   (d) DP                             (e) 1D-ALGEBRA                      (f) 2D-ALGEBRA 
 

 
Fig. 7. Parametric image of the backscatter coefficient at the center frequency of phantom D (backscatter step). Results are shown 
on a dB scale with respect to 10-4 cm-1 sr-1.  
 
 

V. DISCUSSION 
This work presented two analytical, regularized estimators of 
the attenuation and backscatter properties of tissue-mimicking 
materials. After various tests in tissue-mimicking phantoms, 
these algorithms, named 1D- and 2D-ALGEBRA, 
outperformed previously proposed regularized strategies (DP) 
in the following aspects: 

1. Because of 1D- and 2D-ALGEBRA are analytical 
solutions to the minimization of a cost function, it does 
not require the definition of search ranges for the 
expected values of the parameters.  

2. Contrary to DP, the attenuation and backscatter 
parameters can be estimated on a continuous scale. 

3. Both 1D- and 2D-ALGEBRA are up to 600 times faster 
than DP. 

Considering these advantages, ALGEBRA has great potential 
to be applied clinically. 
Theoretically, we expect exactly the same result using DP and 
1D-ALGEBRA as the cost functions are the same. However, 
achieving this requires step sizes to be small enough so that 
discontinuous ranges provided by DP be approximated by 

continuous range provided by 1D-ALGEBRA. On the other 
hand, as we are using a large number of samples, it is practically 
impossible to consider small step size for each parameter. For 
that reason, DP results are not as good as 1D-ALGEBRA. 
Nevertheless, 1D-ALGEBRA yields estimates with similar 
levels of bias and standard deviation than DP, but in a much 
shorter time.  
Moreover, comparing 1D-ALGEBRA and 2D-ALGEBRA 
reveals that 2D-ALGEBRA outperforms 1D-ALGEBRA in 
terms of bias and variance as it exploits regularization in both 
axial and lateral directions. Comparing the backscatter 
coefficient estimation results shown in Fig 2, 4, 6(b-d) can 
result in the misleading conclusion that 1D-ALGEBRA and 
2D-ALGEBRA provide almost the same results. This happens 
as we are plotting semi-log of 𝛽!

*). The improved performance 
of 2D-ALGEBRA compared to 1D-ALGEBRA is clear when 
2D color-coded images are compared as shown in Figs 3, 5, and 
7. In phantom A (uniform) shown in Fig 3, 2D-ALGEBRA 
leads to almost same estimations in all parts of the phantom. For 
the layered phantoms (Figs 5, 7) it can be seen that 2D-
ALGEBRA can well distinguish three layers of phantoms C and 
D, especially in phantom D with the backscatter step. 
 
This work has various limitations: 
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1. As shown in Eq. (10), the regularization term is based on 
an L2 norm. In a previous study based on dynamic 
programing, Vajihi et al. [47] showed that the use of L1 
norm in the regularization terms provides better precision 
in parameter estimates than the use of L2 norm. However, 
the L1 norm is not analytically differentiable so it could not 
be implemented in ALGEBRA. Despite this limitation, we 
showed here that 1D- and 2D-ALGEBRA significantly 
improve the accuracy and precision of the parameter 
estimates over DP, probably due to the removal of the 
restriction of a discrete grid of parameter values over which 
the cost function is minimized.  

2. The current implementation of ALGEBRA required 
adjusting the regularization weights to each phantom 
experiment. In general, larger weights are used in 
phantoms in which there is not a large change in the 
acoustic properties, such as phantom A, thus allowing a 
significant variance reduction. However, increasing the 
weights to reduce the variance can result in biased 
estimates. In other words, there is a trade-off between 
variance and bias in the selection of the weights. We are 
currently working on an automated method to select the 
weights based on identifying what acoustic properties are 
the most influential in the selection process. The weights 
that result from applying this method to representative data 
from various organ could be saved as part of the imaging 
presets in the scanner to provide ALGEBRA-based 
parametric images in real time.  This is topic of our current 
research.  

3. The attenuation coefficient was assumed to be linearly 
dependent on frequency. A more realistic model would be 
a power-law fit [48]. However, the effect of the power law 
dependence could be minimized by the averaging effect of 

the effective attenuation. If a significant deviation from a 
linear dependence on frequency is expected, ALGEBRA 
could be applied over contiguous, narrow frequency bands 
over which the variation of the effective attenuation with 
frequency could be approximated as linear, as implemented 
by Nasief et al. [49] Then, the values obtained from the 
various frequency bands could be combined.  

4. The backscatter coefficient was parametrized in terms of a 
power law. We chose the power law to model the 
backscatter coefficient vs. frequency because (1) is the 
same model assumed in the LSQ and DP methods and (2) 
because the size of the scatterers in the phantoms were such 
that the product of the wave number and the scatterer radius 
is smaller than 0.5, which can lead to biased estimates of 
the scatterer size [50]. However, Eq. (5) could be modified 
to consider different scattering models, such as form 
factors for different scatterer geometries to estimate the 
effective scatterer size [6], and structure factor models to 
quantify scatterer volume fraction in cases of highly 
packed scatterers [51]. We have recently reported results 
on the modified DP to estimate effective scatterer size and 
acoustic concentration in tissue mimicking phantoms [52]. 
We are currently working on modifying ALGEBRA to 
estimate these parameters. 
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                                                 (a) B-mode                                  (b) GT                                      (c) LSQ 
 

 
                                                     (d) DP                            (e) 1D-ALGEBRA                 (f) 2D-ALGEBRA 

 
Fig. 8. Parametric image of the backscatter coefficient at the center frequency of phantom E (inclusion phantom). Results are 
shown on a dB scale with respect to 10-4 cm-1 sr-1. 
 
 

 
                                                                               (a)                                           (b) 

Fig. 9. Influence of regularization weights in the parametric images of phantom E with 1D-ALGEBRA. Weights in (a): [10 10 
10], weights in (b): [104 104 104]. 
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VI. CONCLUSION 
In this study, two versions of an analytically-solved, regularized 
QUS estimation technique, 1D-ALGEBRA and 2D-
ALGEBRA, were proposed to estimate the effective attenuation 
as well as the magnitude and frequency dependence of the 
backscatter coefficient. 1D-ALGEBRA is the fast version of 
our previous DP method which applies an axially regularized 
cost function.  On the other hand, 2D-ALGEBRA uses a 
globally (axially and laterally) regularized cost function. 
Regarding the quantitative analysis of bias and variance, we can 
conclude that applying 2D-ALGEBRA substantially improves 
the results compared to DP as it benefits the regularization in 
both axial and lateral directions.  
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