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ABSTRACT

Quasi-static elastography methods often calculate the dis-
placement field from ultrasound data and calculate strain by
performing spatial derivative of the displacement field. In this
paper, a strain imaging technique called SHORTCUT is in-
troduced in which the strain field is estimated directly from
the RF data using a novel dynamic programming (DP) tech-
nique. The DP cost function is formulated in terms of strain
and incorporates similarity of echo amplitudes and strain con-
tinuity into a cost function. This is in contrast to previous
work wherein the cost function was formulated in terms of
displacement and enforced displacement continuity. This ap-
proach has several advantages. First, a much smaller search
range for the displacement derivative will cover a much larger
search range of the displacement field. This will substantially
reduce the computational complexity of DP. Second, the new
framework substantially reduces the bias introduced by the
displacement continuity constraint. And third, the strain is
directly estimated from DP and no spatial derivation step is
needed. Our results on phantom and in vivo patient data show
that SHORTCUT substantially outperforms previous work.

Index Terms— Ultrasound, Elastography, Dynamic Pro-
gramming, Strain Estimation.

1. INTRODUCTION

Ultrasound elastography aims to reveal the mechanical prop-
erties of tissue and has numerous applications in both diagno-
sis and surgical planning [1–3]. The displacement estimation
techniques in quasi-static elastography can be predominantly
categorized into window-based [1, 4–7] and optimization-
based [1, 7–13] techniques. Window-based methods are
sensitive to signal decorrelation and need to compromise be-
tween better spatial resolution with small windows and higher
accuracy with larger windows. The optimization-based meth-
ods exploit the prior information of motion continuity in
tissues and therefore are robust to signal decorrelation. They
substantially reduce both jitter error and practically eliminate
peak hopping. In [9] a dynamic programming analytical min-

imization (DPAM) technique is proposed which estimates
2D displacement field. The cost function of DPAM has been
improved in GLUE [14] to the sum of the echo amplitude
similarities and motion discontinuity penalizations in the
frame of RF data. In both DPAM and GLUE, the integer
displacements from DP [8] are needed as the initial solution
of the regularized cost function.

The aforementioned technique all calculate the displace-
ment field first and estimate strain in the next step by per-
forming the spatial gradient of the displacement field, a pro-
cess which amplifies the noise and can blur the strain image.
We proposed an edge-preserving method that somehow alle-
viated this problem [15]. The other disadvantage is that they
do not exploit the information of the RF data in the strain
estimation step, and only rely on displacement data. How-
ever, Recent work has tried to address this problem by di-
rectly estimating strain from ultrasound data [5,16–22]. Most
of these techniques calculate the strain image by applying lo-
cal or global adaptive temporal stretching of the signals in the
time or frequency domain. In [5] and [16], a two-step method
is proposed to use optical flow with local warping to calcu-
late displacements and strain, simultaneously. To compensate
for the signal decorrelation due to the non-axial motion of
tissue scatterers, a direct average strain estimation (DASE)
method using the weighted nearest neighbor method is pro-
posed in [17]. Despite improving the results, current direct
strain estimation techniques suffer from at least one of the
following shortcomings: (1) Producing strain images with an
acceptable SNR and CNR requires global 2D search, which is
computationally expensive. Therefore, existing global search
methods are not suitable for real-time applications. (2) Reg-
ularized algorithms entail enforcing displacement continuity,
and as such, favor constant displacement estimates. This leads
to substantial underestimation of the displacement derivative,
i.e. strain.

To overcome these challenges, we introduce a 2-D strain
imaging technique by minimizing a cost function that incor-
porates the similarity of echo amplitudes and strain conti-
nuity. The cost function directly optimizes for the strain.
The proposed technique, which is referred to as SHORT-
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Fig. 1. A depiction of the Viterbi algorithm.

CUT (meSHing Of gRadienT in DP for direCt Ultrasound
elasTography), directly produces the strain images from RF
data using a novel dynamic programming (DP) approach. Un-
like the standard DP algorithms which discretize the decision
space (displacement field) and search in the space of piece-
wise constant functions, the proposed DP method discretizes
the gradient of the decision space (strain field) and searches
the space of continuous piecewise-linear functions.

The advantages of SHORTCUT compared to previous
work are four-fold. First, it eliminates the displacement
differentiation block and performs direct strain estimation.
Second, it performs global optimization for the strain. Third,
regularization is enforced on displacement derivative, and as
such, bias in the strain estimates are substantially reduced.
And fourth, the gradient of decision space is considerably
smaller than the decision space, leading to a large reduction
of the computational complexity of DP.

This paper is organized as follows. In the next section, we
provide details of the proposed SHORTCUT algorithm. The
effectiveness of the proposed method is then investigated in
Section 3 through phantom experiments and in vivo patient
data and compared with a previous work. Conclusions and
avenues for future work are provided in Section 4.

2. METHODS

2.1. BACKGROUND

DP is a global optimization method based on Bellman’s prin-
ciple of optimality [23] for solving a complex problem. It
breaks the problem down into a collection of simpler sub-
problems wherein each subproblem corresponds to a discrete
decision, solving each of those subproblems just once, storing
their solutions (memoization) and reusing them next time the
same subproblem occurs. The decisions should follow each
other sequentially and the cost corresponding to each deci-
sion should only depend on the previous and not the future
decisions (causality). This approach saves computation time
at the expense of a modest expenditure in storage space.

Assume two consecutive ultrasound Radio-Frequency
(RF) echo field I1(i, j) : i ∈ N≤m× j ∈ N≤n→ R and I2(i, j) :

i ∈ N≤m × j ∈ N≤n → R are collected before and after
the tissue undergoes some deformation. Define Am×n ∈ R
and Lm×n ∈ R as the axial and lateral displacement matri-
ces (the out-of-plane motion is not considered here) where
each of their elements ai, j and li, j satisfy ‖ai, j‖ ≤ amax and
‖li, j‖ ≤ lmax, and amax and lmax are the maximum possible
axial and lateral displacement estimates, respectively. As-
sume the set A = {ak : ‖ak‖ < amax}N

k=1 partitions the axial
displacement’s range into N + 1 intervals. Similarly, assume
the set L = {lk : ‖lk‖ < lmax}M

k=1 partitions the lateral dis-
placement’s range into M + 1 intervals. In [8], DP is used to
find the displacement matrices A and L in integer precision.
Assuming that ultrasound images consist of n A-lines, we
define data and smoothness terms as follows:

D(i, j,ai, j, li, j) =
∣∣I1(i, j)− I2((i+ai, j, j+ li, j)

∣∣ , (1)

R(ai, j, li, j,ai−1, j, li−1, j) = (ai, j−ai−1, j)
2 +(li, j− li−1, j)

2.
(2)

The cost function at the ith sample of the jth A-line is

C j
i (ai, j, li, j) = D(i, j,ai, j, li, j)+min

δa,δl{
Ci−1, j(δa,δl)+Ci, j−1(δa,δl)

2
+αR(ai, j, li, j,δa,δl)

}
.

(3)

As shown in Figure 1, costs will be calculated at each state
Sk ∈A ×L going forward in two adjacent data points. The
cost in each state (circles) is determined by Eq. (3), which
is the minimum cost of reaching that state from any previ-
ous step state. To save computing time, these values will be
stored in a 3D array C j

i (k) and the Viterbi algorithm can ef-
ficiently trace back the global optimum solution from i = n
to i = 1 (See the thick line path in Figure 1). Inspired by
this approach in the following subsection we introduce a fast,
robust and accurate direct 2-D strain imaging technique us-
ing a novel DP configuration. Unlike the standard DP al-
gorithm which discretizes the decision space (displacement
field) and searches in the space of piecewise constant dis-
placement functions, The proposed DP discretizes the gradi-
ent of the decision space (strain field) and searches the space
of continuous piecewise linear displacement functions. In
other words, the main idea of SHORTCUT is to change the
vertical axis in Figure 1 from displacement to strain. This is
outlined in the next section.

2.2. SHORTCUT

Assume the possible axial strain values si, j satisfy ‖si, j‖ ≤
smax. Let also the set S = {sk : ‖sk‖ < smax}N

k=1 partition
the axial strain’s range into N+1 intervals. The displacement
field is needed to calculate the similarity measure (Eq. 1) in
the cost function and the main idea of the new DP method is
to discretize the gradient domain (strain) instead of displace-
ment. Therefore, the proposed method needs to integrate the



strain field to generate the displacement field. Hence, the dis-
placement of the first (top) sample of RF data is needed to
perform the integral. Fortunately, the first sample in axial line
always has zero displacement since the probe is connected to
the tissue (i.e. there is no relative vertical motion between the
probe and tissue surface). However, no such information is
available in the lateral direction since the probe can slip on
the tissue. Therefore, the possible states in Eq. 1 are combi-
nation of discretized axial strain and lateral displacement i.e.
S ×L . Lateral displacement always has much lower SNR
and CNR than axial since the displacement in the lateral di-
rection is very small and also because the resolution of the
ultrasound is low in the lateral direction. Therefore it is only
computed to improve the axial displacement which means
that subsample estimation in the lateral direction is not nec-
essary. Therefore, the new DP framework does not search for
lateral strain and searches for lateral displacement similar to
previous work [9,14]. Similar to Eq. 3, the new DP cost func-
tion consists of data and regularization terms. They are both
formulated as the sum of absolute differences (SAD), which
is computationally efficient and is robust to outliers [24]. We
set the data and regularization terms as follows:

Di j(si, j, li, j) =
|I1(i j)− I2(i+D(si j), j+ li j)|

Ienv
1 (i j)

, (4)

Ri j(si j, li j,δs,δl) = αa|si j−δs|+αl |li j−δl |, (5)

where D(si j) = ai j = ∑
i
k=0 sk j is the axial displacement and

s0 j = 0 and Ienv
1 is the envelope of I1 used for normalization

of the error. We then define the DP cost function as follows:

C j
i (si j, li j) = Di j +min

δs,δl

[
Ci−1

j (δs,δl)+Ri j

]
. (6)

Note that minimization of the above cost function will pro-
vide the axial strain and lateral displacement fields on the jth

axial line. These values are guaranteed to provide the global
minimum of the cost function [23].

3. EXPERIMENTAL RESULTS

For experimental evaluation, RF data is acquired from an
Antares Siemens system (Issaquah, WA) at the center fre-
quency of 6.67MHz with a VF10-5 linear array at a sampling
rate of 40MHz at Johns Hopkins Hospital, which is available
online [9]. This data was collected with approved ethics.
In this section, phantom results and patient trials of both
SHORTCUT and GLUE methods are presented and com-
pared. The strain fields are calculated using the proposed
method and are compared with the GLUE method [14]. The
unitless metric signal-to-noise ratio (SNR) and contrast to
noise ratio (CNR) are also calculated to better assess the
performance of the methods according to [25]

CNR =
C
N

=

√
2(s̄b− s̄t)2

σ2
b +σ2

t
, SNR =

s̄
σ
, (7)

Table 1. Comparison of the result of two methods. The SNR
is calculated for the background window.

Exp. Method SNR CNR

GLUE 42.23 8.66
Phantom SHORTCUT 95.89 68.57

Improvement % 127% 692%

GLUE 8.97 3.27
Patient 1 SHORTCUT 12.44 10.2

Improvement % 39% 212%

GLUE 6.29 4.44
Patient 2 SHORTCUT 27.22 28.42

Improvement % 333% 540%

where σ2
t and σ2

b are the spatial strain variance of the target
and background, s̄t and s̄b are the spatial strain average of the
target and background, and s̄ and σ are the spatial average and
variance of a window in the strain image, respectively. The
results are smoothed in the lateral direction using a simple
1D Gaussian filter.

SHORTCUT is currently implemented as MATLAB
MEX functions in C++. Given different initial settings, it
takes a few milliseconds to a few seconds to run on a standard
PC with a 4th generation Intel Core i7 at 3.4 GHz. Our imple-
mentation can be optimized to yield substantial improvements
in the running time.

3.1. Phantom Results

An elastography phantom (CIRS elastography phantom, Nor-
folk, VA) is compressed 0.2 inches axially using a linear
stage, resulting in an average strain of 2%. The Young’s
elasticity modulus of the background and the lesion under
compression are respectively 33kPa and 56kPa. The ax-
ial strain is calculated using both SHORTCUT and GLUE
methods. Visual comparison of the results of Fig 2 (a) and
(b) shows that SHORTCUT produces an image with sharper
edges as well as lower noise levels. To provide quantitative
values, SNR is calculated in the four background windows
B1 to B4 (Fig 2 (a)-(b)), and the average results are reported
in Table 1. Similarly, CNR is calculated between T1 and B1
to B4, and the average results are shown in Table 1. The
results of this table show that SNR and CNR are improved by
respectively 127% and 692% with SHORTCUT.

3.2. In-vivo Results

The in-vivo data is acquired from two patients undergoing
open surgical radio-frequency thermal ablation for primary
or secondary liver cancers. This data is collected at Johns
Hopkins Hospital. Figures 2(c)-(f) compare the axial strain
images of the SHORTCUT with that of GLUE for the two pa-
tients. In both of the axial strain images of different patients,
SHORTCUT outperforms GLUE in terms of CNR and SNR
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Fig. 2. The estimated axial strain in phantom and in-vivo data. First and second rows correspond to GLUE and SHORTCUT,
respectively. Target windows are marked in T and Background windows are marked in B.

especially in the upper and lower quarter of the image which
is over-smoothed in GLUE. This over-smoothing is due to the
regularization term in GLUE, which biases the estimates to
constant displacement. SNR is calculated in the four back-
ground windows B1 to B4. CNR is calculated between all
combinations of target windows T1 to T4 and background
windows B1 to B4, resulting in 16 estimates. The average
SNR and CNR results are shown in Table 1, which shows very
large improvements in both SNR and CNR. Although GLUE
has failed on some local regions, the proposed SHORTCUT
method finds the global optimal solution and therefore sub-
stantially outperforms GLUE.

4. CONCLUSIONS

In this paper a 2-D strain imaging technique called SHORT-
CUT is introduced which directly produces the strain images
from RF data using a novel dynamic programming (DP) tech-
nique. Unlike the standard DP algorithm which discretizes the
decision space (displacement field) and searches in the space
of piecewise constant functions, the proposed DP discretizes
the gradient of the decision space (strain field) and searches
in the space of continuous piecewise linear functions. The
phantom and patient results show a substantial improvement
in both SNR and CNR of the estimated strain image which is
mainly the consequence of three major paradigm shifts com-
pared to the available strain estimation techniques in the liter-
ature: (1) Eliminating the displacement differentiation block.
(2) Performing global optimization rather than local optimiza-
tion. (3) Regularizing strain values to reduce strain underes-

timation bias. Furthermore, searching in the strain space re-
duces the search range, and allows us to perform DP for the
entire image in real-time. Finally, DP is a discrete optimiza-
tion technique that guarantees to find global minimum, and as
such, is substantially more robust than continuous optimiza-
tion techniques used in GLUE and DPAM.
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