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Abstract. This paper presents a robust framework for freehand ultra-
sound elastography to cope with uncertainties of freehand palpation us-
ing the information from an external tracker. In order to improve the
quality of the elasticity images, the proposed method selects a few im-
age pairs such that in each pair the lateral and out-of-plane motions are
minimized. It controls the strain rate by choosing the axial motion to be
close to a given optimum value. The tracking data also enables fusing
multiple strain images that are taken roughly from the same location.
This method can be adopted for various trackers and strain estimation
algorithms. In this work, we show the results for two tracking systems
of electromagnetic (EM) and optical tracker. Using phantom and ex-vivo
animal experiments, we show that the proposed techniques significantly
improve the elasticity images and reduce the dependency to the hand
motion of user.
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1 Introduction

Ultrasound elastography is an emerging medical imaging modality which in-
volves imaging the mechanical properties of tissue and has numerous clinical
applications. Among many variations of ultrasound elastography [1], our work
focuses on real-time static elastography, a well-known technique that applies
quasi-static compression of tissue and simultaneously images it with ultrasound.
Within many techniques proposed for static elastography, we focus on freehand
palpation elasticity imaging which involves deforming the tissue by simply press-
ing the ultrasound probe against it. Freehand ultrasound elastography has shown
great potential in clinical applications especially for diagnosis and screening of
breast lesions [2]. The application of elastography is not limited to breast, and
other applications such as diagnosis of prostate cancer, monitoring ablation and
deep vein thrombosis have also been studied.

Despite the reports on success of elastography, yet it has not become a part of
any routine clinical application. The main reason is that elastography is highly
qualitative and user-dependent. The best result is achieved when the user com-
presses and decompresses the tissue uniformly in the axial direction with the
proper hand motion. It is difficult to control the compression rate as it is gov-
erned by the hand motion and the frame rate of RF data. Also, small lateral
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or out-of-plane motions can compromise the quality of images. However, it is
difficult to induce pure axial motion with freehand compression. Sophisticated
algorithms can only partially address the problem by compensating for in-plane
motions and applying smoothness constraints. The images are also hard to in-
terpret, and artifacts –caused by failure of the strain estimation algorithm or
poor hand motion– may be mistaken for lesions inside the soft tissue. Devel-
oping an elastography technique that is not affected by poor hand motion and
other sources of signal decorrelation will pave the way for wide-spread clinical
use of elastography.

To improve the reliability, quality metrics such as persistence in strain images
have been developed [3, 4]. This quality indicator is calculated for each image
and provided to the user as feedback. Persistence is also used to merge multiple
elasticity images together [3]. To measure the persistence, strain is computed
for two pairs of echo frames, and the resulting images are correlated. Although
these techniques offers a major advantage, there remains several limitations.
First, the strain has to be estimated before the calculation of the quality metric.
With typical ultrasound settings, the frame rate can reach more than 30 Hz. For
subsequent frames, an efficient implementation of this image-based metric might
cope with this rate. Nonetheless, the task will be extremely difficult to try all
the combinations in a series of frames. Moreover, the quality metric will not be
able to provide feedback to the user whether he/she should adjust the palpation
in certain direction. Also, there would be minimal control over the strain rate.

The ultrasound probe is often tracked in navigation/guidance systems to
provide spatial information, to form freehand 3D ultrasound, or to facilitate
multi-modality registration. In this work, we exploit the tracking data to en-
hance the quality of the elasticity images. We use the tracking data to select
multiple image pairs that contain the optimum deformation for the elastogra-
phy algorithm. The optimum value for lateral and out-of-plane motions is zero,
and the optimum axial motion is determined by the specific elastography algo-
rithm used, which is Normalized Cross-Correlation (NCC) in this work. Next,
we fuse the strain images obtained from the multiple image pairs together based
on the location of each strain image to improve image quality. We assume that
the ultrasound data is 2D. Nonetheless similar techniques proposed here could
be extended to 3D ultrasound.

2 Methodology

Consider a sequence of RF data collected during the palpation of tissue using a
tracked transducer. We have previously shown that it is possible to synchronize
the RF frames with the tracking information relying only on the same data
collected during palpation [5]. From synchronization, the tracking information
is interpolated at the incident time of each frame. The input to our algorithm is
then a series of RF frames along with their corresponding transformation.

First, we need to define a distance function between two frames of RF data.
For this purpose, we use a model of image decorrelation in presence of out-of-
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plane and lateral motion. RF signal is often modeled as the collective response
of scatterers randomly distributed within the resolution cell of the ultrasound
[6, 7]. Each scatterer is assumed to have an amplitude governed by the shape
of the resolution cell and a phase which is distributed from 0 to π uniformly at
random. Considering a Gaussian shape for the resolution cell Prager et. al [8]
calculated the correlation as a function of out-of-plane motion to be exp(− δ2

2σ2 ).
δ and σ denote the displacement and the width of the resolution cell respectively.
Although this function is only valid for fully developed speckle, it provides a con-
venient estimate of correlation. It should be noted that in [8], the displacement is
estimated from correlation, whereas here, we intend to define an energy function
based on displacement. Extending this formula to both out-of-plane and lateral
displacements, we define our energy function, E(x, z), as follows:

E(Dx, Dz) = exp(−Kx ·D2
x −Kz ·D2

z), (1)

where Dx and Dz represent the displacement in out-of-plane and lateral direc-
tions (Dy is reserved for axial motion). Kx and Kz determine the sensitivity to a
certain direction. In order to be able to use this function, we need a component-
wise metric representing the distance of two frames given their homogeneous
transformations. The first step is to compute the relative transformation be-
tween them. Suppose a = [ax ay az]T is the axis-angle representation of the
relative rotation, and t = [tx ty tz]T is the relative translation. Assuming a small
rotation, the relative displacement of a point, P = [xy 0]T , will be d = a×P + t.
We then define the distance vector of two frames, D = [DxDyDz]T , as the RMS
of the components of d for all the points in the region of interest (ROI):

Dx = sqrt{ 1
(y2 − y1)

∫ y2

y1

(−az · y + tx)2dy },

Dy = sqrt{ 1
(x2 − x1)

∫ x2

x1

(az · x+ ty)2dx },

Dz = sqrt{ 1
(y2 − y1)(x2 − x1)

∫ x2

x1

∫ y2

y1

(ax · y − ay · x+ tz)2dydx }, (2)

where sqrt{.} returns the root. Here, ROI is assumed to be rectangular and
determined by x1, x2, y1, and y2. The vector D provides a measure of distance
for each direction separately. We use this vector in Equation (1) which gives us
an estimate of “pseudo-correlation” over the ROI.

The data goes through four stages of processing to create a single high-
quality strain image. In the first step, few images are selected from the data
series that are approximately collected from one cross-section of tissue with
minimal lateral and out-of-plane motion. To this end, the energy function of
each frame is computed with respect to all other frames in the sequence. Then,
the total energy is found for each frame as the sum of the energies of the M
closest frames, where closeness implies higher energy, and M is the maximum
number of frames to be selected. Then, the frame with the highest total energy
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(the center frame) is identified, and the M closest frames to the center frame
including itself are selected. Additionally, the frames that have E of less than
0.5 with respect to the center frame are disqualified. This is applied to ensure
lower number of frames are chosen when M frames from one cross-section are
not available.

In the next stage, the program evaluates all possible combination of frame
pairs for elastography. For M frames, there will be

(
M
2

)
= M(M − 1)/2 pair

combinations which will be compared using a slightly modified version of E.
Since the pairs are directly compared, it suffices to minimize the exponent of
Equation (1) in order to maximize E. We also add a term for axial motion that
penalizes compressions that are higher than an optimum compression value, topt.
Hence, a “cost function”, C1, is defined as follows:

C1(D) = Kx·D2
x+Ky ·D̃y

2
+Kz ·D2

z , D̃y =
{
Dy − topt, |Dy − topt| > 0
0, |Dy − topt| ≤ 0 (3)

topt implies the optimal strain. Optimal strain can be theoretically defined
as described in [9]. It also depends on the robustness of the elasticity estima-
tion algorithm. topt might be within the range of the resolution of the tracker.
Therefore, at this stage we do not assign a penalty for the compressions less than
topt. If the compression is close to zero, the contrast of the reconstructed image
degrades. The program filters the pairs with low compression in the next stage
using image content. Similar to the first part, a maximum number of frames
with lowest cost are selected provided that the cost is lower than a threshold.
The threshold is not strict to ensure acceptable pairs are not filtered.

The final pairs are selected by recovering the global lateral motion and com-
pression by matching the two RF frames in each pair. The tracking information
is used to initialize the search. For instance, the search range for compression is
set to be from zero to the tracker reading in axial direction padded in both sides
with the maximum error of the tracker. Given two frame I1 and I2, the amount
of lateral motion a, and compression, b, is found by solving cross-correlation:

arg max
a,b

 ∑
x,y∈G

I1(x, y) · I2(x+ a, by) + I1(x− a,−by) · I2(x, y)

 . (4)

The RF data is normalized with standard variation and assumed to have zero
mean. We employ two tricks which extensively increases the speed of search.
First, we do not match the entire image to solve for these parameters. Instead,
only pixels on a grid, G, are used as described by Equation (4). The two terms of
Equation (4) ensures that the search remains reciprocal, which means switching
the images only affects the sign of a and b. Second, a is recovered by matching
only the top part of the two images while b is fixed to one. The reason is that
the displacement due to compression is minimal in that region.

Having the global motions, the cost function is modified to penalize very low
compressions:
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C2(D̂) = Kx · D̂x

2
+Ky ·

|D̂y − topt|3

D̂y + c
+Kz ·D2

z , (5)

where D̂x and D̂y are the global motions from Equation (4) converted to mm. c
is a small number that limits the cost of zero compression. Finally, the pairs with
the lowest cost are selected until a maximum number of frame pairs is reached
or the minimum cost grows higher than the average cost.

The last step involves computing the strain for all the selected frame pairs.
We have implemented normalized cross-correlation (NCC) [10] to recover the
displacements and least squares estimation to calculate the strain. Before calcu-
lating strain, the global lateral motion and compression from the previous step
are compensated in one image using cubic interpolation. This is known to reduce
the error of strain estimation [11]. The final strain image, Sfinal is the weighted
average of all the strains:

Sfinal =
∑m
i=1 wi · Si∑m
i=1 wi

, wi =
{ ρi

1−ρi
, ρi > 0.7

0, otherwise
(6)

where ρi is the correlation coefficient for the ith pair after applying the dis-
placements, and m is the number of pairs. Fusing the strains in this fashion is
acceptable since the algorithm only allows for compressions that are close to a
predetermined amount optimal for strain estimation.

3 Experiments and Results

We acquired ultrasound data using a SONOLINE AntaresTM ultrasound system
(Siemens Medical Solutions USA, Inc.) with a high-frequency ultrasound trans-
ducer (VF10-5) at center frequency of 6-8 MHz. We accessed RF through the
Axius DirectTM Ultrasound Research Interface provided by Siemens. Our custom
data acquisition program was connected to this interface to send the command
for capturing RF data. At the same time, the program collected tracking infor-
mation from either a “Polaris” optical tracker (Northern Digital Inc., Waterloo,
Canada) with passive markers or the “medSAFE” EM tracker (Ascension Tech.
Corp.).

RF data and tracking information was captured from a breast phantom con-
taining a harder lesion (CIRS elastography phantom, Norfolk, VA) and ex-vivo
pig liver. Alginate was injected to the liver to mark a part of liver, and then,
that area was ablated. The users were asked to palpate the tissue over the hard
lesion in the breast phantom and the ablated lesion in the pig liver while data
was being collected. Between 100 to 138 RF frames were acquired with the rate
of about 30 frames per second.

The first set of data was captured by an experienced user from the breast
phantom. Figure 1(a) shows the translation components of hand motion with
respect to the first frame. The axial motion is dominant and there is only a
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(b) Strain image (TrUE)

Fig. 1. (a) shows the translation of probe w.r.t. the first image. Proper hand motion
is applied as the axial compression is dominant. (b) is the output of our proposed
algorithm.

gradual drift in the lateral and elevational directions. Figure 1(b) depicts the
high-quality strain image resulting from the TrUE algorithm.

Applying a compression similar to the one shown in Figure 1(a) is a difficult
task for novice or even intermediate users. This is especially the case where axial
compression does not translate into a simple up and down motion. Ultrasound gel
creates a slippery surface that makes the palpation prone to out-of-plane motion.
Two case are shown in Figure 2, where one is tracked with the EM tracker and
the other one with the optical tracker. In Figure 2(a) the hand motion contains a
large amount of out-of-plane motion, whereas, in Figure 2(b), the user has moved
the probe laterally. In both cases, the TrUE algorithm generates reliable results.
Figures 2 (c) and (d) show the contrast-to-noise ratio (CNR) and signal-to-noise
ratio (SNR) of the strain image. The CNR and SNR value are computed from:

CNR =

√
2(s̄b − s̄t)2
σ2
b + σ2

t

, SNR =
s̄

σ
, (7)

where s̄ and σ denote the mean and standard deviation of intensities. The t or
b subscripts show that the computation is only for the target or the background
region, respectively. The SNR and CNR for computing the strain from consecu-
tive frames (the dashed curve) is compared to the SNR and CNR of the strain
image from the proposed method (solid line). Using consecutive frames is the
standard method of elastography in ultrasound machines. Almost in all cases
the TrUE algorithm outperforms the consecutive frames by a large margin.

Although the SNR and CNR provide quantitative measures to compare the
strain images, they do not directly reflect the visual quality of strain. In Figure
3, we show results of elastography using our frame selection technique as well as
four other strain images calculated from consecutive frames. The Figure shows
the effects of improper compression in consecutive frames in the strain image.
At the same time our algorithm provides a single reliable strain.
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(a) Poor palpation with EM tacking
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(b) Poor palpation with optical tracking
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Fig. 2. Two cases of improper motions are shown where the hand motion suffers from
large lateral and elevational components evident in relative translations. The results
of case 1 with EM tacker is shown on the left column, and the results of case 2 with
optical tracker is shown on the right column.

4 Discussion

We presented a method of ultrasound elastography which is robust to the quality
of the hand motion of the user. Using the information from an external tracker,
it automatically selects multiple frame pairs with a specific compression and
minimal undesired motions. Our approach does not take into account the tissue
motion from other sources such as breathing or patient motion. However, these
types of motions are not normally problematic since they occur with a slower
pace compared to hand motion.

Our experiments shows that even when the transducer has severe lateral or
out-of-plane motions, the algorithm still manages to produce good results. The
multi-stage frame selection and careful image fusion makes the TrUE method
less sensitive to tacker accuracy and robust to strain estimation failures.

We are planning to use the proposed method in a breast cancer study. For this
purpose, we will be implementing our MATLAB code in C. The stain estimation
which is still the bottleneck of our approach will be executed in GPU allowing
for the use of sophisticated algorithms.
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(a) B-mode (b) TrUE (c) 1&2

(d) 2&3 (e) 3&4 (f) 4&5

Fig. 3. Comparison of the strain from TrUE vs. consecutive frames for ex-vivo pig liver.
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