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Abstract. Extending mutual information (MI), which has been widely
used as a similarity measure for rigid registration of multi-modal images,
to deformable registration is an active field of research. We propose a
self-similarity weighted graph-based implementation of a-mutual infor-
mation (a-MI) for nonrigid image registration. The new Self Similarity
a-MI (SeSaMI) metric takes local structures into account and is robust
against signal non-stationarity and intensity distortions. We have used
SeSaMI as the similarity measure in a regularized cost function with
B-spline deformation field. Since the gradient of SeSaMI can be de-
rived analytically, the cost function can be efficiently optimized using
stochastic gradient descent. We show that SeSaMI produces a robust
and smooth cost function and outperforms the state of the art statistical
based similarity metrics in simulation and using data from image-guided
neurosurgery.

1 Introduction

The joint intensity histogram of two images, of different or same modalities, is
spread (i.e. the joint entropy is high) when they are not aligned, and is compact
(i.e. the joint entropy is low) when the two images are aligned. Therefore, mu-
tual information (MI) and its variants such as normalized MI (NMI) have been
proposed and widely used for rigid registration of multi-modal images [TI2I)3].
MI, being based on global intensity histograms, does not take into account local
structures. Therefore, nonrigid registration, which has considerably more degrees
of freedom and can distort local structures, is challenging with MI. It is also not
robust against spatially varying bias fields. Exploiting the spatial information by
conditioning MI calculation to location [45J6l/7] has been shown to significantly
improve nonrigid registration results.

In this work, we propose to incorporate image self-similarity into MI formu-
lation. Self-similarity estimates the similarity of a point in one of the images
to other points in the same image, and depends on local structures which are
ignored by MI. Self-similarity was first proposed for object detection and image
retrieval [§], and has since been used in image denoising [9] and registration [10].

Since self-similarity is calculated for pairs of points, it is natural to per-
ceive it in a graph representation where image pixels are vertices and self-
similarity is the weight of the edges. a-mutual information (@-MI) similarity
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Fig.1. Corresponding intra-operative US (hot colormap) and pre-operative MR
(grayscale colormap) images of neurosurgery. A reconstructed US volume is sliced in
the axial (top), coronal (bottom left) and sagittal (bottom right) directions. While
local structures correspond, intensities are not related globally.

metric [TIT2IT3ITAITH] is also graph based and has been recently shown to out-
perform MI in nonrigid registration applications. Therefore, we choose to in-
corporate self-similarity into this powerful registration framework. We apply
the method to register pre-operative magnetic resonance (MR) images to intra-
operative ultrasound (US) images in the context of image-guided neurosurgery
(IGNS). Other works that nonlinearly register US to other modalities have used
local correlation ratio [I6] and MI of phase information [I7]. Figure [I shows
an example of the registered US and MR images. The US images suffer from
strong bias field due to signal attenuation, caused by scattering (from smaller
than US wavelength inhomogeneities), specular reflection (from tissue bound-
aries) and absorption (as heat). In addition, US beam width varies significantly
with depth, and therefore the same tissue looks different at different depths.
Therefore, it is critical to exploit local structures.

In most image guided applications, one of the images is pre-operative. We
therefore perform the self-similarity estimation only on this image offline, result-
ing in no increase in the on-line computational complexity. The pre-operative
image is also usually of higher quality, making it a more attractive choice. We
show that SeSaMI outperforms NMI and multi-feature a-MI in terms of produc-
ing a smooth dissimilarity function and registration accurary.

2 Rotationally Invariant Self-similarity Estimation

We first estimate a rotationally invariant 2D histogram descriptor for all pixels;
such a sample pixel is marked with an asterisk in Figure[2l (we show 2D images for
clarity; the arguments are trivially extended to 3D images). A circular patch with
radius r is centered on the pixel, shown in the left image. In this work, we set r to
5in 2D and to 2 in 3D. The axes of the histogram are d, the normalized Euclidian
distance of the pixel from the center point, and 7, the pixel’s normalized intensity.
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Fig. 2. Construction of the spin image and the resulting self-similarity distance. Left
shows the image of a coin, with a circular patch of radius » = 5 pixels around a center
point. Middle shows the zoomed patch, and the estimated 2D histogram descriptor (i.e.
the spin image). Right shows the self-similarity distance to the center point (marked
with an asterisk and pointed to by an arrow).

d =0 and d = 1 in the histogram respectively correspond to the center pixel and
to the pixels on the circle with radius » = 5 pixels. The intensity of pixels inside
the patch is normalized to [0 1]. Each pixel inside the patch contributes to the
2D histogram: the histogram is constructed using a Gaussian Parzen window,
i.e. a pixel with distance d to the center and normalized intensity ¢ contributes
to all bins according to a Gaussian centered at (d, ). The 2D histogram usually
has a higher mass at higher d values because the number of pixels at distance
d is proportional to d. Since d is the distance to the center (i.e. orientation is
ignored), the 2D histogram descriptor is rotation invariant. It is also invariant to
affine changes in the intensity because of the intensity normalization step. The
histogram descriptor is similar to the spin image used in [I§].

After calculating the 2D histogram descriptor for all points, we calculate the
similarity between two points by the Earth Mover’s Distance (EMD) [19]. The
EMD metric avoids quantization and binning problems associated with his-
tograms, and has been shown [I9] to outperform other histogram comparison
techniques. Figure Rlright shows the EMD distance to the point indicated by the
asterisk. Note that small values of the EMD distance (darker pixels) represent
more similar regions. It can be seen that the similarity metric is fully rotation
invariant. We compute the self-similarity distance between each point and a win-
dow, of size The computational complexity of calculating the EMD distance is
not an issue since it can be calculated offline on only the pre-operative image.

The histogram descriptor provides stability against small deformations of
structures (due to the binning process), while subdividing the distance to the
center (d in the histogram) encodes the spatial information. As a result, it is
more robust than filter banks and differential invariants, which are also local
descriptors [18]. Its disadvantage is its computational complexity. To reduce the
running time and memory requirements, the EMD distance of a pixel with re-
spect to pixels within its neighborhood is calculated. The EMD computation for
a volume of size 100> pixels currently takes about 5 hours on a 3GHz processor.

The EMD distance provides a powerful metric to condition or weight MI
estimation. Conditioning MI on EMD distance is motivated by the works which
condition MI on spatial location and perform it on regions instead of the entire
image [456/7]. Our preliminary results on conditioning MI on EMD have been
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promising, especially since spatial distance can also be incorporated into the
EMD distance. This is intuitive since self-similar pixels in one image are more
likely to follow the same statistical relationship in the joint histogram. In this
work, however, we focus on the second avenue, weighting MI with self-similarity.
In the next section, we first briefly explain a-MI and then formulate SeSaMI.

3 Self-Similarity a-MI (SeSaMI)
Registration of a moving image I,,, to a fixed image I¢ can be formulated as
. . w
fo=argminC, C = S(Iy(w), In(Tu(x)) + ;HV,J,H? (1)

where S is a dissimilarity metric, wg is a regularization penalty weight, V is
the gradient operator and T, is the transformation modeled by p. We choose a
free-form transformation parameterized by the location of cubic B-spline nodes.
p is therefore a vector of the location of all the nodes in all directions.

MI similarity metric is usually calculated on the intensities only, and there-
fore the joint histogram is 2D. a-MI is usually calculated on multiple fea-
tures like intensities and their gradients. Adopting the notation of [I1], let
z(x;) = [z71(2;) - - - z¢(2;)] be a g-dimensional vector containing all the features
at point @;. Similar to [I1], we choose image intensity and gradients at two dif-
ferent scales as features, resulting in 5 total features. Let 2/ (z;) and 2™ (T, (x;))
be respectively the features of the fixed and moving image at x; and T, (x;), and
2/™(z;, T, (z;)) be their concatenation [2f(x;), 2™(T,(x;))]. Minimal span-
ning tree (MST) [12] and k-nearest neighbor (kNN) [ITJI5] are among differ-
ent methods for estimating a-MI from multi-feature samples. With N samples,
the complexities of constructing MST and kNN graphs are O(N?log N) and
O(N log N) respectively [I4]. Therefore, we choose kNN.

Let 2/ (zip), 2™(Tu(zip)) and 2/™(x;,, T\ (zip)) be respectively the nearest
neighbors of z/(z;), 2™(T,(x;)) and z/™(z;, T, (x;)). Note that these three
nearest neighbors in general do not correspond to the same point. To prevent
notation clutter, we show the dependencies on location «; or T, (x;) only through
L= NZm =2, and dip = ||z - 237

(d{pm and d;} will be used later when we differentiate the cost function) and set

1 after this point whenever clear. Let d

k k
/=S| =), ru Zn ol 1) =Yl (@)
p=1 p=1

A ENN estimator for a-MI=—S (the dissimilarity function in Eq. [I) is

N ¥ >
. 1 1 ]—v m
a-MI(p) = N log (1)

-1 = 1 \/Fme
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where v = (1 — a)g and 0 < « < 1; experimental results of rigid registration in
[12] suggest that for MST graphs, « close to 1 gives better registration accuracy,
while « close to 0.5 yields a wider capture range. We set o = 0.99 in this work.

Weighting a-MI by Self-similarity. In an analogy to MI, small Fifm for
majority of locations ¢ means that data in the joint histogram is clustered and
compact, and I’ if and I)" are for normalization. Therefore, accurate estimates of
I Z-f ™ are essential. Generally, most of the nearest neighbors in the joint feature
space are also the most self-similar. However, due to spatially varying bias, small
geometrical distortions, lack of enough number of features and misalignment, not
all the nearest neighbors are self-similar. Therefore, to penalize points that are

close but are not self-similar, we modify I’ Z.f ™ by
k
I () =Y wip||dl)" |, wip = EMD(H (@), H(@s,)) (4)
p=1

where EMD(H (z;), H(x,)) is the EMD between the histogram descriptors.

We adopt an iterative stochastic gradient descent optimization method [20]
for solving Eq. [0l which is fast and is less likely to get trapped in local minima.
Therefore, pry+1 = py +a;V,,C where V,,C is the gradient of C' (from Eq.[Il) wrt
p. The step size is a decaying function of the iteration number: a; = a/(A+1t)7,
with a > 0,4 > 0 and 0 < 7 < 1 user-defined constants [20]. From Eq. [l we
have V,,C = fvua/—l\fl + wrAp where A = V.V is the Laplacian operator. At
a specific g where the graph topology changes, Eq. Bl can be non-differentiable
[12]. However, assuming the topology does not change for small changes in pu,
the gradient of a-MI is calculated analytically in [TIJT5] using the chain rule;
due to space limitations, we refer the reader to them for details. The chain rule
finally results in computation of the Vuf’ifm(u). From Eq. [ we have

k

0 "ow T 9 w; 0
rf™ () = AR A = hdit dl (5)
Onj ,,;ndz; [T ,;ndz; [

where T means transpose. wy, is calculated for either I or I,,,; in the former case,
its derivative wrt p is trivially zero, and in the latter case it is zero because the
2D histogram descriptors are invariant to small deformations [18]. Also, even for
large global deformations, the histogram patches can be assumed locally rigid.
The second equality is true because z/™ is the concatenation of z/ and 2™, and
0z /op = 0. Finally,

o
o

; s [ 0 ) ) )
m _ gt m 9 g, — m 9oy,
;i = dip (aT«ci)zl o T T oam () * o, “f’)) ©)

Note that partial derivative of 2™ wrt T means calculating derivatives in I,,’s
native space, i.e. wrt its own x, y or z coordinate. In our implementation, we pre-
compute all the features of the Iy and I,,, and the derivatives of I,,,’s features
wrt x, y and z directions.

mT
dip N
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(a) Biased red (Iy) (c) a-MI-5f (e) SeSaMI-5f
Py .
-3 - 1 3 3 - 1 3 (g) NMI
(b) Green (Ip,) (d) a-MI-3f (f) SeSaMI-3f

Fig. 3. Effect of the bias on the dissimilarity metrics in the human brain images.
(a) The red channel with an additive bias. (b) The green channel. (c)-(f) The aMI
and SeSaMI dissimilarity metrics calculated from N = 400 points randomly selected
throughout Iy with 5 or 3 features (5f or 3f). (g) Our NMI implementation. The z and
y axis represent the amount of rigid displacements of I,,, in those directions (maximum
of +4 pixels). Images are registered at 0 displacement. The self-similarity metrics in
(e)-(f) are calculated using the biased Iy.

4 Experiments and Results

Visible Human Project. We test the new similarity metric on red and
green channels of the visible human project, which are intrinsically registered.
The data is publicly available at www.nlm.nih.gov/research/visible/
visible human.html. We set the red image as Iy and add bias to it to show
the robustness of our self-similarity measure and SeSaMI (the self-similarity is
calculated on the biased Iy image). Figure Bl shows the results; in (c)-(f) a total
of N = 400 randomly selected points are used (the same random points are
used in all the 4 cases) and the number of nearest neighbors k is 100. (g) is
our NMI implementation with Parzen window histogram estimation [3]. SeSaMI
successfully gives the global optimum at 0, and also produces a relatively smooth
dissimilarity metric. In addition, it gives a global minimum even with 3 features
(original intensity, smoothed intensity and gradient magnitude), instead of 5 fea-
tures (calculated at 2 scales). Reduction of the number of features makes the
algorithm run faster.

US and MR. We apply our registration algorithm to the clinical data of the
IGNS obtained from 13 patients with gliomas in the Montreal Neurological Insti-
tute. The pre-operative MR images are gadolunium-enhanced T1 weighted and
are acquired approximately 2 weeks before the surgery. The intra-operative US
images are obtained using an HDI 5000 (Philips, Bothell, WA) with a P7-4 MHz
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Table 1. MR/US registration mTRE (mm) for 3 nonlinear registration methods

Patient No. of landmarks Initial NMI «o-MI SeSaMI

P1 35 6.30 11.93 2.32 2.05
P2 40 9.38 1936 3.14 2.76
P3 32 3.93 1343 1.83 1.92
P4 31 2.62 18.82 2.62 2.71
P5 37 2.30  15.76  1.97 1.89
P6 19 3.04 9.01 2.28 2.05
P7 23 3.75  16.03  3.05 2.89
P8 21 5.09 7.83 244 2.93
P9 25 3.00 14.05 2.83 2.75
P10 25 1.52  18.65 1.44 1.28
P11 21 3.70 11.01 281 2.67
P12 23 515 1746  3.37 2.82
P13 23 3.78 9.15 245 2.34

phased array transducer. The ultrasound probe is tracked with a Polaris cam-
era (NDI, Waterloo, Canada), and 3D US volumes are reconstructed using the
tracking information. The tracking information is also used to perform the initial
rigid registration of MR to US; a sample of this initial registration is shown in
Figure[Il A neurosurgeon and two experts have selected corresponding anatom-
ical landmarks in US and MR images in sub-voxel accuracy, which are used
to calculate mTRE for validation. Table [I] shows that multi-feature a-MI and
SeSaMI significantly outperform NMI in nonlinear registration of MR to US in
all the 13 cases. In 10 out of 13 cases, SeSaMI gives the most accurate results due
to its robust self-similarity measure incorporated into the powerful multi-feature
a-MI similarity metric.

5 Conclusions

We introduced SeSaMI, a similarity metric that incorporates rotation and bias
invariant self-similarity measures into graph-based a-MI. SeSaMI exploits self-
similarity in a kNN «-MI registration framework by penalizing clusters (i.e. the
nearest neighbors) that are not self-similar. Therefore, it significantly reduces the
number of incorrect local minima as shown in Figure[Bl We have also, for the first
time, shown that multi-feature a-MI and SeSaMI significantly increase the regis-
tration accuracy of MR to US registration in our on-going IGNS project. In the
future we will investigate GPU implementations of SeSaMI to achieve our goal of
near-real time intra-operative US-MRI registration.
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