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Abstract. The detection of Gad-enhancing lesions in brain MRI of Mul-
tiple Sclerosis (MS) patients is of great clinical interest since they are
important markers of disease activity. However, many of the enhancing
voxels are associated with normal structures (i.e. blood vessels) or noise
in the MRI, making the detection of Gad-enhancing lesions a challenging
task. Furthermore, these lesions are typically small and in close proximity
to vessels. In this paper, we present a probabilistic Adaptive Multi-level
Conditional Random Field (AMCRF) framework, capable of leveraging
spatial and temporal information, for detection of MS Gad-enhancing
lesions. In the first level, a voxel based CRF with cliques of up to size
three, is used to identify candidate lesions. In the second level, higher or-
der potentials are incorporated leveraging robust textural features which
are invariant to rotation and local intensity distortions. Furthermore, we
show how to exploit temporal and longitudinal images, should they be
available, into the AMCRF model. The proposed algorithm is tested on
120 multimodal clinical datasets acquired from Relapsing-Remitting MS
patients during multi-center clinical trials. Results show a sensitivity of
93%, a positive predictive value of 70% and average False Positive (FP)
counts of 0.77. Moreover, the temporal AMCRF results show the same
sensitivity as the AMCRF model while decreasing the FP counts by 22%.

1 Introduction

Multiple Sclerosis (MS) is one of the most common neurological disease in young
adults. Conventional Magnetic Resonance Imaging (MRI) techniques, such as
T2-weighted (T2) and Gadolinium-enhanced T1-weighted (T1) sequence are sen-
sitive in detecting its white matter (WM) plaques known as lesions. Specifically,
due to their ability to reflect areas of blood-brain barrier disruption and acute
inflammations, Gad-enhancing lesiond] lesions serve as a measure of disease ac-
tivity. At present, the number of Gad lesions is a widely used MRI outcome
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parameter in MS clinical trials. Gad lesions are generally segmented manually,
a laborious task which is subject to intra- and inter-rater variability and very
expensive for clinical trials that involve enormous amounts of data from multi-
ple centers. It is desirable to have an automatic segmentation method that is
robust to data variability due to different scanners and protocols. Moreover, it
is necessary for any automatic technique to have high sensitivity and low False
Positive (FP) rate to be clinically relevant. Unfortunately, there exists huge vari-
ability in the size (as small as 3 voxels), texture, intensity and location of Gad
lesions making the detection task very challenging. Furthermore, the presence
of numerous non-lesional enhancements (e.g. blood vessels, MRI noise and par-
tial volume effects) renders maintaining low FP rate a challenging task. Most of
the existing methods for Gad segmentation described in the literature are either
not fully automatic [I)2], or depend on non-conventional MRI acquisition se-
quences [2I3], or require prior segmentation of T2 lesions in order to remove the
FPs [3M4]. In [BI6[7], conditional random field models are proposed for address-
ing this problem, which were shown to outperform standard MRF, SVM and
linear regression models. However, these models incorporate mainly local, voxel-
level features and FPs still remain. As Gad lesions are typically very small and
noisy, higher order features could be integrated in order to express more complex
patterns. However, computing such features for all enhancing voxels is computa-
tionally prohibitive. Also, since MS is a longitudinal disease, clinical trials often
consist of multiple scans of each patient over time which can provide additional
information to the manual raters by observing persistence of enhancements in
scans acquired at least six months apart (Gad lesions are generally enhance for
less than six months). No automated methods have explored how additional
temporal information (if available) can be leveraged in Gad lesion segmentation
for further removal of the possible FPs.

In this work, we present an Adaptive Multi Level Conditional Random Field
(AMCREF) classifier which incorporates both local voxel level and robust higher
order textural patterns into the model. Specifically, at the voxel level, a local
CRF (with cliques of up to size 3) is developed to infer binary labels at each
voxel (i.e. lesions/non-lesion). At this level, the classifier is tuned to be highly
sensitive at the expense of additional FP detections. At the second level, voxels
with the same label are grouped together to form lesion candidates. Each can-
didate is further analyzed by considering new textural patterns, derived from a
larger neighborhood, along with its voxel-wise observations to differentiate true
and false lesion detections. To this end, SPIN image and RIFT features [8] are
explored, two texture descriptors that are invariant to rotation and local inten-
sity distortions. In addition to removing false lesions, the AMCRF also refines
the boundaries of lesions at the second level and as such, is adaptive. We also
show effective ways to exploit the temporal information from a past or future
time point (should it be available) into our AMCRF model to further improve
our results. The temporal AMCRF outperforms other methods with a sensitiv-
ity of 93%, a positive predictive value of 75% and average False Positive (FP)
counts of 0.60.
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2 Method

2.1 Adaptive Multi-level CRF

Our single timepoint AMCRF model infers the posterior distribution of the labels
in two levels: the first voxel-based level, and the second level which incorporates
higher order texture information. The first level is similar to the model presented
in [7], except that in addition to the unary and pairwise interactions, here triplet
cliques are considered as well. We first describe these two levels at a single time-
point, and then present algorithms for exploiting temporal information, should
it be available.

Let x; € R? denote the observation vector (e.g. intensity values) at voxel 7 in
the image and y; € {1,0} be a binary random variable indicating its label (e.g.
lesion vs. non-lesion). Given a test image, X, the goal of a probabilistic classifier
is to infer the posterior distribution of the labels given the observations, i.e
p(Y|X) where X = {x;}7, Y = {y:}}, and n is the total number of voxels in the
image. At the first level, we introduce a voxel-based CRF with cliques of size up
to 3 to formulate p¥, the posterior of labels given the observations:

p’(Y|X,AY) = exp Z)\ o(yi|x:) + Z A, o(Yis yjlxi, x;5)
4,JEN;

+ ) A Svny) Y, AL YW v uklxa x5, xk)] (1)
i,jEN; i,(j,k)EN;

where Z is the partition function. ¢ , ¢ and 1 represent the voxel level potentials
for the unary, pairwise and triplet cliques respectively. The smoothing constant
d2(+) is for penalizing discrepancies in the labels of neighbouring pairs. It is zero
if the two labels are equal and is one otherwise. IN; represents the first order
neighborhood of voxel i. The voxel level parameters AY, modulate the effect of
each term in the final decision and are learned at the training stage (SecBl). ¢,
o and ¥ are modeled as:

B(yilxi) = —log p(yilx:), (2)
(i, yjlxi, x;5) = —log p(yi, y;|xi, x;) (3)
,(/J(yza Yjs yk|xia X, Xk?) = - IOg p(y17 Yis yk‘xiv X5, Xk?) (4)

Random Forest [RF] [9] can be used to model the probabilities in Eq.([@) to ().
A set of labeled voxels are inferred as the result of the voxel level analysis. At
this stage, the goal is to capture all of the lesions at the expense of additional
FPs.

So far only voxel-wise interactions are considered. However, the pure intensity
at each voxel might be distorted due to the presence of noise or other artifacts
such as partial volume. Hence, higher order textural patterns that are robust
to local intensity distortions are incorporated in to the model to remove the
possible FPs. To that end, at the second level, voxels with the same label are
grouped together to form a set of lesion candidates. A bounding box (BB) is
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considered around each candidate with a 2 voxel margin from each side, and
a new CRF is constructed for the voxels inside the BB modeling voxel-wise
interactions together with higher order textural patterns:

P(YBB|XBBa>‘l>>‘lQ)_ (BB|XBB,>\ exp(— ZAZ (4| H (X 52))) (5)

where X ;5 and Yy, indicate the observations and labels inside BB. p¥(Yi5| X 55, )\l)
represents a set of voxel-wised cliques similar to Eq. () with a new set of modulat-
ing parameters X' which along with A%, are learned for the second level. H (X ;)
is the textural pattern derived from the region inside the BB. In principal, any
textural feature can be used to represent H(Xy;). In this work, inspired by [g],
we chose two novel descriptors: SPIN image and RIFT which are 2D histograms
encoding the appearance pattern inside each BB based on its intensity and gra-
dient orientation distributions. 2(y;|H (X)) = —log(p(lesiongp|H (X 55)) which
represents the likelihood of detecting a Gad lesion inside BB given H(Xg5). It
should be noted that the SPIN image and RIFT descriptors are computationally
expensive, but the proposed hierarchical framework computes them only at the
second level where we are left with only a few candidates. During training, we
apply the voxel level model to a subset of the training data to obtain a set of le-
sion candidates. Spin image and RIFT features are computed for each candidate
and are saved as a textural pattern dictionary according to whether it is a true or
false detection. At test time, we use a KNN classifier (e.g. K=100) to find the K
closest match between the textural patterns of the test candidate and the ones
in the dictionary. Specifically, Earth Movers Distance (EMD) [I0] can be used to
find the distance between textural patterns. The probability of lesiong; = 1 is
proportional to the number of true detections among the K nearest neighbours.

2.2 Leveraging Temporal Information

In clinical practice, temporal information can be available to help the rater detect
Gad lesions. Let X* and X**™ respectively, denote the image at the current time
point and the one acquired m months before or after. In this paper, we focus
on the context where the temporal interval, m, is large enough such that, if a
Gad lesion is enhanced in X?, it is most likely not enhanced in X**™. In clinical
practice, this typically translates to scanning intervals of 6 months or more (i.e.
m=6). In order to incorporate this temporal information, at the voxel level of
the AMCRF model, we use the voxel intensities of both X* and X**™ for all
cliques. At the second level, in addition to comparing the textural pattern of
the detected region at X! with those in the dictionary, we also compare it with
the textural pattern at the same location at X**™. Hence, the second level is
modeled as:

p(Yos| Xb, X5, A, A, AR) = p" (Vi X, X5, AV) eap(— S NG Qi H(XE)))

[

exp Z)\l yz\G X337 g:gm))) (6)
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where T(5G(XY,, XEm) = —log(p(Lesionss|G(Xt,, X1Em) and G(Xh,,
Xty is the EMD between textural patterns of X! and X'*™ at the same
location. A RF classifier is designed to model this term. As before, )\l/, )\l(;,

and /\3;/ are modulating parameters learned in training. For a non-lesional en-
hancement at X!, textural patterns are similar to the ones extracted from the
same location at X'*™ (compare Figlli(e)-(f) to Figl(g)-(h)). This is typical
for enhancing structures such as blood vessels, for example. However they look
different for a lesional enhancement (compare Figll{m)-(n) to Figlllo)-(p)).

3 Experiments and Results

3.1 Parameter Learning and Inference

There are two sets of parameters in our model: the RF parameters used in ¢, ¢,
1) and I" and the modulating parameters. RF parameters are learned separately
for each clique. However, due to the complexity of the partition function, exact
learning of the modulating parameters is intractable. In this work we used an
iterative approach proposed by Taskar et al. [I1] in order to find the modulating
parameters.

In the inference stage, considering the CRF model at each level and its learned
parameters, the most probable labeling is found. Graph Cuts are chosen to solve
this optimization problem primarily because of their ability to find globally op-
timal solutions for binary classifications [12].

3.2 Data Pre-processing

The training and test data was acquired from multi center clinical trials with
RRMS patients with varying numbers of Gad lesions, each located in different
areas of the brain WM. Each acquisition was composed of five sequences: pre-
and post-contrast T1, T2, PD and FLAIR. Therefore, our voxel-wise observation
vector, X, consists of the intensities of the above five modalities, WM and partial
volume tissue priorsﬁ and spatial locations of each voxel. For the particular data
set that we had access to, the “silver standard” manual labels were determined
using a protocol where two trained experts label the data separately, followed by
consensus agreement. Prior to classification, pre-processing steps including bias-
field inhomogeneity correction as well as removal of non-brain regions from the
MRI are performed [I3]. Furthermore, all intra-subject sequences are registered
to a common coordinate space and the intensity histogram of all sequences is
normalized [I4]. The training data consists of 1760 scans (880 pairs of two time
points) from 160 different centers and testing is based on 120 scans (60 pairs of
two time points) from a separate clinical trial consisting of 24 centers in order

2 The WM prior is built based on statistical tissue frequencies of 152 manually labelled
brains (ICBM 152). The PV atlas was built based on overlapping locations between
Grey Matter and Cerebrospinal Fluid (CSF) atlases and WM and CSF atlases.
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to examine the robustness of the method to different multi center trials. Before
computing the statistics, any detected region with size 1 or 2 is deleted according
to clinical protocol that requires Gad lesions to consists of at least 3 voxels. If
at least three voxels of a lesion are classified correctly, it is counted as a TP,
otherwise it is a False Negative (FN). Any candidate with size greater than two
that does not correspond to an enhancing lesion is counted as an FP. Sensitivity
(pp 0y ), Positive Predictive Value (,, PT;P p) and average number of FPs are

TP+FN
reported.

3.3 Single Timepoint Results

Figure [[l compares the higher order textural descriptors for a non-lesional (first
row) and lesional (second row) enhancement. As it is observed, the proposed
textural patterns look very different for false (Fig[ie)-(f)) and true (Fig(m)-
(n)) detections and hence when compared to the dictionary of textural patterns
(by computing the EMD), they can be distinguished from each other.

. . . . - B

(a) Tlct (b) Enhanced! () Tl¢! (d) Tlc'+ label (g) SPIN®6  (h) RIFT

. . L =

(k) Tlct (1) TIc'+ label (0) SPIN®S  (p) RIFT®

(1) Tlet (g) Enhanced!

Fig. 1. Comparisons of the higher order textural features for a non-lesional and lesional
enhancement. Post contrast T1 images are shown in the first column. Zoomed views
are shown without and with labels in the third and forth columns. The second column
shows all the high enhancement voxels. The textural features are shown for the detected
regions at the current timepoint image and a previous timepoint.

In Table [[(a), we quantitatively compare the performance of the AMCRF
model with the HCRF model proposed in [7] and an MRF. Here, a conventional
MRF model is considered consisting of a unary clique and a non data dependant
smoothing term (i.e. Eq.[Il) without ¢ and ). For this experiment, a mask
outlining the “new” enhancing voxels at the current time point is made available
to all three methods. The results show that the proposed model has the highest
sensitivity and PPV rate over all methods. Lower sensitivity in the MRF stems
from the lack of observations in the smoothing term resulting in over smoothing
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the small lesions. In HCRF, the high level features used in the second level were
not robust enough to capture all lesions. We also show the overall performance of
the AMCRF model along with its break down based on the size of the detected
regions in Table [(b). The AMCRF model achieves overall sensitivity of 0.93,
PPV of 0.70 and average FP count of 0.77. As the size of the detected regions
get larger both sensitivity and PPV values increase. Furthermore, Fig shows
that majority of the false detections are very small (i.e. less than 5 voxels).

Table 1. (a) Quantitative comparison of the performance of the AMCRF, HCRF and
MRF models. (b) The performance of the AMCRF based on the voxel size.

(a) (b)
AMCRF HCRF [7] MRF overall 1-5 6-10 11-20 21-50 51-100 101+
Sens  0.93 0.86 0.78 #Les 231 64 44 35 53 20 15
FPs  0.77 0.76  0.80 Sens 0.93 089093 094 1 1 1
PPV 0.70 0.68 0.66 PPV 0.70 0.370.55 0.82 0.91 1 1

3.4 Temporal Model Results

Figlll shows qualitative results depicting the improvement caused by the higher
order textural patterns when longitudinal data is available. The higher order
textural features of a false detection at time ¢ are very similar to those of the
same location at time ¢ — 6 (compare Figlli(e)-(f) to Figlllg)-(h)). On the other
hand, the higher order textural features of a true detection at time ¢ are very
different from those of the same location at time ¢ — 6 (compare Figll(m)-(n) to
Fig[ll0)-(p)). The classifier designed to capture these differences (by computing
the EMD between the two textures) can appropriately distinguish true and false
detections.

Fig shows the quantitative comparisons of the AMCRF model with the
temporal AMCRF. As it is observed, incorporation of the temporal data has in-
creased the PPV value by 5% without changing the sensitivity. Also, the average
number of false detections has been reduced by 22%. The histogram of the voxel
size of the FPs is also shown in Fig Once again we see that majority of the
FP counts are small.

AMCRF temporal-AMCRF

2 b Sens 0.93 0.93
FPs 0.77 0.60
. | ] o ppv  0.70 0.75

15 610 1120 2150 15 610 11-20 2150
(a) (b) (c)

Fig. 2. (a) and (b) show the histograms of the voxel wised size of the total FP detections
for the AMCRF and temporal AMCRF models respectively. (c) is the quantitative
comparison of the performance of the AMCRF and temporal AMCREF.
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4 Discussion

In this paper, we propose a new a Adaptive Multi-level CRF (AMCRF) model to
detect Gad lesions in brain MRI that embeds contextual information at multiple
levels. At the first level, a local voxel-based CRF is used to identify candidate
lesions. In the second level, a CRF model is designed to further examine the
lesion candidates. We also proposed exploiting temporal data into our model.
The temporal AMCRF outperforms other methods with a sensitivity of 93%, a
positive predictive value of 75% and average False Positive (FP) counts of 0.60.

References

1. Miki, Y., et al.: Computer-assisted quantitation of enhancing lesions in multiple
sclerosis: correlation with clinical classification. Am. J. Neur 18, 705-710 (1997)

2. Bedell, B., Narayana, P.: Automatic segmentation of Gadolinium-enhanced multi-
ple sclerosis lesions. Magn. Reson. Med. 39, 935-940 (1998)

3. He, R., Narayana, P.: Automatic delineation of Gd enhancements on magnetic
resonance images in multiple sclerosis. Med. Phys. 29, 1536-1546 (2002)

4. Datta, S., et al.: Segmentation of gadolinium-enhanced lesions on MRI in multiple
sclerosis. J. Magn. Reson. Imag. 25, 932-937 (2007)

5. Karimaghaloo, Z., Shah, M., Francis, S.J., Arnold, D.L., Collins, D.L., Arbel, T.:
Detection of gad-enhancing lesions in multiple sclerosis using conditional random
fields. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI
2010, Part III. LNCS, vol. 6363, pp. 41-48. Springer, Heidelberg (2010)

6. Karimaghaloo, Z., et al.: Automatic detection of Gadolinium-enhancing multiple
sclerosis lesions in brain MRI using conditional random fields. TMI (2012)

7. Karimaghaloo, Z., Arnold, D.L., Collins, D.L., Arbel, T.: Hierarchical conditional
random fields for detection of gad-enhancing lesions in multiple sclerosis. In: Ay-
ache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS,
vol. 7511, pp. 379-386. Springer, Heidelberg (2012)

8. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local
affine regions. IEEE PAMI 27, 1265-1278 (2005)

9. Leo, B.: Random forests. Machine Learning, 5-32 (2001)

10. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for
image retrieval. IEEE PAMI, 99-121 (2000)

11. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured predic-
tion models: a large margin approach. In: ICML, pp. 896-903 (2005)

12. Boykov, Y., Kolmogorov, V.: An experimental comparison of min- cut/max-flow
algorithms for energy minimization in vision. PAMI, 1124-1137 (2004)

13. Smity, S.: Fast robust automated brain extraction. Hum. Brain Mapp., 143-155
(2002)

14. Nyul, L., Udupa, J.: On standardizing the MR image intensity scale. Comp. As-
sisted Tomography 42, 1072-1081 (1999)



	Adaptive Voxel, Texture and Temporal
Conditional Random Fields for Detection
of Gad-Enhancing Multiple Sclerosis Lesions
in Brain MRI

	1 Introduction
	2 Method
	2.1 Adaptive Multi-level CRF
	2.2 Leveraging Temporal Information

	3 Experiments and Results
	3.1 Parameter Learning and Inference
	3.2 Data Pre-processing
	3.3 Single Timepoint Results
	3.4 Temporal Model Results

	4 Discussion
	References




