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Abstraci— Ultrasound (US) imaging is a paramount
modality in many image-guided surgeries and percuta-
neous interventions, thanks to its high portability, temporal
resolution, and cost-efficiency. However, due to its imag-
ing principles, US is often noisy and difficult to interpret.
Appropriate image processing can greatly enhance the
applicability of the imaging modality in clinical practice.
Compared with the classic iterative optimization and ma-
chine learning approaches, deep Learning (DL) algorithms
have shown great performance in terms of accuracy and
efficiency for US processing. In this work, we conduct a
comprehensive review on deep-learning algorithms in the
applications of US-guided interventions, summarize the
current trends, and suggest future directions on the topic.

Index Terms— Ultrasound, Deep learning, Surgical guid-
ance, Percutaneous, Intervention

[. INTRODUCTION

LTRASOUND (US) is a non-ionizing imaging modality
Uthat is commonly employed in the clinic, offering 2D,
3D, and 4D data. Although ultrasound transducers are often
operated in a free-hand manner by a physician or technician,
to ensure image quality, semi-automatic or fully automatic
image acquisitions are performed with the assistance of robotic
arms in some applications [1]. While avoiding radiation risks,
US scanners are portable and cost-effective as opposed to
other staple imaging techniques, such as Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT). In addition,
US offers real-time anatomical and physiological information
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with great flexibility in applications, such as endoscopic,
laparoscopic, transrectal, and transvaginal imaging. In addition
to the most commonly seen B-mode contrast for structural
imaging, US also provides additional contrasts, including
Doppler US for flow imaging and ultrasound elastography
computed from raw radio frequency (RF) scans to visualize
biophysical properties of tissues. These advantages of US
imaging make it a favourable modality for image-guided
interventions, where it is used for instrument and biological
tissue (e.g., lesions) detection and tracking [2], [3].

Despite multiple benefits, ultrasound still faces several
drawbacks primarily as a result of its inherent imaging prin-
ciple. First, US scans are often noisy and prone to imaging
artifacts such as reverberations, refraction, and shadowing,
making recognition of anatomy and surgical tools difficult at
times. Second, US usually has limited imaging depth, which
can restrict the field of view for inspecting the pathological
region. Lastly, unlike modalities such as MRI and CT that
have standardized planes, the unique image contrast and
arbitrary and unfamiliar imaging planes make it challenging
to interpret US images. So far, a great number of image
processing techniques were proposed to tackle these afore-
mentioned drawbacks, including denoising [4], structure or
instrument detection [5], [6], segmentation [7], and image
registration [8]-[11]. Traditionally, these techniques heavily
rely on time-consuming iterative optimization methods or sub-
optimal hand-crafted features for classic machine learning
(ML) algorithms. In comparison to conventional techniques,
deep Learning (DL)-based methods have shown excellent
results in many US processing tasks by leveraging the com-
puting power of modern GPUs [12], [13]. In addition, DL-
based methods are faster at inference time especially for large
images [14]. With high requirement in accuracy, robustness,
and efficiency, deep learning is well suited to facilitate US-
guided interventions. To facilitate the readers from diverse
backgrounds, we have included a concise introduction to DL
in Section S1 of the Supplementary Material.

To date, a number of literature reviews have been conducted
on the topic of US-guided interventions. However, most of
these previous reviews focus on the survey of clinical appli-
cability of intra-operative US [15]-[17] or related acquisition
techniques [18]-[21]. With the great promise of DL techniques
to enhance the value of intra-operative US, it is beneficial
to provide a comprehensive review on the advancement of
DL techniques in therapeutic interventional US. Based on the
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survey, we also identify the unmet clinical needs and suggest
future research directions in the domain.

[I. LITERATURE SELECTION

We searched the literature using Google Scholar database.
The search was performed for publications from January 2015
to December 2022, in the period that DL-based techniques
gain popularity in medical imaging. The search criteria “Ul-
trasound AND (Guided OR Surgery OR Intraoperative) OR
(Convolution OR Deep Learning)” was utilized. The papers
reviewed are on the technical development and validation of
the algorithms, and review articles, case reports, and clinical
reports are excluded from the search. The selected papers were
carefully screened to ensure they were relevant to US-guided
surgery and percutaneous interventions. US-guided diagnosis
and biopsies were excluded from our search to focus our
review on the therapeutic application of US imaging. The
survey resulted in 58 papers. A breakdown of reviewed papers’
numbers for each year is shown in Fig 1. A breakdown of the
reviewed DL methods in this study is illustrated in Fig 2.
To help the readers with their technical developments, we
conducted a brief introduction to the common DL models in
this survey in Section S2, a summary of the public datasets
used in the reviewed papers in Section S3, and a list of
reviewed papers’ public codes with the web links in Section
S4 of the Supplementary Material.
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Fig. 1. A breakdown of reviewed papers’ numbers for each year is
presented. In total, 58 papers were studied. We did not find relevant
publications in 2015 and 2016. The number of DL-based approaches
in US-guided therapeutic interventions has grown from 2016 until 2020.
The drop in publications in the year 2021 is likely due to the COVID-19
pandemic, which may have substantially impacted new data acquisition
and research progress in the domain.

[1l. CLINICAL APPLICATIONS

The main clinical applications of the reviewed papers
are US-guided cardiac catheterization, brachytherapy, regional
anesthesia, liver ablation, and brain glioma resection. While
most papers focus on one applications, the others validated
the proposed techniques in multiple. Since typically different
surgical procedures have different needs, the review for the
developed techniques is conducted with respect to their clinical
applications.
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Fig. 2. The methods were classified into three categories: 1. seg-
mentation, detection, and localization, 2. image registration, and 3.
other methods. Since U-Net and its variants were employed dominantly
more than the other models, we divide the utilized models into: 1. U-
Net and variants, and 2. other architectures. Most methods perform
segmentation, detection, and localization of medical instruments and
target tissues. These methods can be further broken down into tissue
and instrument segmentation, detection, and localization. The other
methods include the classification of tissues, motion detection, etc.

A. US-guided cardiac catheterization

Catheterization is common in various cardiac interventions,
such as angioplasty and heart valve surgery. The catheter
has a narrow tubular shape inserted into the patient’s artery.
The intraoperative X-ray is commonly acquired to localize
the catheter. X-ray imaging has risks for interventionalists
and patients due to its ionizing radiation. Given this fact, a
safer choice, US-guided catheterization, is gaining popularity
over intraoperative X-ray. However, locating the catheter in
US images, especially near the heart chamber, is challenging,
and in the clinic, fast uptake is required. Robust image
processing algorithms can automatically detect and localize
the catheter in US images. Furthermore, they can also per-
form voxel/pixel-wise segmentation of the catheter with sub-
millimeter precision. Yang et al., in several studies, showed
that DL approaches could help the localization and detection of
the catheter in US images [22]-[32]. They proposed methods
to segment pixels/voxels into catheter and non-catheter classes.
The methods were validated in several applications, such as
Transcatheter Aortic Valve Implantation (TAVI). The methods
are summarized in Table I, and they are primarily validated
using private 3D ex vivo animal and in vivo human datasets.
In terms of instrument segmentation, these methods achieved
Dice scores up to 70%.

B. US-guided brachytherapy

Brachytherapy is a procedure for treating certain kinds of
cancers. In this procedure, small radioactive seeds are placed
into the target region of the patient’s body using needles or a
catheter. The radiation dose of seeds in brachytherapy should
be well-localized to the pathological region and spares the
adjacent healthy tissues. Therefore, intra-operative guidance,
especially with ultrasound has gained the attention of radiation
therapists. For prostate brachytherapy, transrectal US (TRUS)
is commonly used to guide multiple medical instruments to
the targeted region for the correct placement of seeds. Multi-
needle localization, detection, and segmentation in US images
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TABLE |

A SUMMARY OF DL-BASED METHODS FOR HEART CATHETERIZATION IS PRESENTED. THE METHODS ARE MOSTLY FOCUSED ON CATHETER

SEGMENTATION. THE EXAMINED DATASETS ARE ALL PRIVATE.

Reference

Task

Proposed approach

Dataset

Key metric and performance

Yang et al.

Yang et al.

Yang et al.

Yang et al.

Yang et al.

Yang et al.

Yang et al.

Yang et al.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[31]

Min et al. [32]

Catheter localization

Instrument localization

Catheter localization

Catheter detection

Instrument segmentation

Instrument segmentation

Catheter segmentation

Catheter segmentation and
localization
Catheter segmentation

A CNN with binary pre-selection of candi-
date voxels, and applied a Frangi vesselness
filter [33] with adaptive thresholding

A modified multi-scale U-Net [34] with a
hybrid loss consisting of a contextual loss
and a class-balanced focal loss

A 3D U-Net [34] with a cross-entropy focal
loss

An early fusion CNN and a late fusion
CNN [35] with a weighted cross-entropy
loss

Path-of-interest selection with fusion of a
Pyramid-UNet [23] and a direction-fused
U-Net which is based on a VGGI6 en-
coder [36]

Semi-supervised learning of a deep Q-
network using a hybrid loss that consists of
uncertainty and contextual constraints
Weakly-supervised ~ learning using a
ResNet10 encoder [37] with the class
attention maps-guided [38] pseudo-label
generation

A direction-fused U-Net which is based on
a VGG16 encoder [36]

A VGG encoder [36] with pre-selection
of candidate voxels, and applied a Frangi

3D ex-vivo porcine heart US
3D ex-vivo porcine heart US and 3D US of
in-vivo human heart during TAVI operations
3D ex-vivo porcine heart US
3D ex-vivo porcine heart US

3D ex-vivo porcine heart US and 3D US of
in-vivo human heart during TAVI operations

3D ex-vivo porcine heart US and 3D US of
in-vivo human heart during TAVI operations

3D ex-vivo porcine heart frustum US

3D ex-vivo porcine heart US

3D ex-vivo porcine heart frustum US

Hausdorff distance of 1.64 &+
1.82vozels

Dice score (%) of 69.6+£10.9
for ex-vivo and 65.8£9.2 for
in-vivo data

Skeleton error of 1.28mm

Position error of 1.7voxels
Dice score (%) of 70.5 +9.2
for ex-vivo and 66.5 £ 8.3 for
in-vivo data

Dice score (%) of 69.1 £7.3
for ex-vivo and 68.6 7.9 for

in-vivo data
Dice score (%) of 65.4 £9.7

Dice score (%) of 67.7+12.0

Dice score (%) of 67.3 & 14

vesselness filter [33]

can help accurate insertion of radioactive seeds and potentially
improve the treatment efficacy and safety. Ideally, automatic
algorithms that perform these tasks should operate in real-time
and be robust against image noise and signal distortion in real
clinical applications. Zhang et al., in two different studies,
proposed multi-needle localization methods using an attention
U-Net [34] and a Region-based Convolutional Neural Network
(R-CNN) ( [39] and [40] respectively). They validated their
method on 3D TRUS of patients who underwent High-Dose-
Rate (HDR) brachytherapy. A CNN model was developed by
Andersen et al. [41] to digitize needles in 3D TRUS of prostate
HDR brachytherapy patients. Wang et al. [42] proposed a U-
Net and an additional VGG16-based deep network to segment
brachytherapy needles in 3D volumes reconstructed from 2D
TRUS slices. Liu et al. [43] trained and tested a U-Net model
to localize catheter in 3D reconstructed TRUS images taken
during several prostate HDR brachytherapies.

Intraoperative prostate segmentation can facilitate the treat-
ment target identification in consideration of patient motion,
thus improving the efficiency, safety, and therapeutic out-
comes. Girum et al. [44], [45] proposed DL approaches using
a U-Net and a generative CNN to segment the prostate in
3D reconstructed volumes from 2D TRUS slices. Orlando et
al. [46] proposed a DL method using a modified U-Net for
prostate segmentation on clinically diverse 3D TRUS images.
Later, they developed two DL methods using a modified U-
Net and a U-Net++ [47], [48], which were trained on 2D
TRUS slices [49]. Nevertheless, the methods were tested on
3D TRUS volumetric images. Lei et al. [50] proposed DS-V-
Net which is a prostate segmentation method using multidirec-
tional V-Net [51]. The popular DS-V-Net achieved the Dice
score (%) of 91.9 + 2.8 in clinical data. A prostate target
volume delineation method using residual neural networks
for low-dose-rate brachytherapy was developed by Anas et
al. [52]. The method was validated on 2D TRUS slices using

manual segmentation as ground truths. Karimi et al. [53], [54]
proposed a novel CNN architecture for prostate segmentation
in 2D TRUS images. Xiuxiu ef al. [55] proposed a deep-
attentional GAN-based method to improve the resolution of
3D TRUS images. Golshan er al. [56] proposed a modified
LeNet architecture [57] for radioactive seeds segmentation
in 3D TRUS images. This will help confirm the location of
implantation and facilitate the procedure that removes these
seeds after the treatment period.

Pre-operative MRIs are often acquired for surgical planning
in prostate brachytherapy. MRIs generally have sharper images
and show better details of the target area than ultrasound.
Image registration of intraoperative TRUS with the MRI can
help guide the interpretation of the ultrasound scans. Chen
et al. [58] proposed a DL approach using V-Net and U-Net
architectures to segment and register the prostate in MR and
TRUS. Zeng et al. [59] performed 3D non-rigid registration of
MR-TRUS using convolutional and recurrent neural networks.

Brachytherapy is not confined to prostate cancer treatment.
Rodgers et al. [60] proposed a DL-based method for nee-
dle localization in 3D transvaginal US images of interstitial
gynecologic HDR brachytherapy. Sun et al. [61] generated
pseudo-CT images from intraoperative US images of cervical
cancer patients for brachytherapy. The DL methods in this
section are summarized in Table II. The Dice score, followed
by the shaft and needle tip localization errors, are the key
metrics for quantitative performance assessment. In general,
the algorithms achieved sub-millimeter accuracy in shaft and
needle tip localization.

C. US-guided regional anesthesia

Needle-based regional anesthesia is conventionally used in
operating rooms. It usually requires an experienced expert to
deliver the anesthetic injection. US-guided regional anesthesia
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A SUMMARY OF DL-BASED METHODS FOR US-GUIDED BRACHYTHERAPY IS PRESENTED. THE METHODS ARE MOSTLY FOCUSED ON TARGET AND

TABLE Il

INSTRUMENT SEGMENTATION. PUBLIC DATASETS ARE MARKED WITH “*”.

Reference Task Proposed Approach Dataset Key metrics and Performance
Zhang et al. [39] Multi-needle localization A deep supervised attention U-Net with a 3D in-vivo TRUS of prostate HDR  Shaft localization error of
weighted total variation regularization brachytherapy 0.29 £+ 0.23mm and nee-

Zhang et al. [40]

Andersen et al. [41]

Wang et al. [42]

Liu er al. [43]

Girum et al. [44]

Girum et al. [45]

Orlando er al. [46]

Orlando er al. [49]

Lei et al. [50]

Anas et al. [52]

Karimi ef al. [53], [54]

Xiuxiu et al. [55]

Golshan et al. [56]

Chen et al. [58]

Zeng et al. [59]

Rodgers et al. [60]

Sun et al. [61]

Multi-needle localization

Digitization of prostate
brachytherapy needles

Needle segmentation

Catheter localization

Prostate clinical target-
volume boundary detec-
tion

Prostate clinical target-
volume segmentation

Prostate segmentation

Prostate segmentation

Prostate segmentation

Clinical target-volume de-
lineation

Clinical target-volume
segmentation

Improving US image res-
olution

Brachytherapy seeds de-

tection

MR to TRUS image reg-
istration and prostate seg-
mentation

MR to TRUS prostate reg-
istration

Needle localization

Pseudo-CT image synthe-
sis from US

A reformulated large-margin mask R-
CNN [62] that is combined with a density-
based spatial clustering [63]

A 3D U-Net architecture [34] with a Dice
loss

A U-Net followed by a VGG16 network
with a categorical cross-entropy loss

A U-Net architecture with a focal Tversky
loss function [64]

A modified U-Net with an integrated regres-
sion model using global average pooling

A CNN for prior-knowledge generator and
a CNN for the segmentation

A 2D modified U-Net with a Dice loss

Trained U-Net and U-Net++ [47], [48] ar-
chitectures separately using 2D slices

A multidirectional deeply supervised V-
Net [51] with a hybrid loss that consists of a
binary cross-entropy loss and a batch-based
Dice loss

CNNs based on ResNets [37] and dilated
convolution at deeper layers

Sparse subspace clustering [65] of features
learned with a convolutional auto-encoder
and a modified U-Net architecture
Integrating a deeply supervised attention
model into a generative adversarial network-
based

A LeNet [57] architecture with a cross-
entropy loss

Segmentation-based registration using two
weakly-supervised 3D V-Nets [51] for seg-
mentations and a 3D U-Net for the registra-
tions

A modified U-Net [34] and a bidirectional
convolutinoal LSTM with a hybrid loss that
consists of a bending energy loss and a Dice
loss

A 2D U-Net [83] for 2D data and random-
ized 3D Hough transforms [66] for 3D data

A part of VGG19 [36] network and a hybrid
loss that consists of a content loss, a style
loss, and a Dice loss

3D in-vivo TRUS
brachytherapy

of prostate HDR

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate HDR brachyther-
apy

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate HDR brachyther-
apy

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate HDR brachyther-
apy

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate HDR brachyther-
apy

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate HDR brachyther-
apy, 3D in-vivo postoperative CT scans of
prostate HDR brachytherapy, and *2D in-
vivo echocardiography images

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate HDR brachyther-
apy and biopsy

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate HDR brachyther-
apy and biopsy

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate

2D in-vivo TRUS of prostate brachytherapy
patients
2D in-vivo TRUS of prostate brachytherapy
patients

3D in-vivo TRUS volumes reconstructed
from 2D slices of prostate

3D in-vivo volumes reconstructed from
2D original TRUS RF data of prostate
brachytherapy patients

3D in-vivo T2w MRI and 3D in-vivo TRUS
volumes reconstructed from 2D slices of
prostate HDR brachytherapy

3D in-vivo T2w MRI and 3D in-vivo TRUS
volumes reconstructed from 2D slices of
prostate HDR brachytherapy

3D in-vivo transvaginal US (TVUS) vol-
umes reconstructed from 2D slices of in-
terstitial gynecological HDR brachytherapy,
2D US slices of phantom brachytherapy, and
2D US slices of ablation therapy

3D in-vivo CT scans and 3D in-vivo US vol-
umes of cervical cancer patients, additional
3D CT scans of cervical cancer patients, and
3D US phantom data

dle tip localization error of
0.44 + 0.83mm

Shaft localization error of
0.09 £+ 0.04mm and nee-
dle tip localization error of
0.33 £ 0.36mm
Root-mean-square

deviation (RMSD) median
(interquartile range) of
0.55 (0.35 —0.86)
Resolution of needle tra-
jectories of 0.66mm and
0.31mm in x and y direction
respectively

80% within 2mm catheter re-
constructions

Dice score (%) of 88.0 2.0

Dice score (%) of 96.9 +
0.9, 95.4 £ 0.9, and 96.3 &
1.3 for TRUS, CT, and 2D
echocardiography images re-
spectively

A median (first quartile - third
quartile) absolute Dice score
(%) of 94.1  (92.6 — 94.9)
A median (first quartile - third
quartile) absolute Dice score
(%) of 94.1 (92.6 — 94.9)
and 94.0 (92.2 — 95.1) for
U-Net and U-Net++ respec-
tively

Dice score (%) of 91.9 +2.8

Dice score (%) of 93.67 +
3.71
Dice score (%) of 93.9 +3.5

Mean absolute error of 6.5+
0.5

Precision, recall, and F1-score
(%) of 78.0 & 8.0, 64.0 &
10.0, and 70.0 = 8.0 respec-
tively

Dice score (%) of 97.0 £ 0.0
and 87.0+£ 5.0 for segmented
mask and manual contours re-
spectively

Dice score (%) 90.0 4.0

Median position difference
(first quartile - third quartile)
of 0.27 (0.20 — 0.68)mm
and 0.79 (0.62—0.93)mm
for 2D and 3D TVUS respec-
tively

T-test of structural similarity
index between the ground-
truth and synthesized CT with
t = 3.22 and t = 2.86 for
background and foreground
regions respectively

can help the anesthesiologist with the procedure. Detection
and localization of the injection needle shaft and tip can be
challenging. In 2D US scans, needle tips are occasionally out-
of-plane or difficult to spot. Processing raw ultrasound RF
data or 3D reconstructed scans is helpful for accurate and
reliable needle identification. DL approaches can help with
needle localization in US images [67]. Mwikirize et al. [68]-
[70] developed CNNs in three studies to localize the needle
tip in real-time 2D US images. Gao et al. [71] proposed
a needle segmentation method using a U-Net architecture.

Pourtaherian et al. [72] proposed a needle tip detection method
using orthogonal-plane CNNs. They validated their method on
ex vivo 3D US images of chicken breast. Later, they developed
a method for the localization of needle tips with sub-millimeter
accuracy using dilated CNNs [73]. Finally, Maneas et al. [80]
modified an established residual neural network to improve the
axial and lateral resolution of tracked US images for needle
localization. They trained their model on synthetic data, and
the model was validated on a fetal sheep heart in vivo data.
Nerve segmentation in ultrasound scans for US-guided
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regional anesthesia can facilitate the practitioners with the pro-
cedure. Automatic non-learning methods using Kalman filters
could rapidly perform nerve and artery segmentations [74].
Generally, these methods are computationally expensive and
require intensive hyperparameter tuning but recent works pro-
posed DL-based techniques to address the drawbacks of classic
Kalman filtering [75], [76]. Esmistad et al. [77] proposed a
technique using U-Net for musculocutaneous, median, ulnar,
and radial nerve segmentation during axillary nerve block
procedures. Baby et al. [78] developed a U-Net model to
delineate the brachial plexus in 2D US images. A condi-
tioned U-Net model (www.kaggle.com/harolddiaz1018/unet-
cond) was trained by Diaz-Vargas et al. [79] to segment ulnar,
median, femoral, and sciatic nerves in 2D US slices. The
DL methods in this section are summarized in Table III. The
shaft and needle tip localization errors are the key metrics for
quantitative performance assessment.

D. US-guided liver ablation

Image-guided microwave ablation (MWA) is a promising
therapeutic percutaneous intervention that provides a high
intralesional temperature. Real-time US imaging techniques
can visualize the target for accurate lesion MWA and complete
tumour eradication. However, the ablation region margin is
not easily detectable in US images. While ablation region
delineation is feasible using techniques such as ultrasound
elastography [85], we focus our review on DL techniques.
Unsupervised classification of target region tissues by leverag-
ing an ML/DL-based method is a candidate approach. Zhang
et al. [86] utilized the raw ultrasound RF data and trained
a CNN network to delineate the ablation region in ex-vivo
data of the porcine liver. Wang et al. [87] proposed a CNN-
based method for ablation region detection and monitoring
MWA. They performed image registration of US RF data and
optical images to boost the accuracy of their method in terms
of receiver operating characteristic curves. Kondo et al. [88]
proposed an out-of-plane motion detection system using CNNs
to track the liver tumour movement in ablation therapies.

Ablation needle detection and visualization can help in-
terventionalists during the MWA procedure. Arif et al. [89]
proposed a real-time bi-planar needle detection and visualiza-
tion for liver 3D US images. Their method utilizes a U-Net
architecture and specific post-processing to perform the needle
detection. They execute the registration of images in different
time frames acquired from liver phantom and ten patients.
The DL methods in this section are summarized in Table IV.
Dice score and mean absolute error are the key metrics for
quantitative performance assessment.

E. US-guided brain glioma resection

US scanners’ portability and cost-effectiveness of US imag-
ing contributed to the growing popularity of intraoperative US
acquisition. Spatially tracked ultrasound probes can be cali-
brated and synced with a neuronavigation system in operating
rooms to allow the overlay of real-time US scans with pre-
operative surgical plans. Practitioners may execute image reg-
istration between preoperative images and intraoperative US to

update the surgical plan. For instance, in brain glioma surgery,
intraoperative US images can be registered to the preoperative
MRIs (or intraoperative US images at different time points).
Because after surgeons open the dura, the brain tissue can
deform up to 18mm due to several causes, including gravity,
cerebrospinal fluid loss, drug administration, retraction, resec-
tion etc [90], [92]. This phenomenon is commonly called brain
shift. Brain shift can make the preoperative planning invalid.
Therefore, fast registration of preoperative and intraoperative
data is crucial. Public datasets, such as the BITE [90] and
RESECT [92] databases have greatly facilitated the develop-
ment of methods for brain-shift correction, including the deep
learning approaches. In the CuRIOUS2018 Challenge held in
conjunction with MICCAI 2018, the participating teams were
asked to register preoperative MRI to intraoperative US images
of the RESECT dataset. The challenge results and participating
teams’ methods are summarized and compared in [91] with
most methods using traditional approaches. Canilini et al. [93]
proposed a DL method using a CNN to segment sulci and
falx cerebri in US images. Then, they used the segmentation
masks to register intraoperative, preoperative and postoperative
US images. The method was tested on BITE and RESECT
datasets. Given the fact that these datasets provide manual
homologous landmarks, Canilini et al. calculated mean Target
Registration Error (mTRE) for the quantitative validation of
their method. Later, they trained a U-Net architecture to
generate segmentation masks of resection cavities [94]. They
registered the US volumes using these masks.

Zeineldin et al. proposed DL-based methods with U-Net
architectures in different studies to register preoperative MRI
to intraoperative US images [95]-[97]. They employed MSE
Loss for their model training in [95]. Later, they used MSE
loss and NCC loss in a comparison study in [96] and NCC
loss in [97]. Pirhadi et al. [98] employed a Siamese neural
network [99] to perform landmark-based registration of pre-
resection intraoperative US to post-resection intraoperative US
scans.

Finding the precise boundaries of the tumour and its
segmentation can assist the surgeons to optimize the resec-
tion boundary. Zeineldin er al. [100] employed U-Net and
TransUNet networks [101] to segment brain tumours in US
images. Carton et al. [102] proposed a DL-based method
with a 3D U-Net architecture to segment the brain tumours
of RESECT dataset intraoperative US images. In addition to
lesion segmentation, classification of the lesion into different
glioma grades or solitary brain metastases can be substantial
because the surgical procedures vary for each case. Cepeda
et al. [103] proposed a DL approach to analyze the candidate
lesions in patients who underwent craniotomy. They used B-
mode and strain elastography images to correctly classify the
lesions as glioblastoma or solitary brain metastases. The DL
methods in this section are summarized in Table V.

F. Other clinical applications

Sections III.A-E reviewed the DL approaches in widely
studied clinical applications. This section reviews the clinical
applications with a few DL-based approaches. Lee et al. [105]



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. XX, NO. XX, XXXX 2017

TABLE Il

A SUMMARY OF DL-BASED METHODS FOR US-GUIDED REGIONAL ANESTHESIA IS PRESENTED. ANESTHESIA NEEDLE TIP LOCALIZATION IS THE
FOCUS OF THE MAJORITY OF WORKS. PUBLIC DATASETS ARE MARKED WITH “*”.

Reference

Task

Proposed Approach

Dataset

Key metrics and Performance

Mwikirize et al. [68]

Mwikirize er al. [69]

Mwikirize er al. [70]

Gao et al. [71]

Pourtaherian et al. [72]

Pourtaherian et al. [73]

Esmistad et al. [77]

Baby et al. [78]
Diaz-Vargas et al. [79]

Maneas et al. [80]

Real-time needle detec-
tion

Real-time needle tip local-
ization

Needle tip localization

Needle localization and
enhancement

Needle detection

Needle localization

Nerve segmentation

Nerve segmentation
Peripheral nerve segmen-
tation
Instrumented
tracking

ultrasonic

A region-based CNN [81] and a region-
proposal CNN

Needle enhancement followed by a CNN
for needle tip classification, and a CNN
regression network

A novel network that consists of convo-
lutional layers and recurrent layers (CNN-
LSTM) with a Mean Squared Error (MSE)
loss

Beam steering followed by a modified U-
Net for segmentation, and a needle fusion
algorithm

Two CNNs with shared and independent
convolutional filters respectively using a cat-
egorical cross-entropy cost

CNNs with dilated convolutions and spatial
pyramid pooling features

A modified U-Net

A modified U-Net
A conditioned U-Net with a Dice loss

ResNet architecture [84] with a L1-loss

TABLE IV

2D ex-vivo US bovine and porcine tissues,
and 2D US of bovine/porcine tissues over-
laid on lumbosacral spine phantom

2D ex-vivo US
chicken tissues
spine phantom
2D ex-vivo US
chicken tissues
spine phantom

of bovine, porcine, and
overlaid on lumbosacral

of bovine, porcine, and

overlaid on lumbosacral

2D ex-vivo US
chicken tissues

of bovine, porcine, and

3D ex-vivo US of a chicken breast

3D ex-vivo US of a porcine leg

2D in-vivo US of volunteers and patients
undergoing axillary nerve block procedures

*2D in-vivo US of patients’ brachial plexus
2D in-vivo US of patients’ ulnar, median,
femoral, and sciatic nerves

2D synthetic US RF data, and 2D in-vivo
US of fetal sheep heart

Shaft localization error of
0.82° £ 0.4°, and needle tip
localization error of 0.23 £
0.05mm

Needle tip localization error
of 0.55 £ 0.07mm

Needle tip localization error
of 0.52 + 0.06mm

Needle tip localization error
of 0.29 £ 0.02mm

Precision 83% at 76% recall

Qualitative assessment

Precision of 88%, 63% 79%,
67%, and 44%, and recall of
0.81, 0.56, 0.71, 0.62, and
0.37 for blood vessel, mus-
culocutaneous nerve, median
nerve, ulnar nerve, and radial
nerve respectively

Dice score 71%

Dice score (%) of 70.04+27.0

Root-mean-square error of
0.15 4 0.03 for the synthetic
data, and signal energy con-
centration ration of 99.9% for
the in-vivo data

A SUMMARY OF DL-BASED METHODS FOR US-GUIDED LIVER ABLATION IS PRESENTED. THE EXAMINED DATASETS ARE ALL PRIVATE.

Reference

Task

Proposed Approach

Dataset

Key metrics and Performance

Zhang et al. [86]
Wang et al. [87]
Kondo et al. [88]

Arif et al. [89]

Thermal lesion detection

Thermal lesion detection

Tumour motion detection

Needle detection

Matched pathology images to US RF data
followed by training a CNN with two paths
Image registration of RF data and optical
images followed by training a CNN

A VGG16 [36] followed by a U-Net archi-
tecture with a hybrid loss

Image registration of needles in different
time points and needle segmentation using

2D ex-vivo US B-mode and RF data liver
tissues

2D ex-vivo US B-mode and RF data, and
optical images of the porcine liver tissues
2D US of liver phantom

3D in-vivo US of liver biopsy patients, and
3D US of puncturing phantoms

Dice score 86.88%

Receiver operating character-
istic curve of 0.87
Mean  absolute

0.342mm/ frame
Mean absolute error of
1.00mm and 2.0° for needle

error  of

a compressed V-Net [51]

proposed a DL method to classify liver fibrosis. They utilized
the data for patients who underwent liver resection surgery.
Gillies et al. [106] employed a U-Net architecture with a
Dice loss to detect general interventional tools in 2D US
images. They utilized the datasets of prostate and interstitial
gynecologic brachytherapy, liver, and kidney ablations. Wang
et al. [107] proposed a deep attentive method for prostate
segmentation. Their notable approach achieved the Dice score
(%) of 90.0+3.0 in the clinical target volume. Hu et al. [108]
developed an adversarial deformation regularization method
for preoperative and procedural TRUS image registration.
However, the developed methods of Wang et al. [107] and
Hu et al. [108] have not been designed for a focused appli-
cation, and they can be used for prostate brachytherapy or
prostatectomy.

V. DISCUSSION AND FUTURE DIRECTIONS

Based on the literature included in the review, deep learning
techniques have shown great promise to enhance the value of
intra-operative US in surgical interventions. In most of the
reviewed papers, the proposed DL methods were compared

position and  orientation
respectively

with traditional methods, where they showed that their tech-
niques could significantly (p < 0.05) outperform the tradi-
tional ones in the execution time and the evaluation metrics.
While segmentation, detection, and localization are the main
techniques under development, these also need to be adapted
to the application-specific needs and from the current state-of-
the arts, we identified a few unmet clinical needs that could
be addressed by DL methods in the future. In the literature of
brachytherapy, most efforts in DL techniques were dedicated
to prostate treatment, even though US-guided brachytherapy
was also practised for lung cancer, breast cancer, anal can-
cer, and abdominal wall metastases. Similarly, deep learning
approaches in US-guided ablation is primarily focused on
liver while kidney and prostate ablation therapies still have
potentials for further technical development. In US-guided
tumour resection procedures, similar DL methods can be
further adapted for lumpectomy, prostatectomy, tongue cancer
resection, laparotomy, pancreatic cancer resection, and bladder
cancer resection. Finally, although, US was investigated as an
intraoperative imaging tool in orthopedic surgery procedures
and complete system with extensive evaluation studies is still
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TABLE V

A SUMMARY OF DL-BASED METHODS FOR US-GUIDED BRAIN GLIOMA RESECTION IS PRESENTED. MOST METHODS PERFORM IMAGE
REGISTRATION FOR BRAIN SHIFT CORRECTION IN BITE [90] AND RESECT [92] DATASETS. PUBLIC DATASETS ARE MARKED WITH “*”.

Reference

Task

Proposed Approach

Dataset

Key metrics and Performance

Canilini et al. [93]

Canilini et al. [94]

Zeineldin et al. [95]

Zeineldin et al. [96]

Zeineldin et al. [97]

Pirhadi er al. [98]

Segmentation and regis-
tration of US volumes

Resection cavity segmen-

tation and registration of

US volumes

MR to US registration

MR to US registration

MR to US registration

Landmark-based US vol-
umes registration

Segmentation by a modified U-Net [34] and
registration of generated masks

Segmentation by a modified U-Net [34] and
registration of generated masks

A U-Net architecture with a MSE loss

Two U-Net architecture with MSE and NCC
losses respectively

A U-Net architecture with a NCC loss

A Siamese network [99] for detecting land-
marks with a 2.5D approach [104]

*3D in-vivo US volumes reconstructed from
2D slices of RESECT [92] and BITE [90]
datasets
*3D in-vivo US volumes reconstructed from
2D slices of RESECT [92] and BITE [90]
datasets

*3D in-vivo US volumes reconstructed from
2D slices and 3D T2-FLAIR MRI of RE-
SECT [92]

*3D in-vivo US volumes reconstructed from
2D slices and 3D T2-FLAIR MR of RE-
SECT [92] and BITE datasets

*3D in-vivo US volumes reconstructed from
2D slices and 3D T2-FLAIR MRI of RE-
SECT [92] and BITE datasets

*3D in-vivo US volumes reconstructed from
2D slices of RESECT [92] and BITE [90]
datasets

mTRE of 2.05 + 1.12mm
for RESECT and 2.48 +
2.67mm for BITE dataset
mTRE of 1.21 £+ 0.66mm
for volumes before and after
resection of RESECT, 1.22+
1.20mm for volumes before
and during resection of RE-
SECT, and 2.38 &+ 2.78mm
for BITE dataset

Mean squared error of 85

mTRE of 0.84 £ 0.16mm
for RESECT and 1.47 +
0.61mm for BITE dataset

mTRE of 0.99 £+ 0.22mm
for RESECT and 1.68 +
0.65mm for BITE dataset

mTRE of 1.22 £+ 0.46mm
for volumes before and after
resection of RESECT, 1.11+

Zeineldin et al. [100] Brain tumour segmenta-

tion tures
Carton et al. [102] Brain tumour segmenta-
tion
Glioblastoma and solitary
brain metastases classifi-
cation

Capeda et al. [103]

Ljubljana, Slovenia)

lacking. Currently, most focus in this domain has been given to
developing accurate, robust, and fast bone segmentation [112],
[113]. We believe efforts could be directed to propose and
evaluate US bone registration approaches [114]. For some
domain applications, such as cardiac catheterization, we found
that the relevant works were mainly from a handful of labs.
This may be due to the availability of clinical resources
and collaboration, and it will be beneficial to have more
confirmation studies from other research groups in the future.
3D US volume reconstruction is critical for interventional
guidance in many clinical applications, such as brain tumour
resection [90], [92]. Leblanc et al. [109] proposed a US
reconstruction technique for peripheral artery imaging. Luo
et al. [110] leveraged a self-supervised strategy to reconstruct
freehand 3D US. Guo et al. [111] developed a learning model
utilizing self-attention to reconstruct 3D US volumes without
tracking. However, most existing techniques use biopsy and di-
agnostic data to develop the algorithms due to their availability,
but they can still be well applied in surgical applications.

Despite the excellent performance, deep learning tech-
niques, including those reviewed in this article still have
several drawbacks. First, most algorithms still require large
well-annotated data to achieve good performance. This is-
sue can be mitigated by adopting self-supervised and semi-
supervised learning to learn feature representations by ex-
ploiting unlabeled or partially labeled data. Second, due to
coarse and difficult-to-interpret image features as a result of
ultrasound’s imaging principle, accurate anatomical segmen-
tation is often challenging. DL-based super-resolution and
denoising techniques may help enhance the clarity of image

U-Net [83] and TransUNet [101] architec-

Three U-Net networks with Dice losses

Employed Inception V3 network from Or-
ange software version 3.26 (University of

0.43mm for volumes before
and during resection of RE-
SECT, and 1.76 + 1.48mm
for BITE dataset

Dice scores (%) of 93.50 and
93.70 for U-Net and Tran-
sUNet respectively

Median Dice score (%) of
72.00

Classification accuracy values
of 0.79 to 0.94 for B-mode
US and 0.84 to 0.97 for elas-
tography data

*3D in-vivo US volumes reconstructed from
2D slices of RESECT [92] dataset

*3D in-vivo US volumes reconstructed from
2D slices of RESECT [92] dataset

2D in-vivo US images of supratentorial tu-
mour patients who underwent craniotomy

features to mitigate the issue. Third, the trained networks
often have limited adaptability to new domains (e.g., images
from different scanner types or setting). Lastly, most existing
algorithms still lack of transparency to help verify the qual-
ity of the outcomes. Currently, the lack of large-scale well
annotated databases, especially the public repositories poses
a bottleneck in algorithm development and fair performance
benchmarking, and this also partially contributed to the vari-
ous under-explored clinical applications as mentioned earlier,
besides their application-specific challenges. In interventional
applications, well annotated data are often more difficult to
obtain, especially with ultrasound. Currently to address the
issue, weakly-supervised learning strategies in the reviewed
papers have achieved impressive performance [27], [45], [59].
by leveraging categorical or coarse image annotations. With
the ability to further reduce the demand for data annotation,
unsupervised learning may hold an important role for future
developments in interventional applications, but more in-depth
investigation is still required. In addition, data augmentation,
including simulated US, can help overcome the scarcity of
samples. However, the current techniques often fail to provide
realistic results. Compared with MRI and CT scans, clear
structural delineations in US is more difficult due to the nature
of the imaging principles, and often co-registered biopsy, MRI,
and CT data may be required when it comes to confirmation of
pathological tissue segmentation. As direct contact is needed,
for endoscopic applications, image acquisition also demands
elaborate setup using surgical navigation systems or robotic as-
sistance. These further complicate the construction of relevant
datasets besides the privacy concerns commonly associated
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with medical data sharing.

In current literature, convolutional neural networks, es-
pecially different variants of U-Net architecture [83] have
dominated the reviewed methods. In many applications, to
overcome the limited data, CNNs previously trained with other
imaging modalties (e.g., natural images) were adapted to the
application domain with transfer learning [115]. However,
partially due to the lack of public data, general purpose DL
algorithms that are more tolerate to scanner types and clinical
applications still face major challenges. A few initiatives in
MRI and CT DL registration and segmentation, such as the
Learn2Reg MICCAI Challenge [116] and the Medical Seg-
mentation Decathlon challenges [117] have attempted to help
development these types of algorithms, but there is still a lack
of similar endeavors in US. Accessibility to implementations
facilitates transferring various architectures to new problems.
As many learning-based approaches are highly data-dependent
and application-tailored, efforts in the reproducibility of the
published algorithms from the research community are still
required to ensure the value of the technology in real prac-
tice. Several DL architectures are proposed in the reviewed
literature. Optimal model selection can largely depend on
various factors, including suitability of data types (e.g., static
vs. temporal), data dimensions (e.g., 2D vs. 3D), types of
the target task (e.g., segmentation, registration, etc.), and
requirement of portability (i.e., running on a mobile device,
desktop computers, or cloud service). Besides decisions by
human experts, automated DL model search has also attracted
the attention of the research community [119]. However,
the automatic search strategies are still not widely adopted.
The more recent Vision Transformers (ViT) has shown better
performance in learning long-range spatial dependencies than
CNNs, which require more elaborate architecture design to
model spatial context of the image [118]. Adoption of ViT
and its variants may further improve the accuracy of existing
and future DL-methods for intra-operative US.

Interpretability and trustworthiness of deep learning algo-
rithms are crucial for the wide-spread adoption of the end
products to the clinic. Conventional algorithms often have
a goal-driven black-box design, and in this case, without
careful verification, faulty automatic outputs can cause harms
to the patients. The latest trend in explainable Al (XAI)
intends to improve algorithm transparency through techniques,
including spatial attention/activation visualization [120], [121],
uncertainty estimation, and multi-task learning [122]. For var-
ious surgical applications, XAl methodologies can potentially
further detect and explain problematic results from DL-based
iUS processing that offer real-time feedback to improve the
robustness and reliability of the algorithms, and thus the safety
and efficiency of the surgery.

V. CONCLUSION

This review paper studied 58 DL-based approaches for US-
guided heart catheterization, brachytherapy, regional anesthe-
sia, liver ablation, and glioma resection. Near 74% of reviewed
methods perform segmentation, detection, and localization of
medical instruments and target tissues. Possible research direc-
tions for DL-based approaches were discussed in Section IV.
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