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Abstract—Free-hand palpation ultrasound elastography is a
non-invasive approach for detecting pathological alteration in
tissue. In this method, the tissue is compressed by a hand-
held probe and displacement of each sample is estimated, a
process which is also known as Time delay estimation (TDE).
Even with the simplifying assumption that ignores out of plane
motion, TDE is an ill-posed problem requiring estimation of
axial and lateral displacement for each sample from its intensity.
A well-known class of methods for making elastography a
well-posed problem is regularized optimization based methods
which imposes smoothness regularization in the associated cost
function. Herein, we propose to utilize channel data that has
been compensated for time-gain and time-delay (introduced by
transmission) instead of post-beamformed radio frequency (RF)
data in the optimization problem. We name our proposed method
CGLUE (Channel data for GLobal Ultrasound Elastography).
We analytically derive bias and variances of TDE as functions
of data noise for CGLUE and Global Ultrasound Elastography
(GLUE) [1], and use the Cauchy Schwarz inequality to prove that
CGLUE provides a TDE with lower bias and variance error. To
further illustrate the improved performance of CGLUE, results
of simulation, experimental phantom and ex-vivo experiments are
presented.

Index Terms—Ultrasound elastography, Time delay estimation
(TDE), Regularized optimization, Channel data.

I. INTRODUCTION

Elastography is a technique to detect pathological tissue
alterations by extracting mechanical properties of the tissue.
Elastography can be performed on different imaging modali-
ties like magnetic resonance imaging [2], [3] and Ultrasound
[4], [5]. Unlike biopsy that is invasive and considers a small
portion of tissue, elastography is a non-invasive technique
that considers the entire tissue and reduces the probability of
missing abnormalities.

Ultrasound Elastography (USE) is an approach for detecting
mechanical properties of tissue by taking advantage of ultra-
sound imaging. Ultrasound as an imaging tool has emerged
in the latter half of the 20th century and has become one of
the most popular imaging modalities [6]. The main advantages
of ultrasound imaging lie in its noninvasive nature, low cost,
convenience, and wide availability. USE helps in early diag-
nostics which substantially increases the success probability of
treatment. In recent years, USE has been explored for several
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clinical applications including ablation guidance and monitor-
ing [7], differentiating benign thyroid nodules from malignant
ones [8]-[10] and breast lesion characterization [11]-[13].
Surgical treatment of liver cancer [14]-[16], assessment of
non-alcoholic fatty liver disease [17], assessment of fibrosis
in chronic liver diseases (CLD) [18], [19], detecting prostate
cancer [20], [21], differentiating abnormal lymph nodes in
benign conditions [22] and brain tumor surgery [23], [24] are
other relevant clinical applications of USE.

The base of elastography is the relation between stiffness
change and pathological changes. The scatterers of tissue are
displaced by external stimuli or internal forces (the pumping
action of the heart) and shear modulus or Young’s modulus
can be calculated by estimating tissue motion and solving an
inverse problem [25], [26].

Different classifications for USE are proposed in the liter-
ature, however it can be broadly grouped into dynamic and
quasi-static elastography. Dynamic methods, such as shear
wave imaging (SWI) [27], [28] and acoustic radiation force
imaging (ARFI) [29], [30], use Acoustic Radiation Force
(ARF) to generate displacement in the tissue. Transient elas-
tography is another common dynamic method in which low
frequency vibrations are applied to tissue [31]. These methods
can be used to estimate quantitative mechanical properties
of tissue. However for quasi-static elastography, excitation is
performed by simply pressing an ultrasound probe against
tissue [4], [32] which can be done by utilizing a robotic arm
[33], [34] or a hand-held probe (i.e. free-hand palpation) [35],
[36]. Another approach is to use the ablation probe to generate
displacements [37]. In this paper, we focus on quasi-static free-
hand palpation USE and compress the tissue along the axial
direction, which inevitably creates deformation in both lateral
and out of plane directions.

The problem of displacement estimation is ill-posed since
the intensity of one sample provides one equation. Most
biological tissues are nearly incompressible, i.e., the volume
of the tissue does not change by compressing it. Therefore,
axial compression will also lead to lateral and out of plane
deformations. Even after neglecting out of plane motion,
each sample moves in two directions which results in two
unknown variables, and two unknowns cannot be uniquely
determined from one equation [38]. To make the problem a
well-posed one, different methods for quasi-static elastography
are proposed in the literature, which in turn can be broadly
categorized into window-based and regularized optimization-
based approaches. In the window-based methods, few samples
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Fig. 1: For transmitted focused beam in line ‘u’, all of reflected data (shown in red dashed-arrows) are amplified to compensate
time-gain. The time-delays due to transmission are also compensated. By summation of time-gain and time-delay compensated
data (shown in section ‘A’), the corresponding RF line of element ‘u’ is generated as shown in section ‘B’. Instead of considering
one RF line (shown in section ‘B’), we consider all information of section ‘A’ in CGLUE.

are considered around the reference sample. A corresponding
group of samples with similar sample values in the following
image is located and displacement of these two groups is
represented as the displacement of the reference sample.
Several similarity metrics are used to locate the corresponding
window such as maximization of the normalized cross correla-
tion (NCC) of windows [39]-[41], phase-correlation wherein
zero crossing of phase determines displacement [42], sum of
absolute difference of windows [43] and deep learning based
techniques [44]-[47]. Another approach for making the USE
well-posed is imposing smoothness regularization in optimiz-
ing a regularized cost function [48]-[53]. These methods are
computationally complex, but real-time USE based on regular-
ized cost functions have recently been developed by exploiting
Dynamic Programming and Analytic Minimization (DPAM)
[54], [55] and GLobal Ultrasound Elastography (GLUE) [1].
Combination of window-based approaches and regularized
optimization method has recently been proposed in [56] to
take advantages of both methods.

To the best of authors knowledge, all previously developed
methods use RF or B-mode data for TDE. In this paper, we
propose to use pre-beamformed channel data. An ultrasound
image comprises of multiple scan lines (RF lines). For gener-
ating each line, an array of transducers transmit the acoustic
energy pulse while timing the piezoelectric crystals to focus
the beam (as shown with blue curves in Fig.1). Reflections
are collected by the same piezoelectric crystals and digitized.
Based on the classic Nyquist-Shannon sampling theorem,
the sampling rate must be at least twice the bandwidth, in
order to avoid aliasing [57]. Time gain and time-delay due
to transmission are compensated for the sampled data (i.e,
channel data) as shown in part A of Fig. 1. By integrating
data, a RF line is generated as shown in part B of Fig. 1. TDE
is often performed using RF data, however in this paper we
use time-gain and time-delay corrected channel data (shown
in section A of Fig. 1) instead of RF data (shown in section B
of Fig. 1). We name our method as Channel data for GLobal

Ultrasound Elastography (CGLUE) and prove that the error
of estimated displacement with CGLUE is less than GLUE.
The initial results of the proposed method based solely on
experimental results has been published in [58]. This paper
makes additional contributions by analytically verifying the
superiority of CGLUE and presenting results from compre-
hensive simulations, ex-vivo, and phantom experiments.

II. METHODS

Let I; and I of size (m,n,c) be two sets of time-gain and
time-delay compensated channel data collected as the tissue
undergoing some deformation. I, and Iy, of size (m,n) are
the corresponding beam-formed RF data. In these data sets, m
and n are depth and width of the imaged tissue and c is the
number of channels that receive the reflected data. The goal of
TDE is estimating the displacement field between these two
data sets. In this section, we first briefly review our previous
work, GLUE [1], and then present CGLUE. More importantly,
we derive an analytically proof of the superiority of CGLUE
over GLUE by comparing the error for the estimated TDEs.
In GLUE and CGLUE, the displacements are estimated in
two steps as integer and subsample displacement estimates.
The initial integer displacement estimates come from Dynamic
Programming (DP), which is a recursive optimization based
method for image registration. In this method, different in-
tegers are nominated for displacement of each RF sample.
The cost function incorporates similarity of RF samples and
displacement continuity and optimizing this cost function leads
to integer displacement of RF samples [54].

A. GLUE: GLobal Ultrasound Elastography
The goal of GLUE is to calculate the subsample displace-
ment part by minimizing the following cost function:
C(Aa117 Alllv LR Aa’m’na Almn) =

'21 z:l{D(iaaij»Aaijvja lij, Aliz) (1)
j=Lli=

+R(3, aij, Aaij, j, lij, Alij)
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Fig. 2: Strain images of the simulation phantom calculated using GLUE and CGLUE. The ground truth is shown in (a). Results
of GLUE with different data sizes considered for LSQ are illustrated in (b)-(d). Results of CGLUE with different data sizes
considered for LSQ are also illustrated in (e)-(g). Note that the CGLUE result in (e) is less noisy despite a small value for p.

where the data term D is:

D(i, aij, Aagj, j, lij, Alij) = [T1p(i, J) 2

—Inp(i + aij + Aaij, j + lij + Alyy))?
and the regularization term R is:

R(i,aij, Aaij, j, lij, Alij) =
ai(aij + Aayj — a;—1j; — Aa;—1;)?
+ag(ai; + Aaij — aij—1 — Aagj1)? 3)
+B1(lij + Alyj — i1y — Ali—1j)?
+Ba(lij + Alyj — lij—1 — Alyj—1)?.

In these equations, I, and Io;, are pre- and post- compressed
beam-formed RF data of size m x n. The symbols a;; and I;;
are axial and lateral integer displacements for sample (i, 7) that
are estimated by DP while Aa;; and Al;; are subsample axial
and lateral displacements that should be calculated. Finally,
a1, a2, B1 and Py are regularization parameters.

In the next section, CGLUE is proposed that modifies the

data term by utilizing channel data instead of beam-formed
data.

B. CGLUE: Channel data for GLobal Ultrasound Elastogra-
phy

By considering pre-beamformed channel data, the data term
of Eq. (2) is replaced by

D(i, a5, Aaij, j, lij, Alij) = L Z (11(Z J, k)
k=1 2
—Ig(i + aq; + Aai]’,j + lij + Alija k)) .

Optimizing the cost function based on the proposed data
term is not a trivial problem due to nonlinearity of I5. To
linearize I with respect to unknown variables, we replace
Iy (i+a;; + Aaij, j + li; + Al k) with its first order Taylor
series expansion around (¢ + a,j, j + l;;, k). Furthermore, to
simplify the notation, we denote I>(i+a;j;, j +1i;, k) as I(.),
so the data term can be rewritten as

D(i, aij, Aaij, j, lij, Alij) = Z <[1(Z > k)
k=1 2
D) = Aai; I3, () = AliiTy()

where I}, (.) and I/,(.) are derivatives of I, in the axial and
lateral directions, respectively.

“



The regularization term in Eq. (3) reduces estimation vari-
ance at the cost of increased bias by penalizing the difference
between a;; +Aa;; and a;—1; —Aa;_1;, which leads to an un-
derestimated displacement estimation. Therefore, as proposed
in [55], [56], we consider ¢, and ¢; in the regularization
term, where ¢, is the average of integer axial displacement
difference between subsequent samples ¢ and ¢+ — 1 and ¢; is
the average of integer lateral displacement difference between
samples j and j — 1 which are available from DP. Therefore,
the regularization term can be modified as

R(i, Qi Aaijaja lij’ Alij) =

a1(aij + Aajj — ai—1j — Aa;—1j — €4)
taz(ai; + Aayj — ajj—1 — Aagj—1) &)
+B1(lij + Alij — li—1; — Ali—1j)

+B2(lij + Alij — lij—1 — Alijj—1 —&1).

By considering the cost function C' as a summation of data
and regularization terms that are proposed in Eqgs. (4) and (5),
differentiating it with respect to Aa;; and Al;;, and stacking
all 2mn unknown parameters in a vector as

AdZ7n><n = [ACLll» AlllAa/127 AllQ» e aAamnu Almn]T7
we have
1< €a
(H+V)Ad= EZ(Pu) ~Vd-b® {EJ, (6)

X k=1

Y

where X and y are two known matrices, ® is Kronecker tensor
product and Ad can be calculated by the lower-upper (LU)
decomposition (e.g. the X'\y command in MATLAB). Details
of the matrix X and the vector y are provided in the appendix.

C. Error Analysis

To analytically compare the errors of GLUE and CGLUE,
we derive equations for the error of TDE as functions of
noise in the data. Let zfij = (@qj, ZAU) denote the ground truth
displacement of sample (i, j). For simplicity of mathematical
derivations, we assume that the motion is only in the axial
direction and Zij = (0 without loss of generality. Also by
assuming the ultrasound noise to be an additive noise [59],
[60], the data at sample (i, j, k) is

Il(i7j7k) = .Ij(’é,],k) + nl(ivja k)
12(i7j7k) = I(Z - &ijaja k) +n2(i7ja k)

where n4(i,j,k) and ny(é,j,k) can have any distribution
with expected values of i, s and variances of o1,05. In
this section we denote the estimated displacements as a;;
and [;;, which represent summation of integer and subsample
displacements.

1) GLUE error: In beamforming the channel data corre-
sponding to one element, the collected data with different
channels should be time-delayed and time-gained with respect
to their spatial distances from the element. The beamformed
data is generated by adding the time-delayed and time-gained
data across all channels. Since time-delay and time-gain com-
pensation are linear operations and as such do not change the

(7

distribution of noise, therefore we consider beamforming as
summation of channel data as follows

Ilb(iv.]) Z [1(Z ]7 ) Z (Z .]a )+7’l1(i,j, k)
kol kol
I2b(ivj) kz IQ(Zvj, ) Z ( a”,j,k)—kng(i,j,k).
=1 k=1
(3
The cost function for GLUE can be written as
2
¢ =3 3 (Bl )~ Iali +ai )
j=1li=1
-3 [z (16,5, k) +ma (i, j )
j=1i=1 | k=1
2
—f(i—&—aij—dij,j,k)—ng(i+aij,j,k:)) + R.
9

By applying the first order Taylor series approximation for
nonlinear functions, we have

c=% 3 [Z (£, 5.8) +ma (0., k) — 16,5, k)
j=1li=1 | k=1
2
—(ai; — aw)f;(i,j,k)—n2(¢+aij,j,k)) +R.
(10)

By differentiating the cost function and setting the derivative
to zero, we have

ZC: 1(4,7,k) — na(i + a5, 7, k)
k=1 _ . (11)
2 I! (i, j, k)

a;j = Q5 +

The expected value and variance of the a; ; at sample (7, 7)
are

Eylai] = Qi; + G )

kzl Itlz(ivj7 k)

= (12)
vargla;;] = clo1 + 02)

(% ruGiam)

2) CGLUE error: Considering Eq. (7), the cost function of
CGLUE is

1 n m c ) ) 2
C=_ L % 3% (1 k)~ Blitay.jh) +R
Cj=1i=1k=1
1 n o m C o o
DD C(FRORRACRND
Cj=li=1k=1 )
—1 i+aij—dij7jak)—nz(i+a¢j,j7k)) )

13)
Following the same approach as the one used in section C'.1
for estimating the displacement, we have

gi; 460 4o k) (ma (0,3, k) = o+ ag )

> 1200, k)

Gij = i +

(14)



The expected value and variance of the a;; are

(11— pa) L0 5i)

Ec[aij] c
3 12,41

Z&ij'i-

15)

o1+ 09
> L2(0,5,k)
k=1

3) Statistical error analysis:

varcla;;] =

To compare the expected

values and variances, we rewrite (Z I'4(i,5,k))? as
(1.14(i,7))* where 1 and f’a(i,jz are vectors of size 1 X ¢
as 1: [1""71] and Ila<i7j): [Ila<i7j71)7'"’I/a(i7j’c):|'

3K

The operator is the inner product of the two vectors.
According to Cauchy Schwarz inequality we have

< () (X i) a6
R=1 ) Nk=
=c Z a (i’.j7 k)’
k=1
therefore
(11— p2) 32 146y, k)
Eclag] = aij + — = < dij
> 12(i, 5, k)
el — )
el —
+— HA VA Eg[aw]
POR AN
k=1
and also
varclai;] = 0t < - c(o1 + 02) 5
S Izigk) (S LuG0n)
= vargla;;).

D. Data Acquisition

In this section, the data that is utilized in different ex-
periments of the paper are described and then results of
CGLUE are compared with GLUE in Results Section to
illustrate improved performance of the CGLUE. For phantom
and ex-vivo data where ground truth is not known, the bias
and variance of the error cannot be compared quantitatively.
However, we know that the strain maps should not have large
fluctuations in a homogeneous medium as shown in the FEM
and analytical strain maps. For the sake of comparison, the
CNR is used to provide a quantitative mean for assessing the
proposed method according to [61]

2(5p — 5¢)2

CNR =
o + 07

. a7
where s; and S, are the spatial strain averages of the target
and background, o7 and o7 are the spatial strain variances of
the target and background, respectively [62].

For estimating the axial strain, the displacement field should
be differentiated. To reduce noise effect of differentiating, it
is common to use least square estimation (LSQ) for strain
estimating. For estimating strain of each sample, a few neigh-
boring samples in a window of size p are considered and a
line is fitted to their displacements. The tangent of the line is
considered as the strain for the middle sample. Considering
more data points for least square makes the strain smooth
at the cost of losing resolution. For each experiment, three
different window sizes are utilized for least square estimation
to illustrate the superior performance of the CGLUE.
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Fig. 3: Strain profiles of the simulated phantom across the
vertical line in Fig. 2(a) calculated by GLUE and CGLUE.
Windows of length 3, 35 and 65 are used for estimating strain
by LSQ in (a), (b) and (c), respectively.
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Fig. 4: Ground truth strain of the simulated phantom is shown
in (a). Estimated strains by GLUE and CGLUE are shown in
(b) and (c), respectively.

Simulation Data

A simulated phantom is generated by utilizing the Field
Il ultrasound simulation software [63], [64] by randomly
distributing slightly more than 10 scatterers per mm?® to
satisfy the Rayleigh scattering regime. The simulated phantom
is homogeneous with a Young’s modulus of 16 kPa. Two
cylindrical inclusions with Young’s modulus of 40 kPa and
70 kPa are included in the phantom. For compressing the
phantom and computing its ground truth displacement, FEM-
based deformations are computed using the ABAQUS software
package (Johnston, RI, USA) with mesh size of 0.05 mm?2. It
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TABLE I: Bias and variance of strain estimation error for
GLUE and CGLUE with different levels of noise for FEM
simulation study. For each level of noise the experiment is
repeated 100 times and the reported values in this table are
averages of the 100 experiments.

SNR (dB) Bias Variance

GLUE -2823x10~° 10.69x10~"

CGLUE -7.14x107%  3.12x1077

40 GLUE -28.95x10~° 10.81x10~"
CGLUE -7.2x107° 3.2x10°7

20 GLUE -292x107° 10.97x10~ "
CGLUE -73x107°  321x10"

o5 GLUE  -412x107% 11.04x10~7
CGLUE -143x107°  3.4x1077

should be mentioned that we had to interpolate the position of
scatterers to generate the ground truth for the deformed digital
phantom. However, this interpolation itself can introduce bias
and variance, which is inevitable for any FEM simulation.
Therefore, to overcome this issue, we have simulated another
phantom with four uniform layers wherein the displacements
can be calculated analytically (without FEM) with Poisson
ratio of 0.49 to test the validity of the results of GLUE and
CGLUE. Ultrasound images are simulated utilizing the Field
IT software. The probe consists of 192 elements with width
of 0.22 mm and height of 5 mm for each element and also
kerf of 0.05 mm. For each transmission, the reflected data is
recorded by 64 channels. The center and sampling frequencies
are 8 MHz and 100 MHz, respectively.

Phantom Data

The phantom data is acquired from a tissue mimicking
breast phantom (059 tissue mimicking breast phantom, CIRS
tissue simulation & phantom technology, Norfolk, VA, USA)
using an E-Cube R12 ultrasound machine (Alpinion, Bothell,
WA, USA) with a L3-12H probe at the center frequency of
11.5 MHz and sampling frequency of 40 MHz.

Ex-vivo Data

To highlight the improved performance of CGLUE, an ex-
vivo experiment is organized by placing a small piece of olive
in a lamb liver. We purchased a fresh liver from a local butcher
and made a very small hole in the liver. We then inserted a
small piece of olive with roughly size of (10 x 5x 5) mm?® into
the liver through the hole. The data are collected by E-Cube
R12 ultrasound machine (Alpinion, Bothell, WA, USA) with
a L3-12H probe at the center frequency of 11.5 MHz and a
sampling frequency of 40 MHz.

III. RESULTS
Simulation Results

The time delay profile for the simulated phantom is esti-
mated by GLUE and CGLUE and the strain is estimated by the
LSQ method for windows of lengths 3, 35 and 65. As shown
in Fig. 2, CGLUE exhibits substantially better performance in
all scenarios.

To provide a better comparison, we illustrate the Edge
Spread Function (ESF) of the estimated strains across a
vertical line shown in Fig. 2 (a). As it is clear form Fig. 3, the
ESF of the CGLUE is closer to the ground truth as compared
to GLUE in all cases. The noticeable point is that the estimated
strain by CGLUE with p = 3 is smooth, however, the result of
GLUE for p = 3 has much more fluctuations and increasing
p has a significant smoothing effect on the estimated strain.
We also have added different levels of noise to channel data
and have calculated bias and variance of the strain estimation
error based on the following formulas

. i=1j=1
Bias = )
m n mexn (18)
55 5 (5.01.4) — 5(1.4))?
Variance = 7= — Bias?,
mXxn

where S, and S, are estimated and ground truth strains and
m, n are axial and lateral size of data. Table I shows bias and
variance of estimation error for different levels of noise and
different methods. For each level of noise, we have repeated
the experiment 100 times and the results are reported in Table
L

The estimated strain profiles for the simulated phantom with
four uniform layers are shown in Fig. 4. ESFs across a vertical
line are also shown in Fig. 5 which verify a low bias and a
low variance of the TDE error corresponding to CGLUE and
GLUE.

Similar to the previous experiment, we have added different
levels of noise to the channel data and have calculated bias
and variance of the strain error according to Eq. 18. Table
IT shows bias and variance of estimation error for GLUE and
CGLUE with different levels of noise. For each level of noise,
we have repeated the experiment 100 times and the results are
reported in Table II.

Phantom Results

The strain of phantom data is illustrated in Fig.6. Three
different windows are considered for LSQ with sizes of 3, 35
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the horizontal yellow line in Fig. 6(a) calculated by GLUE
and CGLUE. Windows of length 3, 35 and 65 are used for
estimating strain by LSQ in (a), (b) and (c), respectively.

and 65. CGLUE provides a lower variance strain error estima-
tion than that of GLUE in all cases. This is important as the
background and inclusions of the experimental phantoms are
uniform and linear elastic materials. Moreover, the smoother
strain field of CGLUE for p = 3 shows that the corresponding
TDE profile has lower variance than TDE profile for GLUE.
The ESF profiles that are calculated across the yellow line
in Fig. 6 (a) are also shown in Fig. 7. Fig. 7 clarifies that
CGLUE exhibits better performance than GLUE for all LSQ

TABLE II: Bias and variance of strain estimation error for
different levels of noise for 4-layers uniform simulation study.
For each level of noise, the experiment is repeated 100 times
and the reported values in this table are averages of all
experiments.

SNR (dB) Bias Variance
GLUE 3045x10~° 3.20x107°
CGLUE -2.64x107° 2.94x107°
40 GLUE 30.51x107° 3.21x107°
CGLUE -3.90x1075 2.98x10~°
30 GLUE 30.79x10~° 3.26x107°
CGLUE -433x107° 2.92x107°
o GLUE 4634x10~° 3.63x107°
CGLUE 17.08x107° 3.04x107°

window sizes by generating smoother results. The length of
LSQ windows do not impact results of CGLUE as much as
GLUE, which implies a less noisy TDE field by CGLUE. To
make sure that low variance strain error estimation does not
result in a large bias error, the CNR is utilized to show the
contrast between lesion and background. The calculated CNRs
are reported in Table III.



TABLE III: CNR for strain images of the phantom data for
different methods. Windows that are considered for calculating
CNR are shown in red and blue lines in Fig. 6.

0 CNR (dB)
GLUE 4.54 (6.58)

3 CGLUE 5.39 (7.32)
Improvement 18.72%(11.24%)
GLUE 4.69 (6.72)

35 CGLUE 5.44 (7.36)
Improvement  15.99%(9.52%)
GLUE 4.81 (6.83)

65 CGLUE 5.50 (7.41)
Improvement  14.34%(8.49%)

TABLE IV: CNR for strain images of the ex-vivo data for
different methods. Windows that are considered for calculating
CNR are shown in white and black lines in Fig. 8.

P CNR (dB)
GLUE 10.20 (10.09)

3 CGLUE 31.76 (15.02)
Improvement 211.37%(45.22%)
GLUE 20.09 (13.03)

35 CGLUE 49.88 (16.98)
Improvement 148.28%(30.31%)
GLUE 28.84 (14.60)

65 CGLUE 63.24 (18.01)
Improvement 119.27%(23.35%)

ex-vivo Results

Similar to the previous sections, three different windows are
considered for estimating strain. The windows of LSQ have
sizes of 3, 35 and 65. CGLUE displays the olive piece more
clearly than GLUE by providing a higher contrast and lower
noise in the background.

The ESFs of the estimated strains across the vertical line
in Fig. 8 (a) are also shown in Fig. 9. According to Fig. 9,
the TDE field obtained from CGLUE is much less noisy than
the TDE field obtained from GLUE, since the resulted strain
of CGLUE with p = 3 is smoother than the strain of GLUE.
Meanwhile, strain of CGLUE with p = 35,65 are smoother
than GLUE.

For quantitative comparison of CGLUE and GLUE, the
calculated CNRs are reported in Table IV. The improvement
of CGLUE with respect to GLUE in this experiment is much
more than simulation and phantom experiments due to high
level of noise that is present in ex-vivo data.

IV. DISCUSSION

In this paper, a method named CGLUE is proposed for
ultrasound elastography. CGLUE can be used for displacement
estimation in other elastography techniques such as ARFI [29]
and shear-wave elastography [31]. The estimated displacement

by CGLUE is more accurate than other approaches such as
GLUE. To avoid repetition we restrict our comparison to
CGLUE and GLUE since our previous work [1] already illus-
trates the superior performance of GLUE over window-based
methods. In addition, this comparison directly focuses on the
advantage of utilizing pre-beamformed channel data since that
is the only difference between GLUE and CGLUE. The lower
bias and variance of error in the estimated displacement is
important since strain fields are calculated by differentiating
displacement fields which amplifies the noise.

The cost function proposed in CGLUE consist of two parts.
The first part (data term) penalizes pre- and post-compressed
images. The novelty of CGLUE is using time-gain and time-
delay corrected channel data instead of RF data. The channel
data contains more information than RF data which intuitively
informs that their comparison results in better displacement
estimation than RF data. We also prove that utilizing channel
data in data term decreases bias and variance of error. The
main difference of data term for GLUE and CGLUE is that
for GLUE, the data from all channels are summed up and
all operations are implemented on it. However, for CGLUE,
all operations are done individually on separate channels and
their summation is considered in the final solution. This
means that for a coherent target such as a point reflector,
CGLUE and GLUE yield the same result, assuming no noise.
For speckle targets, the comparison is more interesting as
GLUE suffers more from speckle decorrelation especially
with large deformations. Off axis scattering, thermal noise,
and decorrelation due to scatterer shift are most common
noises in ultrasound imaging [59], [65]-[67]. Other sources
of noises that are related to free-hand elastography is the out-
of-plane motion in images and heat generated in the ablation
procedures.

The second term of cost function deals with regularization
which penalizes a quadratic term of displacement differences
for neighbor samples. In the regularization term used in [1],
the difference between a; ; + Aa; ; and a;—1 j — Aa;—1 ; are
penalized which makes the TDE smoother by decreasing the
variance at cost of increased bias. To decrease the underes-
timated displacement estimation, £, and ¢; are considered
in the regularization term of CGLUE as proposed in [55],
[56], where ¢, is the average of integer axial displacement
difference between subsequent samples ¢ and ¢ — 1 and ¢; is
the average of integer lateral displacement difference between
samples j and j — 1 which are available from DP. Comparing
results of GLUE with CGLUE in Figs. 6 and 8, it is clear that
the underestimation at the top and bottom of strain fields are
resolved by adding this term.

CGLUE is dealing with large matrices of size 2mn x 2mn.
For a typical RF frame of size 1000 x 100, this matrix will
be of size 200000 x 200000 needing 298 GB of memory for
storage in double precision floating point format. Fortunately,
most elements of these matrices are zero, and as such, they
can be stored as sparse matrices to reduce memory load. As an
example, left hand side of Eq. (6) for a typical RF frame of size
1000 x 100 needs only 19.73 MB and the right hand side uses
1.52 MB of memory, if they are stored as sparse matrices.
The CGLUE code is currently implemented in Matlab and
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Fig. 8: B-mode image of the lamb liver with small piece of olive placed in (a). Estimated strain images using GLUE and
CGLUE for different LSQ window sizes are shown in (b)-(g). Note that the CGLUE result in (e) is less noisy despite a small

value for p.

%10 %10

“1o 12 14 6 10 12 14 16 0 12 14 16
@p=3 (b) p=35 (¢) p=165

Fig. 9: Strain profiles of the liver data across the vertical yellow

line in Fig. 8(a) calculated by GLUE and CGLUE. Windows

of length 3, 35 and 65 are used for estimating strain by LSQ

in (a), (b) and (c), respectively.

takes 2.4 seconds on a 3.20 GHz i7 Intel CPU for an image
of size 1000 x 100 which is collected by 64 channels. By
implementing CGLUE in C and using graphics cards, it can
achieve real-time performance.

APPENDIX

The matrices of Eq. (6) is provided in this appendix. The
matrix V' is a 2mn X 2mn matrix as

Q R O
R S R 0 O
0 R S R 0
V= . :
0 R S R O
O R S R
L 0 R Q]

in which @, S are pentadiagonal matrices as shown in Egs.
(19), (20) and R is a diagonal matrix as

R = diag{—ay,—f1, -, —a1, =1}
The matrix H is a diagonal matrix as
H = dlag{h(l? 1)7 e ,h(l,?’l), e ah(ma 1)7 o ah(man)}

where h(i,j) is a 2 X 2 matrix as

P is a diagonal matrix given by

P:dlag{e(:l?l)v 76(1,TL),"' 76(m71)a"'

se(m,n)}.



e(i, ) is a matrix of size 2 x 2 as

ctid) = ")

o)

1 18 a vector as

n= [91,1791,27 e »gm,n]T & []-7 1]T7

i, 1s difference of two images as

Gij=n(i+kj+r)—I()

[ + 0 —Ql9 0
0 B1+ B2 0 —P2
—Q 0 aq + 20 0
0 —f2 0 B1+ 262
Q=
0 —Q9
0
201 + 0 —Q2 0
0 261 + P2 0 —B2
—Qg 0 201 4 200 0
0 —B2 0 261 + 2082
S = c. .
0 — Q2
0
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