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Abstract

This paper introduces a novel technique to estimate tissue displacement in quasi-static elastography. A major challenge in elastogra-
phy is estimation of displacement (also referred to time-delay estimation) between pre-compressed and post-compressed ultrasound
data. Maximizing normalized cross correlation (NCC) of ultrasound radio-frequency (RF) data of the pre- and post-compressed
images is a popular technique for strain estimation due to its simplicity and computational efficiency. Several papers have been
published to increase the accuracy and quality of displacement estimation based on NCC. All of these methods use 2D spatial
windows in RF data to estimate NCC, wherein displacement is assumed to be constant within each window. In this work, we
extend this assumption along the third dimension. Two approaches are proposed to get third dimension. In the first approach, we
use temporal domain to exploit neighboring samples in both spatial and temporal directions. Considering temporal information
is important since traditional and ultrafast ultrasound machines are, respectively, capable of imaging at more than 30 frame per
second (fps) and 1000 fps. Another approach is to use time-delayed pre-beam formed data (channel data) instead of RF data. In this
method information of all channels that are recorded as pre-beam formed data of each RF line will be considered as 3rd dimension.
We call these methods as spatial temporal normalized cross correlation (STNCC) and channel data normalized cross correlation
(CNCC) and show that they substantially outperforms NCC using simulation, phantom and in-vivo experiments. Given substantial
improvements of results in addition to the relative simplicity of implementing STNCC and CNCC, the proposed approaches can
potentially have a large impact in both academic and commercial work on ultrasound elastography.

Keywords: Ultrasound Elastography, Quasi static Elastography, Time delay estimation, Normalized Cross Correlation (NCC),
Spatial and Temporal Information, Channel data.

1. Introduction

Ultrasound imaging is one of the most commonly used
imaging modalities since it is inexpensive, safe and conve-
nient. Ultrasound elastography estimates biomechanical prop-
erties of the tissue and can substantially improve the capa-
bilities of ultrasound imaging in both diagnosis and image-
guided interventions. Elastography methods can reveal differ-
ent mechanical properties such as viscosity or Poisson’s ratio,
but imaging elastic properties of the tissue is the most-widely
used technique [1]. Elastography has been used in imaging
breast [2, 3, 4, 5] and prostate cancer [6] as well as investi-
gation of liver health [7, 8] and surgical treatment of liver can-
cer [9, 10, 11].

Estimation of tissue displacement due to an internal or ex-
ternal force is at the heart of all ultrasound elastography meth-
ods [12]. Elastography methods that are based on internal or
endogenous deformation are often based on the pumping action
of the heart which generates waves in the surrounding tissue.
Mechanical properties of the cardiac tissue can be measured
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based on velocity of this wave [13, 14, 15]. In the case of exter-
nal excitation, there are different techniques for exciting tissue
and measuring its mechanical property but they can be broadly
grouped into dynamic and quasi-static elastography. Dynamic
methods such as shear wave imaging (SWI) [16, 17, 18] and
acoustic radiation force imaging (ARFI) [19] can provide quan-
titative mechanical properties of tissue. Both SWI and ARFI
use Acoustic Radiation Force (ARF) to generate displacement
in the tissue.

Quasi-static elastography often generates the displacement in
the tissue by simply pressing the probe against the tissue. The
core idea of quasi-static approach that is also known as com-
pression elastography is introduced in [20] but the concept of
this technique is not a new one and estimation of tissue hard-
ness by hand palpation is an ancient technique [21]. The main
reason for name of quasi-static is that the velocity of deforma-
tion is very low such that static mechanics can be assumed [22].
This technique does not require additional hardware other than
an ultrasound machine, and as such, is very convenient and has
even been applied in image-guided surgery [23] and radiother-
apy [24]. Compared to SWI and ARFI, displacements in quasi-
static elastography are usually substantially larger, leading to
a larger signal to noise ratio in displacement estimation. The
disadvantage is that it cannot readily generate quantitative tis-
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sue properties and an inverse problem approach should also be
applied to infer quantitative properties in tissue [25, 26, 27].

This paper entails estimation of tissue displacement, and as
such, can be applied to almost all elastography methods. How-
ever, we focus on free-hand palpation quasi-static elastography,
which involves slowly compressing the tissue with the ultra-
sound probe. Low cost and ease to availability are two advan-
tages of free-hand palpation ultrasound elastography [28, 29].
In this method, the movement of the probe is largely in the ax-
ial direction and the main goal is to compute strain and defor-
mation in the axial direction. However, even pure axial com-
pression of probe will deform the tissue in all directions. Al-
though axial deformation has most of useful elasticity informa-
tion, lateral displacement can also be calculated [30, 31, 32, 33].
Estimation of out-of-plane deformation is currently not pos-
sible from two dimensional ultrasound images, and custom-
made probes [34] or three-dimensional ultrasound imaging is
needed [23, 35, 36]. Deformation estimation is most accurate
in the axial direction mainly due to lack of carrier for the lat-
eral component of the reflected echo [37], smaller width of the
point spread function in the axial direction [38] and also lower
sampling frequency in the lateral direction [39].

Estimation of tissue displacement is often referred to as time
delay estimation (TDE), which usually relies on raw radio-
frequency (RF) data. Since one sample of RF data does not
provide enough information to calculate displacement, most
methods are based on dividing the RF data into several over-
lapping windows and calculating the displacement of each win-
dow [40, 41]. The underlying assumption here is that displace-
ment of all samples within the window is the same, and there-
fore, additional information from the neighboring samples is
exploited to calculate the displacement of the sample at the cen-
ter of the window. This additional information helps reduce the
estimation variance.

Maximization of the normalized cross correlation (NCC) of
windows was one of the first approaches used for TDE, which
is still a very popular approach because it is easy-to-implement
and is computationally efficient [42, 43, 44]. Phase correlation
wherein zero crossing of phase determines displacement [45,
46] and sum of absolute difference of windows [47] are other
major window-based techniques for elastography.

Window-based techniques are easy to implement, but one of
the most important disadvantages of these algorithms is false
peaks. False peaks occur when a secondary NCC peak or zero
crossing of phase or sum of absolute difference, exceeds true
ones. False peaks are a common error in window-based elas-
tography methods since all windows of post compressed im-
age should be searched to find the best match. To overcome
false peaks, time-domain cross correlation with prior estimates
(TDPE) is introduced in [43]. In TPDE, only a small part of
post compressed image should be searched for correlated win-
dow and the searching area is limited to a neighborhood around
the previous time-delay estimate. By utilizing TDPE, the prob-
lem of false peaks can be addressed, but still window-based
algorithms are sensitive to signal de-correlation which can be
caused by the out of plane or lateral displacement which are
common problems especially in free-hand palpation. Another
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Figure 1: Two frames of ultrasound RF data corresponding to (a) pre- and (b)
post-compression. Vertical dashed lines represent RF lines and intersection of
vertical and horizontal lines represent RF samples. The images are severely
down-sampled for visual illustration; a typical RF frame has many more sam-
ples. To find the displacement of the sample marked with a red circle, the
red window around that sample is considered for calculating a similarity met-
ric (usually NCC). The blue sample indicates the corresponding sample in the
post-compression image.

major source for signal de-correlation is blood flow and other
biological motions that are common in in-vivo data.

In all of the aforementioned studies, the RF lines of just
two images are compared with each other and the displacement
fields across small spatial windows are assumed to be constant
as it is shown in Fig.1.

In this paper we propose to utilize 3D information instead
of 2D data and for the third dimension we have two options.
In the first method, inspired by [48], we extend 2D spatial in-
formation to the temporal domain. We consider the cine ultra-
sound RF data as three-dimensional, where the third dimension
is the time domain. In other words, based on high frame rate
of ultrasound machine, we consider a set of temporally neigh-
boring frames as pre-compressed data and a set of temporally
neighboring frames as post-compressed data as shown in Fig.2.
In the second approach, we consider time-delayed pre-beam-
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Figure 2: Two sequence of data used for spatial and temporal estimation of
normalized correlation. The similarity metric (NCC in this work) is computed
using the data in the 3D red and blue boxes.

formed data (channel data) for ultrasound elastography. In ul-
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Figure 3: All of received data (shown in red dashed-arrows) will be beam-
formed to generate one line corresponding to ‘u’(a). We rearrange time-delayed
information of neighboring elements as shown in (b) to utilize them for CNCC.

trasound imaging, for generating an RF line several crystals
record reflected waves. Time gain and also time delay due to
transmission will be compensated and all data will be summed
up to make one RF line. In this work we propose to use time
gain and also time delay compensated channel data instead of
RF data for elastography, where in for each RF line its corre-
sponding channels will be considered as third dimension as it is
shown in Fig.3.

We maximize NCC in between three-dimensional windows,
and therefore, we name our first proposed algorithms as spatial
temporal normalized cross correlation (STNCC) and the sec-
ond one as channel data normalized cross correlation (CNCC).
These simple and intuitive ideas substantially improves results
of TDE. It is important to note that although the windows that
we utilize to calculate NCC are three-dimensional, the esti-
mated displacement field is two-dimensional.

STNCC and CNCC are more robust to signal de-correlation
compared to NCC as shown in the simulation experiments. We
also show that as the amplitude of noise increases, STNCC ex-
hibits much less susceptibility as compared to NCC. In addi-
tion, STNCC and CNCC are less sensitive to the window size
in comparison to NCC. The codes of STNCC and CNCC will be
made publicly available in https://users.encs.concordia.ca/ hri-
vaz/Ultrasound Elastography/ after acceptance of this paper.

This paper is organized as follows: The STNCC and CNCC
methods are presented in the Section 2. Simulation, phantom
and in-vivo experiments using data obtained from back mus-
cle and liver are studied in the Section 3. The results of the
STNCC and CNCC methods are compared against traditional
NCC. Discussions of the results and avenues for future work
are presented in the Section 4, and the paper is concluded in the
Section 5.

2. Methods and Materials

2.1. STNCC and CNCC for Elastography
Most elastography methods consider two images I1 and I2 as

pre- and post-compressed images and calculate displacement of
tissue using RF data of these images. The pre-compressed RF
data set is divided into several windows and for each window

one should look for a window in the post compressed RF data
set that maximizes NCC as shown in Fig. 1.

NCC for two windows A and B is calculated as

NCC(A, B) =
Σ

j=W
j=1 A( j)B( j)√

Σ
j=W
j=1 A( j)2Σ

j=W
j=1 B( j)2

, (1)

where W is the number of samples in the windows and j rep-
resents samples of windows. The peak of NCC corresponds
to the displacement of windows in the pre-compressed image.
Maximization of NCC only provides an integer displacement
estimate, and interpolation should be performed to find a more
accurate sub-pixel displacement estimate [49, 32, 50].

In this paper two novel techniques are introduced to use tem-
poral or channels information. Hence instead of two 2D win-
dows, two three-dimensional boxes should be considered as
shown in Figs. 2 and 3. In these techniques, one should look for
a box in the second sequence that has the maximum NCC with
the box of first sequence and peak of NCC represents displace-
ment of the center of first box. The only assumption of these al-
gorithms is that all samples within the box have equal displace-
ments. This is a good assumption for STNCC since the frame
rate of ultrasound machines are more than 30 fps (more than
500 fps if plane-wave imaging is used) and consecutive frames
(the third dimension of data for STNCC) and their displacement
will be very close to each other. It is also worthwhile to men-
tion that by considering temporal neighbors for STNCC, tem-
poral behavior of the estimated strains improves significantly.
Temporal accuracy plays an important role in poroelastic elas-
tography [51], viscoelasticity measurment of the tissue [52],
dynamic elastography methods such as shear-wave elastogra-
phy [53, 54] and vibro-elastography [55]. The results of tem-
poral behavior of the estimated strains by STNCC are reported
in the supplementary material. For CNCC the assumption of
same displacement for all samples of a box is exactly same as
assumption that was made for 2D Rf data.

By considering the third dimension of size n for each box,
the NCC of the two boxes is defined as

NCC(A, B) =
Σ l=n

l=1Σ
j=W
j=1 Al( j)Bl( j)√

Σ l=n
l=1Σ

j=W
j=1 Al( j)2Σ l=n

l=1Σ
j=W
j=1 Bl( j)2

(2)

where Al and Bl are windows in the lth layer of the third dimen-
sion for the first and second boxes. W is the number of samples
in a 2D window and j shows samples of 2D windows. The peak
of STNCC or CNCC provides an integer displacement estimate
and has to be interpolated to generate a subpixel displacement
estimation. To avoid false peaks and to reduce the computa-
tional complexity of the algorithm, the search area is deter-
mined based on the displacement of the neighboring boxes. By
calculating the displacement field, strain of the tissue can be
determined by differentiating displacement field in the axial di-
rection. Differentiating amplifies the noise, and therefore, least
square techniques are common method to obtain the strain field.
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2.2. Data Acquisition

In this section we describe the data that is utilized in different
experiments of the paper and then results of STNCC and CNCC
are provided in the Results Section and compared with NCC in
two separate subsections. For sake of comparison, Signal to
noise ratio (SNR) and contrast to noise ratio (CNR) are used to
provide quantitative means for assessing the proposed method
according to

SNR = 10log10(
s̄
σ

), CNR = 10log10

(√2(s̄b − s̄t)2

σ2
b + σ2

t

)
, (3)

where s̄t and s̄b are the spatial strain average of the target and
background, σ2

b and σ2
t are the spatial strain variance of the

target and background, and s̄ and σ are the spatial average and
standard deviation of an arbitrary window in the strain image,
respectively.

In all simulations and experiments, 7 frames are considered
for STNCC and outputs of STNCC are compared with strains
of middle frames that are estimated by NCC.

In all experiments (except the back muscle experiment) win-
dows of size 10λ where λ is wavelength with 86% overlap of
windows are considered and 3-point parabolic interpolation is
utilized to find the 2D sub-sample location of the correlation
peak. For the back muscle experiment, overlap of windows
is reduced to 70% and 30% to show its effect on STNCC and
NCC.

Simulation Data

A simulated phantom is generated by utilizing the Field II
ultrasound simulation software [56]. FEM-based deformations
are computed using the ABAQUS software package (Johnston,
RI, USA). The simulated phantom is homogeneous except for
a cylindrical inclusion with zero stiffness which is placed in the
middle of phantom as an inclusion. The ground truth strain is
shown in Fig. 4 where the white part represents the inclusion.
The inclusion simulates a blood vein that easily compresses un-
der force. Zero stiffness can be obtained by considering a hole
inside the phantom. It will not lead to infinite strain because the
surrounding medium supports the hole from collapsing. The
Young module of background is equal to 4kPa in our simula-
tion.

To make simulation experiment more realistic, images are
normalized and uniform noises are added to images as

Ii j =
Ii j

maxi, j(Ii j)
+ noise. (4)

For calculating signal to noise ratio and contrast to noise ratio,
for each level of noise we ran a Monte Carlo simulation by esti-
mating strain 100 times with different random noise. The SNR
of the noisy data is calculated as

SNR = 10log10

( mean
(
I2
i j

)
mean

(
noise2

) ). (5)
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Figure 4: Ground truth strain in the simulation phantom. The displacement is
estimated using the ABAQUS FEM software.

Phantom Data
We use conventional beam-formed, plane wave RF data

and time-delayed channel data for comparison of STNCC and
CNCC with NCC. Conventional beam-formed RF data is ac-
quired from a tissue mimicking breast phantom (CIRS, Nor-
folk, VA, USA) with an Antares Siemens ultrasound machine
(Siemens, Issaquah, WA, USA) and VF 13-5 probe at the cen-
ter frequency of 7.27 MHz, sampling frequency of 40 MHz and
frame rate of 37 fps.
Plane wave RF data and also channel data are acquired from a
tissue mimicking phantom (059 tissue mimicking breast phan-
tom, CIRS tissue simulation & phantom technology, Norfolk,
VA, USA) using an E-Cube R12 ultrasound machine (Alpin-
ion, Bothell, WA, USA) with a L3-12H probe at the center fre-
quency of 11.5 MHz, sampling frequency of 40 MHz. It should
be mentioned that plane wave are collected at frame rate of 504
fps.

in-vivo Data
Two different in-vivo RF data sets are utilized for comparing

STNCC and NCC. The first data set is back muscle that in-vivo
RF data are collected using an E-Cube R12 ultrasound machine
(Alpinion, Bothell, WA, USA) with a SC1-4H curvilinear probe
at the center frequency of 3.2 MHz and sampling frequency of
40 MHz at Concordia University. This study was approved by
Central Ethics Committee of Health and Social Services from
the Ministry of Quebec (MSSS: Ministere de la Sante et des
Services Sociaux). The subject provided informed consent for
participating in this study. The probe was hand-held and was
placed axially on the lower back multifidus muscle while the
subject was lying prone. The subject then performed a contra
lateral arm lift, which causes deformation (sub-maximal con-
traction) in the multifidus muscle. Fig. 10 (a) shows B-Mode
image of the multifidus muscle, which is delineated by dashed
red lines.

The second data set is liver data that is acquired from a pa-
tient undergoing open surgical radio frequency thermal abla-
tion for liver cancer before ablation. This data was collected at
the Johns Hopkins hospital with an Antares ultrasound machine
(Siemens, Issaquah, WA, USA) with a VF10-5 linear probe
with a center frequency of 6.6 MHz, sampling frequency of 40
MHz and frame rate of 30 fps. The study was approved by the
ethics institutional review board at Johns Hopkins. Fig. 11 (a)
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shows the B-Mode image, where the tumor is marked with red
arrows.
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Figure 5: Strain images of the simulation phantom calculated using NCC and
STNCC. The first row shows strain images that are calculated using NCC, and
the second row depicts strain images computed using STNCC. In the first, sec-
ond and third columns, the SNR values of data are 6.55 dB, 3.56 dB and 2.17
dB, respectively.

3. Results

3.1. STNCC

In this part, results of the proposed STNCC method are pre-
sented and compared against NCC for simulated phantom and
experimental data in separate subsections.

3.1.1. Simulation Results
The phantom is compressed by 0.5% and the compression

rate between two consecutive frames is 0.02%. To make sim-
ulation experiment more realistic, noises are added to images
in three steps with zero mean and standard deviation of 0.086,
0.144 and 0.202. Fig. 5 shows outputs of STNCC and NCC for
different levels of noise. It is clear that results of STNCC are
closer to ground truth and outperform results of NCC. Higher
signal to noise ratio and contrast to noise ratio of STNCC that
are represented in Table 1 also validate better performance of
STNCC. For each level of noise we ran a Monte Carlo simula-
tion by estimating strain 100 times with different random noise.

Table 1: The mean and variance of SNR and CNR for 100 strain images of the
simulated phantom for different methods and noise levels. Windows that are
considered for calculating CNR are shown in blue and red lines in Figure 5.
The red window is considered for SNR.

SNR SNR CNR
of noisy data
mean (var.) mean (var.) mean (var.)

6.55 STNCC 1.56 (0.16) 7.07 (0.40)
NCC 0.26 (1.32) 5.49 (0.82)

(6.91×10−5) Improvement 22.91% 43.87%

3.56 STNCC 0.86 (0.86) 6.22 (0.56)
NCC -4.18 (2.86) 2.46 (1.45)

(8.14×10−5) Improvement 219.15% 137.68%

2.17 STNCC -1.17 (2.66) 4.64 (1.12)
NCC -10.59 (23.32) -1.03 (4.24)

(7.53×10−5) Improvement 774.98% 268.97%

The mean and variance of SNR and CNR for these 100 experi-
ments are reported at Table 1.

As one can see in Fig. 5 and Table 2 not only STNCC out-
performs NCC for each range of noise, but also has more robust
performance against increasing the amplitude of noise.

Table 2: Effect of increasing noise on SNR and CNR values.
SNR of noisy data Method SNR% CNR%

From 6.55 to 3.56 STNCC -14.88 -17.77
NCC -64.02 -50.22

From 3.56 to 2.17 STNCC -37.33 -30.49
NCC -77.14 -55.22

In the next experiment, we compressed the simulated phan-
tom by 1%, 1.5% and 2% and repeated the experiment for these
amount of compression. For representing CNR, simulation is
run 100 times for each case and it is shown in Fig. 7 that for all
three compression rate and for all three different noise levels,
STNCC has better performance than NCC.

3.1.2. Conventional Beamforming Phantom Results
Similar to the previous section, the images are normalized

and uniform noises are added to images in three steps with zero
mean and standard deviation of 0.028, 0.144 and 0.202. The
estimated strains obtained from STNCC and NCC are shown in
Fig. 6.

As one can see, results of STNCC outperform NCC. Also,
STNCC is more robust to increasing magnitude of noise. For
computing SNR and CNR for each level of noise, experiments
are repeated for 100 times and mean and variance of SNR and
CNR are presented in Table 3. Edge spread functions of strains
obtained by NCC and STNCC are shown in Fig. 8. For calcu-
lating edge spread function, two rectangular with length of 60
and width of 10 pixels are considered in strain of NCC and
STNCC as shown in Figure 8 (a). The edge spread function is
calculated by averaging intensity of pixels across width of these
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Figure 6: Comparison of strains that are calculated using NCC and STNCC for
phantom data. The first and second rows show strain images calculated using
NCC and STNCC, respectively. In the first, second and third columns, the SNR
of data are 13.95 dB, 5.62 dB and 2.91 dB, respectively.
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Figure 7: CNR values for different levels of compression and noise. The SNR
of data in (a), (b) and (c) are respectively 6.55 dB, 3.56 dB and 2.17 dB.

rectangular and it is clear in Figure 8 (b) that the edge spread
function of STNCC is smoother than NCC.

3.1.3. Plane wave imaging
As was explained in the Simulation Section, images are nor-

malized and three different uniformly distributed noises with
zero mean and standard deviation of 0.014, 0.043 and 0.072
are applied to images. The first and second rows of Fig. 9
show strain fields that are estimated by normal NCC and the
proposed STNCC method, respectively. In the first, second and
third columns the SNR values of data are 19.63 dB, 10.45 dB

Table 3: Mean and variance of SNR and CNR in 100 strain images for the
conventionally beam-formed RF data of the phantom at different noise levels.
Windows that are considered for calculating SNR and CNR are shown in Figure
6 (SNR is computed in the red windows only).

SNR SNR CNR
of noisy data
mean (var.) mean (var.) mean (var.)

13.95 STNCC 2.53 (0.07) 6.16 (0.07)
NCC 2.09 (0.14) 5.37 (0.12)

(4.04×10−5) Improvement 21.05% 14.17%

5.62 STNCC 1.33 (0.57) 4.86 (0.41)
NCC -7.08 (0.86) -3.27 (0.52)

(3.81×10−5) Improvement 118.78% 248.62%

2.91 STNCC -6.21 (0.68) -2.12 (0.5)
NCC -9.79 (0.7) -6.20 (0.53)

(4.17×10−5) Improvement 128.03% 155.85%
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Figure 8: Edge spread function for strain images that are calculated using NCC
and STNCC. The red box in (a) shows the region of strain image where edge
profiles are plotted. (b) shows the edge profiles.

and 6.66 dB, respectively. In all cases, the proposed method has
a substantially better performance than normal NCC. Table 4
represents better performance of STNCC more explicitly.

3.1.4. Back Muscle Data
Fig. 10 (b), (d) show the displacement fields estimated with

NCC and STNCC with 70% overlap between windows. Fig.
10 and Table 5 demonstrate that STNCC calculates a superior
displacement field compared to NCC. We performed another
comparison by changing the overlap between consecutive win-
dows. Fig. 10 (c), (e) show the displacement field estimated
with STNCC and NCC with 30% overlap of windows. Com-
paring Fig. 10 (b), (d) and 10 (c), (e), and also considering
Table 5, it is clear that STNCC is substantially less susceptible
to overlap between windows.

3.1.5. Liver Data
The estimated strains are presented in Figure 11 (b)-(c). Vi-

sual comparison of the strain images shows that STNCC gen-
erates a strain image with less noise. This is corroborated with
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Figure 9: Comparison of strains that are calculated using NCC and STNCC
for plane wave phantom data. The first and second rows show strain images
calculated using NCC and STNCC, respectively. In the first, second and third
columns, SNR values of data are 19.63 dB, 10.45 dB and 6.66 dB, respectively.

quantitative results of Table 6, which shows SNR and CNR.
Compared to NCC, STNCSS improves SNR and CNR by re-
spectively 52.4% and 67.49%.

Table 4: The mean and variance values of SNR and CNR in 100 strain images
of the Plane wave data of phantom with different noise levels. Windows that
are considered for calculating SNR and CNR are shown in Figure 9 (SNR is
computed in the red windows only).

SNR SNR CNR
of noisy data
mean (var.) mean (var.) mean (var.)

19.63 STNCC 9.89 (0.002) 11.63 (0.01)
NCC 9.72 (0.01) 10.71 (0.05)

(4.61×10−5) Improvement 1.74% 8.59%

10.45 STNCC 9.63 (0.01) 10.18 (0.09)
NCC 8.42 (0.05) 7.22 (0.1)

(5.2×10−5) Improvement 14.37% 40.99%

6.66 STNCC 9.15 (0.03) 8.22 (0.2)
NCC 6.90 (0.07) 3.91 (1.41)

(6.33×10−5) Improvement 67.88% 169.77%

Table 5: SNR of displacement images of the back muscle. The black window
is considered in calculating SNR.

Overlap of windows SNR

70%
STNCC -0.89
NCC -2
Improvement 29.12%

30% STNCC -1.0
NCC -2.88
Improvement 54.17%

3.2. CNCC
3.2.1. Simulation Results

The phantom is compressed by 1% and time-delayed channel
data is acquired from Filed II software for CNCC experiment.
Same channel data are summed-up to generate corresponding
RF data. Strain fields estimated by NCC and CNCC are il-
lustrated in Fig. 12. To further clarify better performance of

Table 6: SNR and CNR values in strain images of Figure 11. Windows that are
considered for calculating CNR are shown in Figure 11 and only red window is
considered for SNR.

SNR CNR
STNCC 4.31 5.39
NCC 2.48 3.15
Improvement 52.4% 67.49%

CNCC, a histogram analysis is done for CNR and SNR compar-
ison in Fig. 13. We have moved the small blue colored window
within the big blue window to take 12 target windows. At the
same time, the small red colored window is swiped within the
large red window to consider 32 background windows. CNR is
calculated for every combination of target and background win-
dows and SNR is calculated for all 32 background windows. It
is clear that for small SNR and CNR values, NCC has higher
frequencies than CNCC but for higher values of SNR and CNR,
CNCC has higher frequency.

3.2.2. Phantom Results
For fair comparison of CNCC and NCC, channel data that

are utilized for providing results of CNCC are beam-formed
with the same ultrasound machine and then feed to NCC. Es-
timated strains of CNCC and normal NCC are shown in Fig.
14. For comprehensive CNR and SNR comparison, histogram
analysis is done which is shown in Fig. 15. We have moved the
small red colored window within the big red window to take
12 target windows. At the same time, the small blue colored
window is swiped within the large blue window to consider 24
background windows. CNR is calculated for every combina-
tion of target and background windows and SNR is calculated
for all 24 background windows. Fig. 15 shows distribution of
the aforementioned 288 CNR values and 24 SNR values. It is
clear that for small SNR and CNR values, NCC has higher fre-
quencies than CNCC but for higher values of SNR and CNR,
CNCC has higher frequency.

7



0 10 20 30

width(mm)

0

10

20

30

40

50

60

d
e
p
th

(m
m

)

A

(a)

0 10 20 30
width(mm)

0

10

20

30

40

50

60
de

pt
h(

m
m

)

(b)

0 10 20 30
width(mm)

0

10

20

30

40

50

60

de
pt

h(
m

m
)

(c)

0 10 20 30
width(mm)

0

10

20

30

40

50

60

de
pt

h(
m

m
)

(d)

0 10 20 30
width(mm)

0

10

20

30

40

50

60

de
pt

h(
m

m
)

(e)

-20 -15 -10 -5 0 5

(f)

Figure 10: B-mode image of the back muscle (a). Red dashed lines delineate the multifidus muscle. Visual inspection of the B-mode images shows the maximum
displacement occurring in the region marked with the letter A. Displacement fields of the back muscle calculated using NCC (b)-(c) and STNCC (d)-(e). The overlap
between windows are 70% (b), (d) and 30% (c), (e).
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Figure 11: B-mode image of the liver with a tumor (marked with red arrows).
Strain images calculated using NCC and STNCC are shown in (b) and (c) re-
spectively.
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Figure 12: Strain images of simulated phantom calculated using NCC and
CNCC are shown in (a) and (b) respectively.

4. Discussion

One of the most challenging issues in most of computer vi-
sion techniques such as optical flow computation is dealing
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Figure 13: histogram distribution of CNR (a) and SNR (b) for estimated strain
of simulated phantom by NCC and CNCC.
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Figure 14: Strain images of experimental phantom calculated using NCC and
CNCC are shown in (a) and (b) respectively.

with ill-posed problems. Each sample that moves in 3D di-
mension (axial, lateral and out of plane) has three unknowns
to be tracked, however intensity equality of one sample in the
two images provides only one equation. Window-based track-
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Figure 15: Histogram distribution of CNR (a) and SNR (b) for estimated strain
of experimental phantom by NCC and CNCC.

ing methods are one of the most popular techniques to make
tracking a well-posed problem. These techniques assume that
displacements of spatially neighboring samples are the same
and look for a similar window in the other image. Accord-
ing to detailed experiments in [57, 58], assuming that λ is one
wavelength of ultrasound signal, 10λ is approximately largest
window size for which this assumption is valid. The underly-
ing idea of this project was extending the assumption of spatial
continuity to temporal continuity or using channel data instead
of RF data.

In traditional window-based methods, 2D spatial windows
were considered and information of spatially neighbors was uti-
lized. In this paper, we use 3D window to benefit from ad-
ditional information made available by including samples in
the third dimension. In this paper, two approaches named by
STNCC and CNCC are proposed. In STNCC, the third dimen-
sion is temporally neighboring samples. The idea of consider-
ing temporal neighbors to estimate displacement makes sense
by noting that traditional and ultrafast ultrasound machine has
capability of imaging more than 30 and 1000 frame per sec-
onds. Therefore, displacement between consecutive frames will
be very small which allows the well-known spatial assumption
of window based methods to be extended to the temporal do-
main. In CNCC as the second proposed method for utilization
of 3D information, time-delayed pre-beam-formed data that is
collected by neighboring channels are utilized as the third di-
mension. In all previously proposed methods, B-mode or RF
data was used for elastography; however we know that for gen-
erating one RF line, several neighbor channels collect data and
after applying appropriate time-delay, they sum up to generate
one RF line. Therefore each RF sample results form summa-
tion of several channel samples. The underlying idea of CNCC
is that comparing all components that make a RF sample will
lead to more accurate displacement estimation than comparing
two individual RF samples.

To illustrate better performance of proposed methods, differ-
ent experimental set-ups are used. A simulated phantom with
an soft inclusion is made by Field II package and is deformed
by the finite element ABAQUS software. The reason we per-

form this simulation is to illustrate the performance of the pro-
posed algorithms with both hard (e.g. phantom and in-vivo) and
soft inclusions. In the next experiment different tumors of a tis-
sue mimicking breast phantom is imaged in different modalities
(Conventional beam-forming, plane wave and channel data) to
show in-dependency of the proposed method to collected data.
Finally, in-vivo results are presented to further clarify better per-
formance of the proposed methods.

It is also shown that STNCC and CNCC are more ro-
bust to signal de-correlation and can tolerate higher levels
of noise compared to NCC. A reason for this improvement
is that noise affects different frames or channels at different
levels, and by considering multiple frames or channels in-
stead of one, the samples that are less noisy can compen-
sate for the effect of noisy samples. A comment raised about
STNCC, is estimating strain fields between different frames
individually and averaging them to reduce the noise effect.
This idea is helpful for large number of frames. However
in STNCC, a small number of neighboring frames are con-
sidered to estimate displacement more accurately. The sec-
ond reason for superiority of STNCC to averaging is com-
putation cost. STNCC is much more effective than comput-
ing NCC for each pair individually and averaging them. For
the simulated data of size 1041 × 250, NCC method takes
4.04 seconds for each pair of frames on a 3.20 GHz i7 In-
tel CPU. Therefore for estimating 7 strain fields and averag-
ing them we need 28.285 seconds, however, STNCC takes
only 9.70 seconds. The codes of STNCC and CNCC will be
made publicly available in https://users.encs.concordia.ca/ hri-
vaz/Ultrasound Elastography/ after acceptance of this paper.

Another advantage of these ideas pertains to a wealth of pre-
vious work on improving displacement estimation techniques
with window-based methods. Future work can focus on apply-
ing those methods to 3D windows to further improve the per-
formance of elastography methods.

Finally, estimated axial displacement are differentiated to get
the axial strain field. For differentiation of each sample, a win-
dow of size (2k + 1) × 1 has been considered around the refer-
ence sample. Utilizing the least square method, a line is fitted
to these samples and its slope is regarded as the strain value of
that sample. Moving the center of the window forward by one
sample the strain of the next sample is calculated. It is clear
that a large value for k makes the image smoother at the cost of
losing information, while a small k may increase noise in strain
estimation. We have used windows of length 17 (i.e. k = 8) for
simulation, phantom and in-vivo results.

5. Conclusions

Ultrasound systems are capable of acquiring images at a
very high frame rate. This capability is not exploited in previ-
ous window-based elastography algorithms where the windows
were only in the spatial domain. Besides of high frame rate,
we know that for generating one RF line multiple channels are
employed to record data and RF line is beam formed of them.
In this paper, a novel idea was proposed to consider third di-
mension of information which can be two sequence of images
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instead of just two images or considering all channels that play
role in producing one RF line. In these methods, 3D boxes in
the first series are matched to those of the second series. It
was shown using simulation, phantom and in-vivo experiments
that extension of information to third direction substantially im-
proves the quality of displacement estimation.
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