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ABSTRACT

Monitoring the ablation process in order to document the adequacy of margins during treatment is of significant
importance. Observing that the ablation lesion is harder than normal tissue, it has been proposed to monitor
the ablation using ultrasound elastography. Furthermore, it has been reported that the ablated cancer tumor is
harder than ablated normal tissue. In this paper we propose an ultrasound elastography technique for visualizing
the ablation lesion and the ablated cancerous tumor in Hepatocellular carcinoma (HCC). This work focuses on
devising techniques to generate elasticity images which distinguish the ablated cancerous tumor and the ablated
normal lesion. We first calculate the displacement field between two ultrasound images acquired before and after
some compression. We then use the displacement field to calculate the correlation coefficient between the two
images. Parts of the tissue that undergo large deformation give small correlation coefficient due to decorrelation
within each window, and parts of the tissue that undergo small deformation give large correlation coefficient.
Simulating phantoms with two lesions, a harder tumor inside a hard lesion, using finite element and Field II, we
show that this method enables delineating the tumor from the lesion.

1. DESCRIPTION OF PURPOSE

Minimally invasive RF ablation1 has gained much interest recently since only 10% to 20% of patients with HCC
are amenable to traditional therapy of surgical resection of the tumor. In RF ablation, an electrode is placed into
the tumor to cauterize it.1 Monitoring the ablation process in order to document adequacy of margins during
treatment is a significant importance. Ultrasonography is the most common modality for both target imaging
and for ablation monitoring. However, ultrasonographic appearance of ablated tumors only reveals hyperechoic
areas due to microbubbles and outgasing and cannot adequately visualize the margin of tissue coagulation. As
a result, the tumor recurrence rate in RF ablation is as high as 34% to 55%.1, 2

Ultrasound elastography has emerged as a useful augmentation to conventional ultrasound imaging.3 In the
most common variation of elastography, ultrasound images are captured while the tissue is being compressed,
and images are processed to provide a grid of local displacement measurements. These displacement fields are
then used to determine the elastic properties of the tissue at each grid location. The grid of calculated elastic
properties can be displayed as an image.

Ultrasound elastography has been used to monitor the ablation4–9 as the ablated lesion is harder than normal
tissue. This work is focused on finding the cancerous tumor inside the ablation tumor (the cancerous tumor is
believed to be harder than ablation tumor). Previous research has shown that it is possible to delineate a very
hard tumor inside a hard lesion7 using acoustic radiation force impulse imaging.



This paper is focused on freehand palpation elastography, which involves estimating the displacement field
of the tissue undergoing slow compression. Most elastography techniques estimate the displacement field using
local cross correlation analysis of echoes.3, 10 These methods are very sensitive and accurate for calculating
small displacements. However, elastography is subject to speckle decorrelation caused by various sources such
as motion of subresolution scatterers, out-of-plane motion, high compression and complex fluid motions. The
prior of tissue deformation continuity can be used to make elastography more robust to signal decorrelation.
Previous work on regularized elastography is computationally expensive.11, 12 Dynamic programming (DP) can
be used to speed the optimization procedure,13 but it only gives integer displacements. Subpixel displacement
estimation is possible,13 but it is computationally expensive if a fine subpixel level is desired. In addition, a fixed
regularization weight is applied throughout the image. However, while two ultrasound images may correlate
well in most parts, they can have small correlation in specific parts. Four examples of low correlation are: (1)
correlation decreases with depth mainly due to a decrease in the ultrasonic signal to noise ratio, (2) correlation is
low close to arteries due to complex motion and inside vessels due to blood motion, (3) correlation is extremely
low in lesions that contain liquid due to the incoherent fluid motion,10, 14 and (4) out-of-plane motion of movable
structures within the image14 causes low local correlation.

Having an imaging system that allows the surgeon to distinguish the ablation lesion from the ablated can-
cerous tumor is of significant importance. In this paper, we first calculate the displacement field between two
ultrasound images acquired before and after some compression. We then use the displacement field to calculate
the correlation coefficient between the two images. Parts of the tissue that undergo large deformation give small
correlation coefficient due to decorrelation within each window, and parts of the tissue that undergo small de-
formation give large correlation coefficient. To test this hypothesis, we perform simulation studies: using finite
element simulation, we first create a model which has two concentric lesions simulating the ablation lesion and
the cancerous tumor. We then compress the model and simulate the ultrasound images using Field II.15 Our
results show that the correlation coefficient can show the boundary between the cancerous tumor and ablation
lesion.

2. METHODS

2.1 Dynamic Programming (DP)

DP is a discrete efficient optimization technique for causal systems. In DP elastography,13 a cost function is
defined as

C(i, di) = min
di−1

{C(i − 1, di−1) + αaR(di, di−1)} + |I1(i) − I2(i + di)| , i = 2 · · ·m (1)

where di is the displacement of sample i, R(di, di−1) = (di − di−1)2 is an axial regularization term (axial, lateral
and out-of-plane directions are respectively z, x and y in Figure 2 (a)), αa is a weight for the regularization, I1

and I2 are corresponding RF-lines of before and after deformation and m is the length of RF-lines. The cost
function is minimized at i = m and the di values that have minimized the cost function are traced back to
i = 1, giving the di for all samples. We have implemented a 2D DP algorithm similar to13 to generate integer
displacements as a starting point for the next step of our algorithm.

2.2 Analytic Minimization (AM)

We now propose a method that analytically minimizes a regularized cost function and gives the refined displace-
ment field. Only axial displacements will be refined for strain calculation.



Having the integer displacements di from DP, it is desired to find ∆di values such that di +∆di gives the
value of the displacement at the sample i for i = 1 · · ·m. Such ∆di values will minimize the following regularized
cost function

C (∆d1, · · · ,∆dm) = Σm
i=1 [I1(i) − I2(i + di +∆di)]

2 +
αa(di +∆di − di−1 −∆di−1)2 + αl(di +∆di − dp.

i −∆dp.
i )2 (2)

where superscript p. refers to the previous RF-line (adjacent RF-line in the lateral direction) and αl is a weight
for lateral regularization. Substituting I2(i+di+∆di) with its first order Taylor expansion approximation around
di, we have

C (∆d1, · · · ,∆dm) = Σm
i=1 [I1(i) − I2(i + di) − I ′2(i + di)∆di)]

2 +
αa(di +∆di − di−1 −∆di−1)2 + αl(di +∆di − dp.

i −∆dp.
i )2 (3)

where I ′2 is the derivative of the I2. The above equation is a quadratic function of ∆di. Therefore, it can be
analytically minimized by setting its derivative with respect to ∆di to zero and solving for the linear system of
equations. Moreover, the coefficient matrix in the linear system is a sparse matrix, which means that solving
the system is computationally inexpensive. Details of setting up the system and solving it, as well as making it
robust to outliers via iterative reweighted least squares (IRLS) is given in.9, 16

2.3 Correlation Coefficient Analysis

In this section, we assume the displacements are known and the goal is to calculate the correlation coefficients.
Since the local strain determines the scaling factor between I1 and I2, and since scaling reduces the correlation
coefficient, we measure the strain indirectly by measuring the correlation coefficient (Figure 1). The displacement
d is calculated using DP and AM as discussed in the previous section.

Given the displacement field for the entire image, D, between reference and delayed signals due to compression,
we can extract two finite length RF signals, r1(t) and r2(t), of length 2W +1 centered around sample (i, j), that
is

r1(t) = I1(i + w, j) (4)
r2(t) = I2(i + Dz(i, j) + w, j + Dx(i, j)) w ∈ [−W, W ] (5)

where, Dz and Dx are the axial and lateral components of the displacement field, respectively. Since the
displacement estimates are made using speckle data, these two signals are relatively similar. Under ideal situation
of no decorrelation due to physical process, the estimate of maximum cross-correlation between these two signal
should be unity. However, we observe that these signals differ slightly and the primary cause is due to physical
process of variation in compression due to stiffness. The degree of decorrelation is lower in the stiffer regions
and increases in less stiffer regions.

We use maximum cross correlation of normalized signals as a measure of this dissimilarity between the two
RF data signals, which is defined as

Rr1r2(i, j) = max
2W+1

E [r1(t)r2(t + τ)]
‖r1(t)‖ ‖r2(t)‖

(6)

where E [.] is the expectation operator. The resulting image, Rr1r2 , can then be utilized to augment the strain
image based on refined displacement map discussed in sections 2.1 and 2.2. Figure 3 shows images obtained from
simulated data using a window width of 100 with 90% overlap.
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Figure 1. RF data of a speckle phantom. In (a), the window is only displaced by d. In (b), the window is both displaced and
scaled (simulated uniform scaling). The correlation between the two windows in (b) is much smaller than the correlation
between them in (a) because of the decorrelation within the window due to the scaling factor.

2.4 Correlation Coefficient Analysis in the Frequency Domain

Another measure of similarity between the two signals over the frequency spectrum is the estimate of magnitude
squared coherence, defined as

Cr̂1r̂2(f) =
|Pr̂1r̂2(f)|2

Pr̂1 r̂1(f)Pr̂2 r̂2(f)
(7)

where Pr̂1 r̂2(f) is the cross power spectrum of the two signals. Pr̂1 r̂1(f) and Pr̂2 r̂2(f) are the power spectral
densities of the two signals, respectively. We use Welch’s method for estimating the power spectral densities. r̂1

and r̂2 are normalized signals, corresponding to r1 and r2, respectively. Again, if the corresponding signals are
not decorrelated over the entire spectrum, the magnitude squared coherence would be closer to unity.

Using equation 7, we can define an image that is related to the similarity between the two signals over the
frequency spectrum as,

Ir1r2(i, j) =
F∑

f=0

|Cr̂1 r̂2(f)|2 (8)



where F = 2#log2(W )$ + 1, is the width of frequency window under consideration. Figure 4 shows the image
obtained from stimulated data using a window, W , of 100, with 90% overlap.

3. RESULTS

3.1 Image and Deformation Simulation

Field II15 and Comsol (Burlington, MA) software are used for ultrasound simulation and for finite element
simulation. Many scatterers are distributed in a volume and an ultrasound image is created by convolving all
scatterers with the point spread function of the ultrasound and adding the results using superposition. The
phantom is then meshed and compressed using finite element simulation, giving the 3D displacement of each
node of the mesh. The displacement of each scatterer is then calculated by interpolating the displacement of
its neighboring nodes. Scatterers are then moved accordingly and the second (compressed) ultrasound image is
generated. The displacement field is then calculated using the AM method and is used to calculate the correlation
coefficient.

The parameters of the ultrasound probe are set to mimic commercial 5-10 MHz probes. The probe frequency
is 7.27 MHz, the sampling rate is 40 MHz and the fractional bandwidth is 60%. A Hanning window is used for
apodization, the single transmit focus is at 22.5 mm, equi-distance receive foci are from 5 mm to 45 mm at each
5 mm, the transmit is sequential, and the number of active elements is 64.

A simulated phantom of size 20 mm x 36 mm x 10 mm is generated as shown in Figure 2. The phantom is
made of homogeneous and isotropic material. It contains two circular concentric lesions that are both harder than
normal tissue 1× 105 scatterers with Gaussian scattering strengths17 are uniformly distributed in the phantom,
ensuring more than 10 scatterers18 exist in a resolution cell.

The mechanical properties of the phantom, required for finite element simulation, are assumed to be isotropic
and homogeneous. The elasticity moduli of the background, the ablated normal tissue (at 12 mm diameter)
and the ablated cancer tumor (at 6 mm diameter) are respectively 4 KPa, 16 KPa and 30 KPa. A uniform
compression in the z direction is applied and the 3D displacement field of phantoms is calculated using ABAQUS.
The Poisson’s ratio is set to ν = 0.49 in both phantoms to mimic real tissue,19, 20 which causes the phantoms to
deform in x & y directions as a result of the compression in the z direction.

3.2 Correlation Coefficient Results

Using the simulation phantom as described in the previous section, we now apply the correlation techniques to
the simulated ultrasound images. Figure 3 shows images obtained from simulated data using a window width of
100 with 90% overlap using Equation 6. We should note that all the correlation values are negated, so that the
dark areas correspond to high correlation. This makes the images more comparable with strain images where
dark parts correpond to low strain and hard lesions.

Figure 4 shows the image obtained using Equation 8 from stimulated data using a window width of 100, with
90% overlap. This image is also negated, so that the dark part corresponds to high correlation. This makes the
images more comparable with strain images where dark parts correpond to low strain and hard lesions.

4. CONCLUSIONS
In this work, we first used the robust DP and AM methods to calculate a displacement map between the two
ultrasound images. We then consider windows of the RF data in image 1 and use the displacement map to find
their correspondence in image 2. We then calculate the correlation between the two windows. If the windows
are large enough, they will suffer from decorrelation due to scaling. We use the decorrelation coefficient to find



(a) Simulation phantom

36

20

(b) A scatterer inside the phantom

(c) Finite element axial strain (d) Finite element lateral strain

Figure 2. (a) The simulation phantom with the very hard tumor at the diameter of 6 mm and the hard lesion at the
diameter of 12 mm (all the measurements in (a) and (b) are in mm.). The elasticity moduli of the background, the ablated
normal tissue (at 12 mm diameter) and the ablated cancer tumor (at 6 mm diameter) are respectively 4 KPa, 16 KPa and
30 KPa. In (b), a scatterer is shown in the bottom left part as a red dot. Its displacement is calculated by interpolating
the displacements of its 3 neighboring nodes on the mesh. (c) Ground truth axial strain (FEM results). (d) Ground truth
lateral strain (FEM results).

the amount of decorrelation, which leads us to the scaling factor of the RF data. The scaling factor is a good
representative of the underlying strain. One disadvantage of this method is that parts of the image that suffer
from out-of-plane motion show large decorrelation and might be confused with soft tissue that has undergone
large strain. Future work will couple the AM method (which gives the outlier points) with the correlation
coefficient technique to identify and eliminate outliers, so that they are not confused with soft tissue.
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Figure 3. The correlation coefficient calculated using Equation 6. All the correlation values are negated so that the
dark part corresponds to high correlation. The very dark region in the middle is the simulated ablated tumor, and the
surrounding hard area is the ablated normal tissue. The correlation coefficient in the ablated tumor is about 0.95, in the
ablated normal tissue is about 0.80 and in the normal surrounding tissue is about 0.4. The strain is not calculated in the
right and left boundaries.
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Figure 4. The summation of the magnitude of the squared coherence, as calculated using Equation 8. All the values are
negated so that the dark part corresponds to high correlation. The very dark region in the middle is the simulated ablated
tumor, and the surrounding hard area is the ablated normal tissue. The brightness values in the ablated tumor is about
100, in the ablated normal tissue is about 40 and in the normal surrounding tissue is about 5. The strain is not calculated
in the right and left boundaries.
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