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Assessment of Rigid Registration Quality Measures
in Ultrasound-Guided Radiotherapy

Roozbeh Shams, Yiming Xiao, François Hébert, Matthew Abramowitz, Rupert Brooks and Hassan Rivaz˚

Abstract—Image guidance has become the standard of care
for patient positioning in radiotherapy, where image registration
is often a critical step to help manage patient motion. However,
in practice, verification of registration quality is often adversely
affected by difficulty in manual inspection of 3D images and time
constraint, thus affecting the therapeutic outcome. Therefore, we
proposed to employ both bootstrapping and the supervised learn-
ing methods of linear discriminant analysis and random forest
to help robustly assess registration quality in ultrasound-guided
radiotherapy. We validated both approaches using phantom and
real clinical ultrasound images, and showed that both performed
well for the task. While learning-based techniques offer better
accuracy and shorter evaluation time, bootstrapping requires no
prior training and has a higher sensitivity.

Index Terms—Radiotherapy, Image registration, Quality man-
agement, Motion management, Bootstrapping, Supervised learn-
ing.

I. INTRODUCTION

ACCURATELY targeting the pathological loci during ra-
diotherapy is crucial to ensure the treatment outcomes.

However, patient motions limit the precision with which
radiation can be applied, resulting in less effective treatment
plans. In modern radiotherapy, image guidance is used to align
and update the patient’s anatomy with the treatment isocenter,
proving better target coverage and in some cases reducing dose
to surrounding healthy tissues. Such alignment (i.e., patient
positioning) can be achieved through widely used image regis-
tration algorithms based on a number of techniques, including
external surface motion, implanted markers, X-ray imaging,
and ultrasound imaging[1], [2], [3]. Compared with X-ray
imaging, ultrasound is non-ionizing and provides good soft
tissue contrast in real time [4], and thus it has become a
popular imaging modality to track patient motions.

Radiotherapy frequently involves the delivery of radiation
dose in multiple sessions, known as fractions. Two types of
patient motions can occur, including interfraction motion (i.e.,
on each day of treatment, as the patient is positioned for that
day), and intrafraction motion (i.e., short term during radiation
delivery). Interfraction positioning affects the entire treatment
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fraction. Although it must be completed reasonably quickly,
more time is available for calculation and review. However,
intrafraction positioning, or monitoring, must be completed in
near real time to be of use. An operator often has to rapidly
verify the positioning quality during the entire duration of the
treatment, which is challenging due to time limitations and
3D nature of the images. To help ensure the quality of patient
positioning and mitigate the workload of the operator, who
may not offer consistent quality assurance, a robust automatic
method for assessing image registration quality is needed.

Most of the previous work in quality evaluation can be
broadly categorized into Bayesian and supervised learning
methods [5]. Typically in the former, a Bayesian framework
for the registration problem is proposed and a posterior
distribution over the model parameters is calculated. Next,
using the posterior, a measure of uncertainty is given. For
instance, Risholm et al. [6] proposed a Bayesian non-rigid
registration framework using Boltzmann’s distribution for the
prior and likelihood and Markov Chain Monte Carlo (MCMC)
to estimate the most likely deformation and the uncertainty as-
sociated with it. Janoos et al. [7] proposed a similar framework
which is used for image registration for multi-modal images. In
[8], the authors introduce ways to summarize the uncertainty
of an elastic registration framework which they proposed in
[9]. Simpson et al. [10] try to solve the problem of choosing
the regularization coefficient with a Bayesian approach which
also can estimate the uncertainty in the form of a covariance
matrix. As shown in [11], the uncertainty can also be used to
construct a filter to smooth the areas with higher uncertainty.

A supervised classification method was first introduced by
Wu and Samant [12] for automatic detection of unsuccessful
registrations during radiotherapy. The authors used one feature
( e.g. mutual information or cross correlation) as an input
for the classifier and the classifier itself, used a threshold
calculated based on the training data to classify different
registrations. Wu and Murphy [13] then improved their pre-
vious work by extracting more features and also using a
neural network as the classifier. Muenzing et al. [14] did a
comprehensive study of different features and classifiers that
could be of use for the task at hand and evaluated their method
on lung CT images. Finally, Sokooti et al. [15] constructed a
random regression forest to estimate the registration error of
chest CT scans and also classify based on the estimated error.

An advantage of learning methods over the Bayesian ap-
proach is the lower computational complexity for classify-
ing the registrations at runtime. This advantage makes these
methods suitable for real-time applications. However, to train
such a classifier, an appropriately sized training set is needed
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and acquiring such training set is not always feasible. An
unsupervised method may prove to be useful in such cases.

In [16], the author has taken a frequentist approach to
measuring uncertainty using bootstrapping. It is assumed
that the input images are realizations of random processes.
Given several realizations of the input images, the registration
method could be run on these images and the uncertainty can
be calculated based on the results of these registrations. Since
only one realization of the random variable, the image at
hand, is available, bootstrapping is used to simulate different
realizations. This method does not require any training
which makes it an attractive candidate for registration quality
evaluation that can be readily applied to different ultrasound
systems and even other modalities. We will therefore propose
a technique for assessing the quality of ultrasound registration
using bootstrapping, and validate it using phantom and in-vivo
data.

In this paper, we propose to use bootstrapping and su-
pervised learning methods for assessing the quality of rigid
ultrasound image registration in the context of ultrasound-
guided radiotherapy. More specifically for supervised learning
methods, we employed Linear Discriminant Analysis (LDA)
[17] and Random Forest (RF) [18] to classify the registration
quality. All methods were compared using both phantom and
in-vivo data for intrafractional prostate motion management. In
this work, we have made three major novel contributions to the
field. First, to the best of our knowledge, this is the first work
that introduces automatic registration assessment techniques
for ultrasound-guided radiotherapy, and more generally for
registration of ultrasound images. Second, in the context of
machine learning techniques, we introduced new features due
to the unique characteristics of ultrasound images. Lastly, we
compared the performance of bootstrap and machine learning
techniques for the application, which has not been reported
previously. Given that ultrasound has numerous applications
in image-guided applications, this work can be further ex-
tended and utilized in several other applications. The article
is organized as follows. In the next section the methodology
is explained. In Section III, the results are presented and are
discussed in Section IV. The conclusions are provided in the
final section.

II. METHODS

A. Registration

Assume f, g : Rm Ñ Rn to be the fixed and moving images.
Also, let Ω P Rm be a set of points from the domain of f .
We aim to find a transformation, T px, θq : Rm Ñ Rm, with
θ P Θ Ď Rd, such that fpxq corresponds to gpT px, θqq. To
calculate θ̂, the transform parameters, a cost function, Jpθq, is
constructed and θ̂ is estimated by:

θ̂ “ argmin
θ

Jpθq (1)

Jpθq “ Dpfpxq, gpT px, θqqq, (2)

where Dp.q is the dissimilarity function.

Both f and g can be considered outcomes of random
processes and therefore Jpθq is a random process and θ̂ is
a random variable.

In order to evaluate the registration results, it is necessary
to measure how close these results are to the true value. A
popular approach is to use mean Target Registration Error
(mTRE) [19], [20], [21]. Since a rigid transformation model
is used in our work, mTRE is calculated on 4 or 6 points for
2D and 3D data respectively. We define the distance between
two transforms, T1 and T2, as follows. Let tPiu be a set of N
points in the fixed image near the center of the transformation,
C, and the center itself. The points are selected by moving r
millimeters away from C in each cardinal direction; therefore
4 points in the 2D images and 6 in 3D volumes are chosen.
The distance is then defined as:

dpT1, T2q “
1

N

N
ÿ

i“1

||T pPi, θ1q, T pPi, θ2q|| (3)

In other words, the distance between two transformations is
the mean distance of the corresponding transformed points.
Calculating the distance as explained, instead of doing so on a
grid, reduces the computational complexity of the evaluation
while keeping the evaluation valid because of the rigidness
of the transform. Also by using the 4 or 6 point distance
measurement method, the comparison between ROIs with
different sizes will be equivalent.

Before we present the supervised learning and bootstrapping
techniques, it is important to clearly state what is called a
“successful” registration or “poor” registration. During regis-
tration, the optimizer either converges to an optimum or not.
If it diverges, the result is a poor registration. If it converges,
but converges to a local optima which is far from the true
parameters, the result is again a poor registration. A successful
registration is one that the optimizer converges to the correct
optimum.

B. Data Preparation

To validate the registration assessment methods, a great
number of both cases of poor and successful registrations
were needed. Both phantom and in vivo patient data were
utilized for validation. The following procedure was used to
obtain poor and successful registrations. First, a reference
registration was carried out to be used as the true registration.
For the phantom data, this registration was known a priori
with a robotic system. For the 3D patient data, as each session
represented a tracking sequence, each sequence was made into
a video showing anterior-posterior (A-P) and superior-inferior
(S-I) cuts through the center of the original prostate position.
These videos were visually inspected by experts experienced
in prostate radiotherapy to ensure that the reference registra-
tion was of high quality. To further evaluate the automatic
registration quality for the ground truths, we selected 2 image
pairs from each of the 7 treatment sessions for the patient,
and asked an expert to manually align the image pairs based
on visual inspection. In addition, for each image pair, 10
pairs of homologous anatomical landmarks were selected, and
the mean target registration error (mTRE) was obtained with
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these landmarks for both manual and automatic registrations.
The mTREs (mean˘sd) from 14 image pairs for manual
and automatic registrations are 1.91˘0.83 mm and 1.86˘1.09
mm, respectively. The difference in the results obtained from
the two approaches is not statistically significant based on a
Wilcoxon signed-rank test (p “ 0.358).

Next, the true transform parameters were moved in the
parameters space in a random direction and the registration
was restarted from that point. If the result of the new reg-
istration was within a determined distance defined by Eq. 3
(i.e., the smallest resolution of the images), the registration
result was regarded as “good”, and the initial parameters are
moved further away from the true registration result. This
was repeated until the new registration either diverges or
converges to another point far from the true result, hence
generating a bad registration. Instead of changing the reg-
istration parameters with equal step sizes along a direction
in the registration parameter space, the parameter steps for
each new starting point was defined as an increase of 2 mm
by Eq. 3. This way, the interpretation was more intuitive as
the metric was the same as the measurement of the image
resolution. Furthermore, these incremented registrations were
selectively inspected by clinical experts who are experienced
in prostate radiotherapy. As such, a set of successful and
poor registrations were generated from an initial limited set
of inspected, good registrations. This procedure is depicted in
Fig. 1, and instances of good and failed registration results
for the patient data are demonstrated in Fig. 2. Here, the
moving image was moved in the parameter space until a failed
registration occur while the fixed image was kept the same.
The successful registration visibly improved the alignment of
the walls of the bladder and prostate.

C. Supervised Learning Methods

There are numerous classifiers available in the literature; we
chose two for our experiments: LDA [17], a simple classifier,
and RF [18] as a state-of-the-art classifier. As with other
supervised learning methods, this requires feature extraction,
training and validation.

1) Feature Extraction: There may be a trade-off between
calculation time and discriminative value of a feature. The
ideal feature would cost no additional calculation. We selected
a subset of 10 features from a pool of features for training
and classification. This selection was done based on feature
importances (Gini importance [18]) resulting from an RF
classifier using all the features.

The registration is implemented by optimizing the negative
Normalized Cross-Correlation(NCC) between a selected set
of pixels in the reference and target images. The resulting
optimal NCC can be used as a criterion for distinguishing
between successful and poor registrations. This measure costs
no additional computation, as we are already computing it.

Let fi “ fpxiq and gi “ gpT pxi, θ̂q represent the fixed
and moving image intensities where txiu is the set of points
used to calculate the NCC and T px, θq : Rm Ñ Rm is the
transformation. N is the number of pixels (i.e. the number of

Fig. 1: Generating poor and successful registrations. The green
dot shows parameters of the correct registration. Each arrow
shows the start of a new registration process. In this schematic
example, three registrations converge to the correct result, and
one converges to an incorrect result (red dot). The green circle
shows the area wherein the registration is still considered
successful.

points in txiu. The NCC can be calculated in a single pass
over the image using:

NCC “
Sfm ´ Sf ¨ Sg{N

Cf ¨ Cg
(4)

where

Sf “
ÿ

i

fi Sg “
ÿ

i

gi

Sff “
ÿ

i

fifi Sfg “
ÿ

i

figi

Sgg “
ÿ

i

gigi

These sums can be accumulated during a loop over the
pixels. Note that Sff , Sf and N are not necessarily constant,
as some of the reference pixels may map outside of the moving
image and will therefore be excluded from the calculation.
From these, we can compute the contrast of each image, Cx,
using:

Cx “
a

Sxx ´ Sx ¨ Sx{N (5)

and the NCC using Equation 4. An advantage of calculating
the NCC this way is that each part can be used as a feature.
It was conceivable that one or more of these measures were
more distinctive than correlation alone. There is no additional
cost to these measures as they are already computed.

The Distinctiveness of Optimum (DO) [22] was used to-
gether with Mirror Symmetry (MS) in [13]. It is an average
descriptor of the shape of the dissimilarity function around the
found solution. It requires 2U evaluations of the dissimilarity
measure over the registration cost function J with respect
to each registration parameter in the positive and negative
directions. Here, U is the number of registration parameters,
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Fig. 2: Demonstration of good and bad registration results for
the patient US data. The fixed image (cyan) and moving im-
ages (yellow) are overlaid to show the quality of registration.
(a) shows the fixed image along with the anatomical annotation
and the orientation of the image with respect to the patient. (b)
shows a failed registration (left: before registration; right: after
registration). (c) shows a case of successful registration (left:
before registration; right: after registration). Here, the white
arrows point to the wall of the bladder.

and U “ 6 for rigid registration. Therefore, the DO metric is
defined as:

DOpsq “
1

2sU

ÿ

u

´Jpθ̂ ´ seuq ` Jpθ̂ ` seuq

2
´ Jpθ̂q

¯

(6)

where s is the step size, θ̂ are the optimal parameters, J is the
cost function to be optimized for registration and eu is a unit
parameter vector in direction u.

The Mirror Symmetry (MS) [13], [23] is a measure of the
evenness of the shape of the similarity function around the

found solution. Letting

J̄u “
Jpθ̂ ´ seuq ` Jpθ̂ ` seuq

2
, (7)

MS can be calculated as:

MSpsq “

1

2P

ÿ

u

´

pJpθ̂ ´ seuq ´ J̄uq
2 ` pJpθ̂ ` seuq ´ J̄uq

2

pJpθ̂q ´ J̄uq2

¯

.

(8)

It can be generated from the same samples as the distinctive-
ness of optimum.

An indication of a good registration is that the correlation
score at one step size away in any direction from the found
location is significantly worse. Therefore, we also include
individual cost evaluations as features. For the convenience
of annotation in the later sections, we name these evaluations
as

tDissimProbesr2ks, DissimProbesr2k ` 1su

where
DissimProbesr2ks “ Jpθ̂ ` seuq

DissimProbesr2k ` 1s “ Jpθ̂ ´ seuq.

and
k “ 0, 1, ..., U ´ 1.

With k “ t0, 1, 2, 3, 4, 5u corresponding to the probing of
J in the direction of each of the transformation parame-
ters (3 rotations and 3 translations), we obtained the eval-
uations as DissimProbesr0s to DissimProbesr12s. Here,
DissimProbesr.s is short for “Dissimilarity Probes”.

In a successful registration, it is expected for all the pixels
in the ROI to be registered equally well. To quantify this,
the ROI is divided into orthants and the correlation score
is calculated for each. In a poor registration, the correlation
score varies between the orthants. Therefore, several measures
of quality can be considered regarding this. The individual
orthant scores (OrthantScores), the maximum and minimum
score (MaxOrthantScores and MinOrthantScores) and finally,
the score difference between the maximum and minimum
(OrthantScoreRange).

Instead of treating the two intensity distributions as identi-
cal, we can instead examine the joint distribution of intensity.
The Mutual Information (MI) of this joint intensity distribution
is a commonly used similarity measure. We did not use it
to construct the cost function because our work is focused
on mono-modal registration. In addition, MI costs more to
compute than the above, as it involves keeping track of a joint
distribution.

If the images are correctly aligned, it is reasonable to
presume that the corresponding set of pixels in the fixed and
the moving images have similar intensity distribution. The
Kullback-Leibler divergence [24] can be used to quantify
the difference between the two distribution functions and
therefore is used as a feature.
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Fig. 3: An overview of bootstrapping for registration eval-
uation. Xpbq shows different multisets, and θ̂pbq denotes the
results of the registration using each multiset. The grayed out
pixels on the left show selected pixels for registration (possibly
more than once). The green dots show the correct registration
parameters, and the red dots represent registration results (i.e.
θ̂pbq). In a poor registration, θ̂pbq are expected to be more
dispersed than a successful case.

2) Training and validation: As mentioned before, we used
LDA and RF to classify the registrations. Here, half of the
total data were used as a testing set, and the other half was
used to train the classifiers through a 4-fold cross-validation
process (training set vs. validation set ratio = 3:1). The ma-
chine learning algorithms and validations were implemented
in scikit-learn package, version 0.17 [25].

D. Bootstrapping

Bootstrap resampling is a technique that can be used to
estimate the properties of an estimator, such as mean, variance,
etc. [26]. Assume a random variable X with N i.i.d samples
X “ tx1, . . . , xnu drawn from it. A bootstrap resample, Xpbq,
is a multiset constructed by selecting N points from X with
replacement. This is repeated B times, thus leading to B
multisets: Xpbq, b “ 1, . . . , N .

Assume a statistic on X , ϑ, and its estimator ϑ̂ « ϕpXq.
Our goal is to measure the reliability of this estimator. This can
be done by finding the estimates of ϑ based on each bootstrap:
ϑ̂pbq “ ϕpXpbqq. These bootstrap values can be used to form
a non parametric distribution on the estimates which can be
used to express a measure of reliability, such as the covariance
matrix.

E. Bootstrapping for registration evaluation

Image registration can be thought of as an estimator of the
transformation parameters, θ. Therefore we can use bootstrap-
ping to measure the reliability of this estimator similar to what
was explained in the previous section [16]. In our case, we
use the result of bootstrapping to classify the registration as
reliable and unreliable.

To this end, it is needed to solve B registration problems,
based on each bootstrap:

J pbqpθq “ Dpfpxq, gpT px, θqqq, x P Ωpbq (9)

θ̂pbq “ argmin
θ

J pbqpθq (10)

where Ωpbq is a bootstrap resample. From here, the measure
of dispersion on θ̂pbq can be calculated.

d̄B “
1

B

B
ÿ

b“1

dpT px, θpbqq, T px, θ̄Bqq (11)

where θ̄B is the mean of parameters resulting from bootstraps:
mean θpbq. In order to exclude outliers from the calculations,
the trimmed mean [16] is used: the furthest 10% of the results
from the mean bootstrap result is taken out and the mean is
recalculated accordingly. If this dispersion measure is higher
than a threshold τ , then the registration is poor and if not,
successful. In other words, if we are not able to estimate
the registration parameters with sufficient confidence through
the sampling process, then a single registration is likely to
provide a bad image alignment that is far off the optimum.
Note that for each bootstrap sampling, only a portion of
the pixels/voxels were randomly selected for registration. To
facilitate easier interpretation of the dispersion measurement,
instead of measuring the metric in the registration parameter
space, we employed Eq. 3 to evaluate the transform distance.
This way, the mean transform distance is in the same spacing
unit as the images or volumes, the threshold can be set based
on the resolution of the data and according to what accuracy
is needed.

Figure 3 shows a general overview of the bootstrapping
scheme for classifying registrations and Algorithm 1 describes
an in depth implementation.

Algorithm 1 Bootstrap resampling for image registration
quality evaluation

1: for b=1 to B do
2: S Ð empty multiset
3: for i=1 to N do
4: Ωpbq Ð Ωpbq Y txku; k „i.i.d t1, . . . , Nu
5: end for
6: J pbqpθq=Dpfpxq, g1pxqq, x P Ωpbq

7: θ̂pbq Ð argmin
θ

J pbqpθq

8: end for
9: Calculate d̄B from {θ̂pbq; b “ 1 . . . N}

10: if d̄B ą τ then
11: poor registration
12: else
13: successful registration
14: end if

F. Experimental setup

We compare the two approaches using experiment data
and patient data. For the experimental data, 2D images were
acquired with a Clarity (Anticosti Research Version, Elekta
AB, Stockholm, Sweden) monitoring system with a linear
ultrasound probe. The patient data was collected with the
Clarity system (Version 3.0) with a wobbler probe, providing
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Fig. 4: The experiment setup. The phantom, ultrasound probe,
the tracked markers and the robot can be seen.

a sequence of 2D images in a sweeping pattern and thus
forming a 3D volume. The 2D phantom data were collected
using translational motions by a robotic arm. With better con-
trolled ground truths, this approach is ideal for preliminarily
testing the proposed techniques. Then, we further validated the
methods with 3D patient data under full rigid body motions
in order to reveal their performance for potential real clinical
applications.

G. Phantom study

We imaged a Clarity QC phantom (Elekta AB), with the
ultrasound probe attached to a Cartesian gantry robot (Velmex,
Inc. Bloomfield, NY, USA) to control the probe movements.
A laser level was used to set the orientation of the probe so
that a) the image plane and the motion plane of the probe
would be parallel and b) the probe would be perpendicular
to the surface of the phantom. The former is to minimize any
movement not on the image plane and the latter, to assert only
translation in one dimension of the images. The probe was
also tracked with a Polaris Spectra optical tracking system
(Northern Digital Inc, Waterloo, ON, Canada); this was used
so that the true probe translation would be available (within the
precision of the tracker). Moreover, the tracking information
was used to ensure correct movement of the probe. Figure 4
shows the experimental setup.

The following procedure was used to acquire the images.
First between 15 to 20 frames were captured. The probe was
moved then in the lateral direction for 10, 15, or 20 mm. After

each translation, another 15 to 20 frames were captured and
the two image sets, from before and after the translation, were
registered.

This was repeated for 8 different runs. Between runs, the
amount of probe movement, the settings of the ultrasound
machine, the part of the phantom which was imaged and
the medium (gel or water) were changed to produce a wide
range of images with different qualities. To have more variety
in registrations, image sets from different runs were also
registered. These image sets were chosen so that they would
be images from the same structure in the phantom, with the
same orientation of the probe. The difference between them
being the settings of the ultrasound machine. Good and bad
registrations were generated with the procedure described in
Section II.B. As a result, 1688 sets of registrations were used
for supervised learning methods, and 3376 sets for testing
bootstrapping. The good vs. bad ratio is about 4:1.

For the supervised learning methods, features were extracted
and different classifiers were trained and evaluated. Bootstrap-
ping was also carried out, with 20 bootstrap resamples and
τ “ 0.14 mm. τ was chosen based on the pixel size, which
was 0.14 mm in this experiment.

H. Patient Trials

For the experiment, ultrasound data were collected from one
patient acquired during a previously scheduled and planned
radiotherapy treatment session for the prostate [27]. The data
were acquired using the same scanner mentioned in the
previous section, and included 7 separate treatment sessions
to help increase the variability among the images. Imaging in
each session lasted about 4-10 min. The patient images were
acquired in the context of an Institutional Review Board (IRB)
approved clinical study, and were not used to make clinical
decisions. The patients were undergoing radiation treatment
and as such had bladders comfortably full and rectums empty,
increasing internal patient anatomy uniformity with radiation
planning CT studies. During each session, the patient was
positioned supine, legs akimbo, with the probe imaging via
the perineum. In this scan position, the prostate can be imaged
between the pelvic bones. The probe position was adjusted to
obtain a good image of the prostate with, and fixed in place.
The patient was instructed not to voluntarily move during the
procedure. The probe continuously sweeps the image plane,
forming a continuously updated 3D dataset, and a total of
2193 images were acquired from all the sessions. Intrafrac-
tional target tracking is performed by registering the current
3D dataset to the first reference dataset and the quality of
registration was visually inspected by a clinical expert.Using
the same procedure, we generated a set of good and bad
registrations, and used them to compare the learning methods
against bootstrapping. For bootstrapping, 43328 registrations
were used, and for supervised learning, 21664 were used. The
ratio between good and bad registrations is about 4:1. Since
the resolution of the volumes were different from that of the
experiment images, the threshold, τ was set to 0.4 mm, which
is the axial voxel resolution of the volumes.
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Fig. 5: Feature importance according to RF. (a) shows the
feature importance for the 2D experimental data and (b) for
that of the patient data. The features above the dashed lines
are those chosen for classification.

Registration was performed using the Insight Toolkit (ITK)
[28] parametric registration framework by optimizing the
Normalized Cross Correlation (NCC) computed over the
selected pixels using gradient descent (specifically the regular
step gradient descent optimizer in ITK was used) and linear
interpolation. In the 3D case, the images are collected on
a fan-shaped geometry. To avoid unnecessary interpolation
errors the images were directly registered as originally
sampled (i.e., in the fan shape) using the methodology
described in [29]. For the experiment, 35% of the pixels in
the ROI were randomly selected to build the cost function.
Also, a translation transformation model was used since the
movement was in one direction. For the 3D data, 20,000
voxels were used to construct the cost function. As for
the transformation model, one was used to accommodate
the non-rectilinear image frames which is the result of
using a wobbler probe [29]. The supervised learning methods
were implemented in Python using the scikit-learn library [25].

III. RESULTS

A. Feature selection

The feature importances for the 2D and 3D data can be
seen in Figures 5(a) and 5(b) respectively, and the features
shown in the figures above the dashed lines are selected to
be used for the classifiers. Although DO was ranked as the
most prominent feature for both cases classifying good and
bad registrations, the rest of the features differ.

B. Registration evaluation

The results for registration evaluation using bootstrapping
and machine learning methods are shown in Table I for
both 2D phantom and 3D patient data. In our experiments,
supervised learning methods outperformed the bootstrapping
method in terms of accuracy. An advantage of using bootstrap-
ping is that it does not require training data for classifying
at the expense of lower classification accuracy and higher
computation complexity. Another advantage of the bootstrap-
ping method is the higher sensitivity of 99.92% compared
to 96.15% and 96.95% for LDA and RF respectively for
the patient data. This makes bootstrapping a reliable method
for ensuring the registration is yielding correct results. To
further demonstrate the performance of the techniques, their
receiver operating characteristics (ROC) curves for assessing
the registrations of patient data are shown in Fig. 6.

IV. DISCUSSIONS

For supervised learning techniques, we have explored exist-
ing features and explored new ones for classifying good and
bad registrations. For the 2D and 3D data, the selected features
differ greatly, and this is likely a result of the differences in
image dimensions, imaging contents, as well as the degrees
of freedoms in registration. From Table I, we have observed a
superior registration assessment quality when using machine
learning approaches than bootstrapping. Besides the inherent
power of machine learning techniques, the phenomena may
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2D 3D

BOOT LDA RF BOOT LDA RF

ACC 86.54% 99.35% 99.76% 87.45% 96.97% 97.73%
MCC 66.58% 97.63% 99.14% 75.14% 92.42% 94.29%

TP 16.19% 15.94% 16.47% 26.94% 25.92% 26.14%
TN 70.35% 83.41% 83.29% 60.51% 71.05% 71.59%
FP 12.80% 0.06% 0.18% 12.53% 1.99% 1.45%
FN 0.65% 0.59% 0.06% 0.02% 1.04% 0.82%
N 3376 1688 1688 43328 21664 21664

Sensitivity 96.12% 96.42% 99.64% 99.92% 96.15% 96.95%
Specificity 84.60% 99.93% 99.79% 82.84% 97.28% 98.02%

TABLE I: ACC and MCC are accuracy and Mathews Cor-
relation Coefficient (MCC) [30]; TP,TN,FP and FN are per-
centages of true positive, true negative, false positive and false
negative relative to the total number of samples, N. Sensitivity
(true positive rate) and Specificity (true negative rate) of the
classifiers are also included

Fig. 6: ROC curves of different registration assessment meth-
ods for the 3D patient data.

be partially explained by the employed data that lacked high
variability. For the 2D data, the images were collected from
the same phantom. Although for the 3D data, the images
were obtained from seven different treatment sessions, the
variabilities due to diseases and individual anatomy of the data
are relatively low. Thus, we postulate that this limitation may
cause the evaluation results to be slightly better. However, this
does not mean that the classifiers were over-fitted in the scope
of the data. We will examine our methods based on multiple
patients’ data in the future. In order to translate the proposed
machine learning methods to clinical applications, data will
be gathered from more patient cases and also from human
volunteers, and the classifiers will be retrained to improve
their generalizability. In the case of volunteers, a wider range
of imaging settings and patient motions can be explored, as
there is no risk of affecting the patient’s treatment. Therefore,

it is not required to retrain the system for every new patient.
Aside from the distances from the ground truth image

alignment, there can be other factors, such as image noise,
that can influence the registration quality. In our experiments,
we have attempted to incorporate variability in image quality
in both phantom and patient data through varying image set-
tings and obtaining images from different treatment sessions,
thus incorporating the factors in the experiments implicitly.
Explicitly analyzing the effect of individual factors, which
require meticulous control during data acquisition and are very
difficult to isolate for patient data, is out of the scope of this
work. However, the potential of the proposed techniques has
been demonstrated with real clinical data.

Both approaches mentioned in the paper have advantages
and disadvantages and therefore both can be viable choices
depending on the application. The supervised learning ap-
proach has higher classification accuracy and is faster. More
specifically, for each registration to be assessed, the boot-
strapping takes around 18 seconds while the machine learning
methods take less than 1 second. Note that the algorithms
were implemented on a Window7 desktop computer with a
16GB RAM and an Intel core i7-4770@3.40GHz processor.
The bootstrap method does not require training data, is less
accurate, and has a higher computational cost. As a result,
supervised learning methods are a better fit for intrafraction
motion management, where speed and accuracy are critical.
Nonetheless, bootstrapping can still be considered for this
application. Since the calculation of each bootstrap result is
independent of the other, it is possible to run the registrations
in parallel and reduce the runtime. Moreover, bootstrapping
is also applicable in cases where the timing requirements for
registration validation are not as strict as the target tracking
itself, whereby it can be calculated independently from the
registration. Bootstrapping is a more natural fit for interfraction
registration wherein the algorithm does not need to run in
real time. Also, as the patient is positioned, if a reliable
registration can not be performed, the registration setup could
be modified until the registration can be reliably carried out.
Due to the variation of the images from each day, acquiring
the interfraction training data for supervised learning methods
that generalize well would be a challenging task, which makes
bootstrapping a better choice for this application.

A contributing factor in bootstrapping having lower accu-
racy is the relatively higher FP rate. Upon further investigation,
we realized these FPs occur at steps close to where the
registration fails when the initial parameter is far from the
true registration. However, due to the randomness involved
(the pixel selection), the registration result is successful. An
example of this is given in Figure 7. In Figure 7(a), a case
of TP can be seen. The initial registration parameter is far
away from the true registration parameters (at step 4) and
therefore the result is a poor registration. By inspecting at the
mean bootstrap distance, the same can be deduced. In Figure
7(b), the registration is poor at step 4, however, judging by
the bootstrap result, it seems that the registration was poor
from step 3 onwards. Although the registration at step 3 was
successful, it was not reliable and had a good chance of failing.
Using bootstrapping enables us to detect these cases. From a
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technical perspective it adds to the number of false positives,
but from a practical perspective it ensures that the registration
result is reliable.

(a)

(b)

Fig. 7: Figures showing the registration error as the initial
parameters are moved further away from the true result. The x-
axis shows the number of steps away from the true registration
parameters. (a) and (b) were generated from different bootstrap
sampling of the same image pair.

It should be acknowledged that bootstrapping cannot detect
the bias as briefly mentioned in [16]. For instance if the
minimum of the cost function is at a distance from the
true parameters, caused by the interpolation for example,
bootstrapping would fail to detect the bias. In this work, we
have intentionally neglected the bias. As shown in [16] bias
of image registration algorithms is often quite small, and in
this work, we adopted the same assumption as in [16].

We focused on rigid registration to follow the intrafrac-
tion motion of the prostate for two main reasons. First, in
most current radiotherapy workflows in the clinic, only 3
dimensional (translational), or in certain cases, 6 dimensional
(3 translations & 3 rotations) patient positioning is possible.
Adaptation of the dose delivery plan to account for deformed
anatomy remains an open research problem. Second, for the
in vivo data collected, no rectal probe or balloon is used.
Under these conditions, while some nonlinear deformation
may occur, the majority of the motion can be described by a
combination of rotations and translations [31]. Deformations
of the prostate during treatment are considered relatively small

with respect to the margins in use. To help select features
for supervised learning methods, we employed RF, which
has been employed previously in image feature selection in
medical image analysis [32], [33] and offered satisfactory
results. While there are also many other techniques for feature
selection, a comprehensive comparison is out of the scope of
this article and will be studied in a future work.

V. CONCLUSION

In this work, we proposed to use bootstrapping and su-
pervised learning methods (i.e., LDA and RF) to assess
ultrasound registration quality. By using both phantom and real
clinical data, the two categories of methods were evaluated and
compared against each other. While both bootstrapping and
supervised learning methods demonstrate good performance,
the latter showed better accuracy. In addition, we explored
existing features and devised new features that are essential
given the unique characteristics of ultrasound images to ro-
bustly evaluate the registration quality using machine learning
methods. To the best of our knowledge, it is the first time
that automatic registration assessment techniques are proposed
for ultrasound imaging, which is widely used in image-guided
procedures.
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