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Ultrasound Elastography using

Pyramidal Convolutional Neural Network
Ali K. Z. Tehrani, Hassan Rivaz

Abstract—In this paper, two novel deep learning methods are
proposed for displacement estimation in ultrasound elastography.
Although Convolutional Neural Networks (CNN) have been very
successful for displacement estimation in computer vision, they
have been rarely used for ultrasound elastography. One of the
main limitations is that the Radio Frequency (RF) ultrasound
data, which is crucial for precise displacement estimation, has
vastly different frequency characteristics compared to images
in computer vision. Top-rank CNN methods used in computer
vision applications are mostly based on a multi-level strategy
which estimates finer resolution based on coarser ones. This
strategy does not work well for RF data due to its large high
frequency content. To mitigate the problem, we propose Modified
Pyramid, Warping and Cost volume Network (MPWC-Net) and
RFMPWC-Net, both based on PWC-Net, to exploit information
in RF data by employing two different strategies. We obtained
promising results using networks trained only on computer vision
images. In the next step, we constructed a large ultrasound
simulation database, and proposed a new loss function to fine-
tune the network to improve its performance. The proposed
networks and well-known optical flow networks as well as state-
of-the-art elastography methods are evaluated using simulation,
phantom and in vivo data. Our two proposed networks sub-
stantially outperform current deep learning methods in terms of
Contrast to Noise Ratio (CNR) and Strain Ratio (SR). Also,
the proposed methods perform similar to the state-of-the-art
elastography methods in terms of CNR and have better SR by
substantially reducing the underestimation bias.

Index Terms—Ultrasound elastography, Displacement estima-
tion, Optical flow, Convolutional neural network, PWC-Net.

I. INTRODUCTION

Ultrasound imaging is being increasingly used as an in-
expensive and easy-to-use imaging modality in numerous
diagnosis and image-guided intervention applications. Ultra-
sound elastography (USE) is an imaging technique that reveals
viscoelastic properties of tissue, and has been applied to
many applications including breast lesion characterization [1]
and ablation monitoring [2]–[5]. USE compliments B-mode
ultrasound by providing biomechanical properties of the tissue
[6].

Among different USE methods, free-hand palpation has
gained much popularity due its simplicity, low cost and ease-
of-use. The basic idea of free-hand palpation method is that the
operator compresses the tissue by the ultrasound probe. The
images before and after compression are compared to obtain
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the displacement of each individual sample. This displacement
can be used to obtain strain map which has relative elasticity
information [7], [8]. The quality of USE mainly depends on
the fidelity of the displacement estimation. Window-based [8]–
[12] and optimization-based [13]–[15] methods are two main
approaches for displacement estimation in USE. Window-
based methods try to find the displacements of each individual
sample by considering a window around the sample in pre- and
post-compression images and assuming that the displacement
within the window is constant. In the next step, a similarity
metric such as Normalized Cross Correlation (NCC) is chosen
to find the corresponding windows [8], [9]. Optimization-
based methods use a regularized cost function to find the
displacements, therefore they are more robust to signal decor-
relation and out of plane motion [13], [16], [17]. GLobal
Ultrasound Elastography (GLUE) is a recent optimization-
based method [14] with an implementation available online
at code.sonography.ai. GLUE aims to estimate sub-pixel dis-
placement and requires initial estimate of the displacement
which is obtained by dynamic programming (DP) [15]. The
displacement estimation in USE can also be viewed as a non-
rigid registration [18] or optical flow problem [19]–[21].

Convolutional Neural Network (CNN) models have been
successfully trained to perform many applications such as
classification [22] and segmentation [23]. Recently, CNN has
been used for optical flow problem [24]–[27]. FlowNet is
among the first attempts to extract optical flow using deep
learning architectures [25]. Before FlowNet, patch- and point-
based deep learning methods were used. These methods were
only able to extract optical flow of a point or a small patch of
the images. As such, they were computationally expensive as it
was necessary to run them many times to cover the entire im-
age. Two variants of FlowNet were proposed [25]: FlowNetS
and FlowNetC. FlowNetS has a U-shape architecture with a
contracting and an expanding path, and as such, shares many
similarities with U-Net [23]. FlowNetS uses coarse outputs
in the refinement section to build the finer outputs and uses
multi-scale loss function for optimization. FlowNetC is the
other variant of FlowNet that differs from FlowNetS only in
the contracting part. Instead of concatenating input images
and using a U-shape network, it extracts features of each
input separately and exploits a correlation layer to merge
information from features of the two images. Although they
reported better performance with FlowNetS, Mayer et al. [26]
show that with better learning schedule and more training data,
FlowNetC outperforms FlowNetS.

http://code.sonography.ai
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Following the success of FlowNet, Mayer et al. [26] stack
several FlowNetS and FlowNetC to improve the accuracy
of FlowNet. They show that the optimum architecture is to
use FlowNetC as the first block, followed by two FlowNet
blocks. This architecture is called FlowNet2CSS. In order to
improve the network accuracy for small displacements, another
FlowNet is used and it is trained on a database with small
displacements. A fusion network is then proposed to fuse the
outputs of FlowNet (trained to provide small displacements)
and FlowNet2CSS. This network called FlowNet2 achieves
outstanding performance and is the first CNN architecture
that outperforms traditional optical flow algorithms. FlowNet2
performs well but with one drawback. It has many parameters
(around 160 million), which makes training difficult and
renders inference both computationally expensive and memory
exhaustive.

Designing a network with fewer parameters is an active
field of research. Ranjan and Black [27] proposed Spatial
Pyramide Network (SPynet), which has much lower number
of parameters but with an accuracy close to that of FlowNet.
Recently, Pyramid, Warping and Cost volume Network (PWC-
Net) [24], [28] was proposed, which not only has fewer
number of parameters (around 9 million), but also achieves
slightly better accuracy compared to FlowNet2. The main
idea of PWC-Net is to use pyramidal structure to estimate
the optical flow in each level and warp the features by the
estimated flow to reduce the search range of the next level.
This network utilizes cost volumes (similar to correlation
layer) in each pyramid level to extract correlation between
features of the two images, and unlike SPynet, warps the
features of the second image instead of the image itself. The
Table I summerizes the well-known optical flow networks
introduced in this paper.

There are two important differences between USE displace-
ment estimation and optical flow that limits the use of optical
flow CNN models: 1) Accurate subsample displacement esti-
mation is paramount in USE; 2) RF data is characteristically
different from images in computer vision because it has a very
large frequency content. Therefore, any optical flow method
used for USE must preserve and utilize the information of high
frequency RF data for an accurate and robust displacement
estimation. USE is a new and less explored deep learning
application in medical image processing. Only a few papers
tried to apply neural networks for USE [19]–[21], [29], [30].

A deep learning architecture was proposed by Wu et al.
[29] to estimate displacement and strain. A patch around the
sample of interest is fed to the network and the displacement
and the strain of the patch are estimated. Gao et al. [20]
further improved this network by introducing Learning-Using-
Privileged-Information (LUPI). LUPI uses displacement as
the intermediate loss, and results in better generalization and
higher accuracy compared to [29], as well as non-deep learning
approaches of DP [15] and optical flow [31]. The main
drawback of the networks is that in order to compute the strain
and the displacement of an image pair, it is required to run
the network many times since this network only takes small
patches as the input. In [19], [32], we used FlowNet2 for USE.
But since the displacement estimates were not precise even

after fine-tuning with Field II simulations [33], [34], they were
used as the initial estimator for GLUE, replacing dynamic
programming [15] with FlowNet2. In [21], FlowNetCSS is
used for USE and it was shown that using simulated images
for fine-tuning can be beneficial. The main contribution of our
work can be summarized as:

• Two networks, namely Modified Pyramid Warping and
Cost volume Network (MPWC-Net) and RFMPWC-Net
are proposed for USE, both based on PWC-Net. Both of
our proposed networks substantially outperform PWC-
Net in USE.

• FlowNet2 has been recently exploited for USE [19],
[21]. Our proposed networks are based on PWC-Net, and
have more than 10 times fewer parameters compared to
FlowNet2 while substantially outperforming it in USE.
This is paramount as GPU memory is often a critical
bottleneck.

• A fine-tuning strategy and a loss function are proposed to
improve the displacement estimation and the correspond-
ing strain quality using simulated data.

• The performance of top optical flow CNNs in USE is
presented and analyzed.

We have already put the simulation database generated as part
of this manuscript online at data.sonography.ai for reviewers.
Similar to our previous work [14]–[16], we will put the
network and the tuned weights at code.sonography.ai after
acceptance of this manuscript.

II. METHODS

A. PWC-Net

The core ideas of PWC-Net are to utilize pyramid structures,
cost volume and a refinement network. This leads to substan-
tial reduction of number of the parameters and improvement
in the accuracy. Using the pyramid structure reduces the dis-
placement required to be estimated in each resolution, resulting
in a smaller search range. The coarser resolution finds large
displacements and removes these displacements by warping
the second image features with the estimated displacements,
and the finer resolution estimates the smaller displacements
from the warped image. Unlike FlowNet2 that warps the
moved images, PWC-Net warps the features of the moved
images so that fewer number of parameters are required for
optical flow estimation. PWC-Net utilizes cost volume in each
pyramid level. Unlike FlowNet2 that uses correlation layer
(cost volume) only as the first block and reports over fitting
by using more correlation layers, PWC-Net uses cost volume
in all pyramid levels, substantially reducing the number of
parameters. Finally, PWC-Net employs a refinement network
which is a post processing stage to improve the quality of
the estimated optical flow in the last pyramid level [24], [28].
As shown in Fig. 1, PWC-Net is composed of 4 different
blocks: feature extraction, warping and cost volume, optical
flow estimation and refinement network.

To compute each pyramid output, first the input images
are fed into a CNN in order to extract features from the
image pyramid, transforming it to a feature pyramid. Then the
warping block warps the second image feature map toward the

http://data.sonography.ai
http://code.sonography.ai
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TABLE I: Summary of some recent optical flow networks. M represents million.

Network Publication Date Description Number of Learnable Weights (Approximately)

FlowNet [25] 2015 An optical flow CNN with two variants of FlowNetS and FlowNetC. 38M

SpyNet [27] 2016
Uses image warping and pyramid structure to decrease

number of parameters (much lighter than FlowNet). 1.2M

FlowNetCSS [26] 2017 Built upon FlowNet by concatenating a FlowNetC and two FlowNetS networks. 124M

FlowNet2 [26] 2017 Composed of a FlowNetCSS and a small displacement FlowNet. 162M

PWC-Net [24], [28] 2017, 2018
Uses feature warping, cost volume and refinement network

in a pyramid structure to have high accuracy
and a moderate number of parameters.

9M

*

*

*

*

Feature Extraction 

Warping and Cost Volume  
Optical flow prediction

* Up sampling

Estimated Flow
[m/4 × n/4 × 2]

Input Images
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Optical flow refinement
Concatenation

*

*

*

*
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[m/16 × n/16 × d3]

[m/32 × n/32 × d4]

[m/64× n/64 × d5]

16 Channel, Stride = 2
16 Channel, Stride = 1
32 Channel, Stride = 2
32 Channel, Stride = 1

Each Input Image

Fig. 1: PWC-Net structure. The feature extraction layer of the
final pyramid is outlined by a red box (all kernels in the box
are 3×3). m, n, dx denote image size in axial direction, lateral
direction and number of channels of the corresponding layer,
respectively.

first one. At the next step, a cost volume is created using the
first image feature map and the warped one. This cost volume
is then used as an input to the optical flow estimator block
in order to estimate the flow. Finally, a refinement network is
used to post-process the optical flow. The loss function used
in PWC-Net is a multi-scale loss defined in [24]:

L(Θ) =

L∑
l=l0

αl(‖Dl
Θ(x)−Dl

GT (x)‖q) + ‖Θ‖2 (1)

where Θ represents the learnable parameters and Dl
Θ and Dl

GT

denote the estimated and the ground truth flows at the lth level,
respectively. This is a regularized loss function where q < 2
is chosen to give less penalty to outliers. Also, ‖Θ‖2 is the
weight decay which encourages the learnable weights to have
small magnitude in order to improve the generalization of the
network. For each output resolution, a weight is considered to
contribute (α) in the loss function. Generally, higher weights
are given to coarser outputs since coarser outputs contribute
to build finer ones. The coarse outputs are employed as

intermediate losses, and the corresponding ground truths are
obtained by down sampling the displacement.

B. Proposed Methods for USE
It is common to modify a well-known network for a specific

task. As an example, in [35], VGG-16 and ResNet-101 are
modified for semantic segmentation by changing the dilations
and strides of the convolution layers. In this work, PWC-Net
structure is modified for USE wherein accurate subsample
displacement estimation using RF data is critical.

PWC-Net contains feature extraction, cost volume and op-
tical flow estimation layer for each pyramid. There are 5 levels
and the coarser levels contribute to the estimation of finer
resolution levels. As depicted in Fig. 1, the output size is 4
times smaller than the input images. The feature extraction
part of the final pyramid level (the first feature extraction layer
with red outline, shown in the box) downsamples the input by
a factor of 4 using two convolution layers with stride = 2.
The downsampling of the input images is quite reasonable for
computer vision images since there is negligible information in
high frequencies. This downsampling reduces the computation
complexity, improves the network robustness to noise, and
more importantly decreases the displacement and the required
search range of the cost volume. However, in USE, accurate
subsample displacement estimation is essential and there is
valuable phase information in high frequencies, rendering
this downsampling detrimental. To cope with this issue, we
replace the first two convolution layers with stride = 2
with convolution layers with stride = 1. This modification
provides more information related to displacement estimation
for each pyramid level, and useful features can be obtained
from high frequency RF data.

An important aspect is the input of the network. RF data, B-
mode image and envelope of RF data can be used for displace-
ment estimation. Generally, RF data is the most informative
signal for estimation of fine displacements, but using RF data
might result in unreliable regions in the pyramidal structures.
Envelope and B-mode only contain low frequency informa-
tion of RF data that can be used for approximation of the
displacement but they cannot provide accurate displacement.
B-mode and envelope can provide useful information in coarse
pyramid levels while RF data contains detailed information
for high resolution and high-quality displacement estimation.
Consequently, two networks are proposed to exploit RF, B-
mode and envelope. In both networks, the downsampling
operations (strides = 2) of the final pyramid level are removed.
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Fig. 2: Proposed RFMPWC-Net structure. A feature extraction
layer is added to use features of only RF data to estimate final
resolution. The feature extraction layers with red outline have
the same weights. The output size of each feature extraction
layer, fine-tuned sub-network and frozen network are specified.

In the first network, we concatenate RF data, B-mode and
envelope to generate a three-channel input for the network.
We name this network Modified PWC-Net (MPWC-Net). This
network uses information of B-mode and envelope in low
resolutions where RF data cannot provide useful information
due to information loss and the network exploits RF data in
high resolutions to have high quality subsample displacement
estimation.

In the second network, RF data, B-mode and envelope
are combined in a different fashion. Concatenated RF, B-
mode and envelope is used for displacement estimation of
all pyramid levels except for the last pyramid level which
has the highest resolution and for that level, only RF data is
used for displacement estimation. A feature extraction layer is
added to extract useful information of only RF data in the final
pyramid level. The block diagram of this method is depicted
in Fig. 2. The last layer has the same structure and weights
as the feature extraction layer of the main concatenated inputs
so no more training is required. This network produces more
accurate displacement compared to MPWC-Net, especially in
noisy situations because although B-mode and envelope are
helpful in low pyramid levels and remove outlier regions, they
reduce the accuracy of the network in the final pyramid level.
We call this network RF Modified PWC-Net (RFMPWC-Net).
Please refer to Supplementary Material for the comparison of
the two networks.

C. Simulation Dataset

As part of this manuscript, we generate a simulation dataset
using Field II [33], [34]. The dataset consists of one or two
inclusions with random positions. The Young’s modulus of the
tissue is randomly set between 18 to 23 kPa, and the Young’s
modulus of the hard inclusion is randomly set to a value in
the range of 40 to 60 kPa. The average strain varies between
0.5 to 4.5 % and displacements are estimated by Finite
Element Method (FEM) using the ABAQUS software. The
cubic interpolation method is used to obtain the displacements
of the scatterers from the nodes obtained by FEM. These

scatterers are utilized to simulate ultrasound images using the
Field II toolbox [33], [34] with a center frequency of 5 MHz.

24 different phantoms with 10 different average strain values
and 10 different random scatterer realizations with different
positions are simulated (for each phantom 100 images are
simulated with a total of 2400 images). 1000 image pairs are
randomly sampled from the mentioned simulated images for
training. The test set contains 70 image pairs and it has four
different models. The test phantoms have inclusions that differ
from training phantom in size, location and shape with average
strain values between 1 to 2.5 %. We publicly release this
dataset as part of this manuscript at data.sonography.ai.

D. Experimental Phantom and In vivo Data

Phantom data is collected at Concordia University’s PER-
FORM Centre by an E-Cube R12 research ultrasound machine
(Alpinion, Bothell, WA, USA) with a L3-12H linear array at
the center frequency of 10 MHz and sampling frequency of 40
MHz. A tissue mimicking breast phantom made by Zerdine
(Model 059, CIRS: Tissue Simulation & Phantom Technology,
Norfolk, VA) is used which has tissue elasticity of 20±5kPa
and contains hard inclusions with elasticity at least twice the
elasticity of the tissue.

In vivo data was obtained at Johns Hopkins Hospital from
a research Antares Siemens system using a VF 10-5 linear
array with a center frequency of 6.67 MHz and a sampling
frequency of 40 MHz. Data is collected from three patients
in open-surgical RF thermal ablation for liver cancer. More
experimental details of the procedure can be found in [15].
The study was approved by the institutional review board with
consent of all patients.

E. Fine-Tuning of the Network

It is common to fine-tune a network that is already trained
on a similar task, as opposed to training it from scratch, a
process also known as transfer learning [36], [37]. Therefore,
we use the FEM and Field II dataset to fine-tune the proposed
networks, which are trained on computer vision data. We tested
many settings and fine-tuning strategies and found out that
only fine-tuning the final resolution pyramid suffices since the
network already performs well and only small improvement
to the displacement prediction is required. The fine-tuned sub-
network is specified in Fig. 2. Data augmentation is performed
by randomly mirroring in lateral direction and adding white
Gaussian noise to the RF data. Subsequently, envelope and B-
mode images are obtained and used as different input channels
of CNNs.

Regarding the loss function selection, due to the fact that
displacement error is small, MSE suppresses this small error
and amplifies the outlier regions. In practice, we obtained
noisier strain by MSE even though the displacement error was
reduced (higher displacement variance with lower displace-
ment error). Therefore, we use norm 0.4 similar to FlowNet2
small displacement network [26] as the main loss function
since this norm amplifies small error and attenuates large
errors obtained by outliers. Another important point is that
Total Variation (TV) regularization similar to [16], [38] is used

https://data.sonography.ai
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to reduce the displacement variations and improve the quality
of the strain. The final loss function used for fine-tuning is:

loss = ‖DGT −DΘ‖0.4 +
λ

N
‖∆DΘ − ε‖1 + γ ‖Θ‖2 (2)

where DGT and DΘ are the ground truth and estimated
displacements, respectively and ‖.‖p denotes norm p. ∆DΘ

is the axial derivative of the predicted axial displacement, N
is the number of samples used for TV computation, and λ, γ
are regularization weights. To avoid underestimation bias due
to regularization, we regularize by average strain (ε) similar
to [15], [16]. We fine-tune the weights of the final pyramid of
RFMPWC-Net using this simulation dataset. We also fine-tune
MPWC-Net, but do not report the results in this manuscript
since fine-tuned RFMPWC-Net performed better than MPWC-
Net. We set the weight decay to 0.01 and λ to 0.2. NVIDIA
Titan V with 12 GB RAM is used for training and the image
size is 2048×256, which enforces us to use batch size of 1
due to memory limits. The network is fine-tuned for 50 epochs
and the learning rate is set to 2e-9.

III. RESULTS

In this section, the proposed networks are evaluated and
compared with existing methods. NCC [9], GLUE [14],
FlowNet2 [21], [26], original PWC-Net [24], [28] and our
proposed networks (MPWC-Net, RFMPWC-Net and fine-
tuned RFMPWC-Net) are evaluated for simulated phantoms,
an experimental phantom and in vivo data. GLUE is a recent
method that has already been extensively used in several
challenging simulation, phantom and in vivo applications by
different research groups [30], [39]–[41].

To make the comparison fair, the input of deep learning
methods (PWC-Net, FlowNet, MPWC-Net and RFMPWC-
Net) is the concatenation of B-mode, RF and envelope signals.
We use the trained FlowNet2 and PWC-Net weights publicly
available on the Pytorch framework [24]. The GLUE code
is publicly available, and NCC implementation is similar
to [16] where we perform 2D cubic interpolation to cal-
culate subsample displacements. Substantially better results
are expected with a multi-level stretching NCC technique.
In the simulation experiments, the ground truth displacement
is known. Therefore, Normalized Root Mean Squared Error
(NRMSE) of axial displacement [42] defined in 3 is used as
the metric for measuring the displacement prediction accuracy.
The results are reported for two different Peak Signal to Noise
Ratios (PSNR).

NRMSE(%) =

√
mean((

DGT −DΘ

DGT
)2)× 100 (3)

PSNR = 20× log10(
Imax

δ
) (4)

where δ denotes standard deviation of noise and Imax is the
maximum of image intensity. Noise with normal distribution
is added to the RF data in order to obtain noisy simulation
images. It should be noted that NRMSE is computed for each
test phantom, then mean and standard deviation of NRMSE
are reported for ideal and noisy simulated phantoms.

Two popular metrics, Contrast to Noise Ratio (CNR) and
Strain Ratio (SR) are also used to show the strain quality in
the experimental and in vivo results, which are defined as [7]:

SR =
st
sb
, CNR =

√
2(sb − st)2

σb2 + σt2
, (5)

where st and sb are average values of strain in the target
and background regions, and σt and σb are variance values
of strain in the target and background regions, respectively.
The selected regions in the target and background must be
uniform and large enough to be statistically meaningful. It is
important to note that CNR is sensitive to mean and variance
of the regions. Whereas, SR only measures the differences
in the mean value of the selected region. SR is a proper
metric to measure the bias error of the strain. Whereas, CNR
shows the combination of bias and variance error of the
strain. One basic property of elastography methods is that
they estimate lower difference between the tissue and the
inclusion due to bias created by different smoothing operations
(continuity constraints in GLUE, median filtering or low-pass
filtering in NCC and window-based methods, and least squares
differentiation). Therefore, in real experiments with unknown
ground truth, higher difference usually translates to smaller
estimation bias. If a hard inclusion is chosen as the target,
the value of SR is less than 1, where lower SR represents
higher difference in the strain of the target and background
(i.e. lower numbers are generally better). In order to compute
reliable CNR and SR, large windows are selected in Fig.
5 (h), Fig. 6 (h) and Fig. 7 (h). The windows are divided
into small overlapping patches. CNR and SR are computed
for all combination of target and background patches. The
mean and standard deviation of the computed CNRs and SRs
are reported. To better visualize the results, we show strain
images, which are the least squares derivatives of the axial
displacement in axial direction.

A. Simulation Results

In this section the results of the simulated phantoms are pre-
sented for different methods. The strain image of a simulated
phantom with the displacement calculated by the evaluated
methods is depicted in Fig. 3 for PSNR= ∞. Our proposed
networks perform substantially better than stock deep learning
methods in both simulation setups. Please refer to Supplemen-
tary Material for more results including a different simulated
phantom with added noise.

It is important to note that although the complexity of
FlowNet2 is substantially more than the four other networks
(both in training and inference), its results are substantially
worse than our proposed networks. By closely inspecting
the FlowNet2 results, it is evident that there is a substantial
underestimation of strain in hard inclusions, which are not as
dark as our proposed methods.

Another important point is that all networks except
RFMPWC-Net+ft are trained on computer vision images and
RFMPWC-Net+ft is fine-tuned by our dataset. Visually, the
results of RFMPWC-Net+ft and RFMPWC-Net are close but
RFMPWC-Net+ft is smoother. The quantitative results are
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Fig. 3: Strain images of a simulated phantom with PSNR =∞.

TABLE II: Comparison of different methods for 70 simulated
phantoms.

PSNR=∞ PSNR=30 dB

Method NRMSE (%) NRMSE (%)
NCC 1.88±0.51 1.93±0.53

GLUE 1.10±0.53 1.10±0.53
FlowNet2 1.65±0.46 1.68±0.46
PWC-Net 1.82±0.74 1.82±0.74

MPWC-Net 1.17±0.54 1.28±0.40
RFMPWC-Net 1.18±0.61 1.19±0.62

RFMPWC-Net+ft 1.15±0.33 1.18±0.34

given in Table II for 70 simulated phantoms. According to
these results, the results of RFMPWC-Net are close to GLUE
even without fine-tuning on ultrasound images, which shows
the potential of the networks solely trained on computer vision
images. Our fine-tuned variant of RFMPWC-Net performs
slightly better than RFMPWC-Net. It is important to note
that GLUE results remain very similar for no-noise and noisy
conditions which indicates the robustness of GLUE due to
optimizing all samples simultaneously.

RFMPWC-Net is more robust to noise compared to MPWC-
Net which NRMSE increases 0.09 % in noisy conditions.
In order to show the effect of fine-tuning, the strain of one
line using RFMPWC-Net and RFMPWC-Net+ft is depicted
in Fig. 4. As shown, the fine-tuned RFMPWC-Net result (red)
has less variations and it is closer to ground truth compared
to RFMPWC-Net (blue), which indicates that fine-tuning
improves the displacement estimation accuracy. However, the
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Fig. 4: One line of strain using a small least square window.
RFMPWC-Net (blue), RFMPWC-Net+ft (red) and ground
truth (black).

improvements obtained by modifying the structure is more
tangible (compare Fig. 3(d), (e) and (f)) than fine-tuning.
The main reason is that the networks trained on computer
vision images are already performing well in mapping the
inputs to the displacement. The modification of the structure
brings substantial improvements to the network accuracy by
providing more information to the network. Please refer to the
supplementary material for fine-tuning of the original PWC-
Net.

B. Experimental Phantom Results

CNR and SR defined in Eq 5 are used as quantitative
metrics and the visual results are demonstrated in Fig. 5.
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Fig. 5: Strain images of the experimental phantom. The windows used for CNR and SR computation are highlighted in the
B-mode image (h). FlowNet2 (c) has high heterogeneity and fails to obtain smooth and high quality strain and the proposed
networks have higher contrast compared to GLUE (b).

TABLE III: SR and CNR of the experimental phantom.

Method CNR SR
NCC 10.65±2.69 0.399±0.04

GLUE 26.75±7.86 0.459±0.02
FlowNet2 20.19±3.70 0.48±0.02
PWC-Net 20.28±5.82 0.376±0.05

MPWC-Net 17.12±4.59 0.425±0.03
RFMPWC-Net 27.06±4.28 0.410±0.03

RFMPWC-Net+ft 29.15±5.77 0.382±0.05

NCC and FlowNet2 fail to obtain acceptable strain and GLUE
produces smooth but underestimated strain, which is due to
regularization. As such, GLUE result does not have as low
SR as the deep learning methods. Nevertheless, GLUE has less
variance, which makes the CNR very close to our proposed
methods. The quantitative results in Table III. confirm the
visual assessments. GLUE has good CNR (26.75) but poor
SR (0.459), whereas PWC-Net has the best SR (0.376) with a
moderate CNR (20.28). RFMPWC-Net has higher CNR and
better SR than MPWC-Net. RFMPWC-Net has higher CNR
than GLUE (27.06 compared to 26.75) and better SR (0.41
compared to 0.459) without using any ultrasound images for
training, which indicates the strength of the proposed CNN
networks. RFMPWC-net+ft produces the most appealing result
among deep learning methods and outperforms all evaluated

methods in terms of CNR (29.15) and has good SR (0.382).
This shows that fine-tuning of trained networks by ultrasound
images has a positive impact on the performance of the
network.

C. In vivo Results

Considering Fig. 6, GLUE estimates low-variance and high
quality but blurry strain. The strain estimated by FlowNet2
is too smooth and many details are lost. PWC-Net also
fails to estimate an acceptable strain. MPWC-Net has good
strain quality but with a few artifacts, and RFMPWC-Net
generates the best. RFMPWC-Net+ft further improves strain
quality compared to RFMPWC-Net. Regarding Fig. 7, the
GLUE result is acceptable but it is over smooth especially
in in the top right of image. NCC, FlowNet2 and PWC-Net
all fail to estimate strain, and MPWC-Net obtains a high-
quality strain compared to PWC-Net. This indicates that our
changes in the structure of PWC-Net have substantial impact
on the network’s performance. RFMPWC-Net has better strain
compared to MPWC-Net and most of artifacts are removed in
the RFMPWC-Net result. RFMPWC-Net+ft produces a very
high-quality strain image and further removes the artifacts.

Considering the quantitative results of tumor presented in
the first two columns of Table IV, GLUE obtains the high
CNR in both patients (19.36 and 15.11) but the SR is poor
(0.389 and 0.441). NCC and PWC-Net have poor CNR and
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Fig. 6: In vivo strain results of the liver of patient 1 before ablation. The tumors are marked with arrows and the windows
used for CNR and SR computation are highlighted in the B-mode image (h).
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Fig. 7: In vivo strain results of the liver of patient 2 before ablation. The tumor and the vein are marked with arrows and the
windows used for CNR and SR computation are highlighted in the B-mode image (h). the GLUE (b) obtains smooth but blurry
strain especially close to the vein on the top right of the image. Fine-tuning reduces the artifacts presented in RFMPWC-Net
(compare (f) and (g)).
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TABLE IV: Results of In vivo data, patient 1 (Fig. 6) and patient 2 (Fig. 7). GLUE has higher CNR for tumor and RFMPWC-Net
results in higher CNR for the the vein. The proposed networks perform comparable to GLUE for in vivo data.

Patient 1 Patient 2 (tumor) Patient 2 (vein)

Method CNR SR CNR SR CNR
1

SR
NCC 9.08±3.22 0.29±0.07 3.60±1.41 0.51±0.09 11.84±6.66 0.590±0.14

GLUE 19.36±4.51 0.389±0.06 15.11±5.30 0.441±0.02 11.54±6.13 0.795±0.07
FlowNet2 12.86±0.46 0.463±0.049 9.40±2.04 0.415±0.05 fail fail
PWC-Net 10.79±4.00 0.451±0.09 5.90± 2.45 0.587±0.09 9.19±4.34 0.835±0.07

MPWC-Net 12.11±3.75 0.376±0.07 11.66± 2.2 0.338±0.03 11.98±5.69 0.610±0.06
RFMPWC-Net 13.55±4.34 0.396±0.06 12.48±3.23 0.409±0.04 19.88±9.41 0.590±0.05

RFMPWC-Net+ft 16.63±5.53 0.380±0.05 15.58±2.58 0.395±0.04 12.52±3.71 0.601±0.08

FlowNet2 has higher CNR compared to them but visually the
strain images are not acceptable. MPWC-Net has poor CNR
(12.11 and 11.66) but produces the best SR (0.376 and 0.338).
This implies that MPWC-Net has high variance in estimation
which leads to low CNR but it has low bias in estimation which
results in low SR. RFMPWC-Net outperforms MPWC-Net in
terms of CNR with slightly worse SR. Fine-tuning improves
the CNR with approximately similar SR. RFMPWC-Net+ft
produces CNR values very close or even better than GLUE
(16.63 and 15.58) with better SR (0.388 and 0.399).

By inspecting the results of the soft target (the vein in up
right corner of Fig 7 (h)), it is inferred that our 3 networks
substantially outperform GLUE in terms of both CNR and
SR. RFMPWC-Net has the highest CNR (19.88) by a large
margin, which is 8.34 dB and 7.36 dB better than GLUE
and RFMPWC-Net+ft, respectively. The main reason that
RFMPWC-Net performs better without fine-tuning is that our
database only contains hard inclusions and fine-tuning by this
database deteriorates the cases with soft inclusions such as
veins. For the vein,

1

SR
is reported in order to be consistent

with other results since the SR value for veins is more than 1.
Our networks have the best SR among the compared methods
and they have substantially better SR compared to GLUE.

D. Effect of sampling and center frequencies

The sampling and the center frequencies have critical role
in displacement estimation accuracy. In the simulation results,
the center and sampling frequency are 5 MHz and 50 MHz,
respectively. We simulate a phantom with two different cen-
ter and sampling frequencies. RFMPWC-Net, FlowNet2 and
PWC-Net are tested for the center frequencies 5 and 10 MHz
and the sampling frequencies 25 and 50 MHz. As shown in
Fig. 8, strain obtained by RFMPWCNet (a, d) are high quality
and consistent compared to FlowNet2 and PWC-Net. Please
refer to the supplementary material for more results.

IV. DISCUSSIONS

In this paper, two networks based on PWC-Net are proposed
for USE. Generally, USE requires high accuracy subsample
displacement estimation, which renders efficient use of high
frequency information in RF data critical. This is a challenge

as stock optical flow networks are not designed to handle RF
data.

The PWC-Net is modified for USE displacement estimation
by: 1) removing downsampling of the first feature extraction
layer (this layer is connected to the input directly) to prevent
loss of high frequency information; and 2) concatenating
RF data, envelope and B-mode images to feed to the net-
work. by doing this, the low-resolution pyramid levels exploit
low-frequency B-mode and envelope information and high-
resolution pyramid levels use RF data to obtain accurate
displacement.

The main drawback of MPWC-Net is that B-mode and enve-
lope contribute to the final resolution displacement estimation.
B-mode and envelope are beneficial in low pyramid levels
where RF data cannot be used, but they result in less accurate
estimated displacement compared to RF data. Hence, in noisy
conditions, MPWC results degrade considerably (as given in
Table II). RFMPWC-Net is proposed to resolve this problem
by adding a separate sub-network to extract and use only RF
data for the final pyramid level.

FlowNet2 network, which is extensively used by the re-
searchers, obtains under-estimated strain and fails for in vivo
data. Although FlowNet2 has 18 times more learning param-
eters than PWC-Net and achieves high accuracy in computer
vision databases such as MPI-Sintel [26], it performs poorly on
ultrasound images. This emphasizes that less complex pyrami-
dal and warping structure is more suitable for ultrasound data.

Fine-tuning is another avenue that is investigated in this
paper, where the networks are tuned by simulated ultrasound
images. In the loss function of fine-tuning, TV regularization
is used to reduce the variance of displacement estimation. Ac-
cording to our results, fine-tuning improves the strain quality
both qualitatively and quantitatively. All ultrasound simulation
training data for fine-tuning the networks contain harder
inclusions than the background. Nevertheless, the fine-tuned
network performed well in a variety of in vivo experiments
with different kinds of tissue. In the future, we plan to add
data with soft inclusions in our training database and expect
this to further improve the results. These new simulations will
also strengthen the online database that we released.

Another important point about fine-tuning is that we only
consider negative strain (post-compression image is the second
image) for fine-tuning. The network can be fine-tuned with
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Fig. 8: Simulation results of RFMPWC-Net, FlowNet2 and PWC-Net for different center and sampling frequencies. (Network,
Center frequency and Sampling frequency). RFMPWC-Net quality remains well when sampling frequency decreased (a) or
center frequency increased (d) in comparison to the other methods.

both positive and negative strain to be used for cases which
post-compression image is not determined. Please refer to the
supplementary material for more information.

It is also worth mentioning that our proposed networks are
very close to GLUE in terms of CNR and have better SR.
By comparing the quantitative results presented in Table III
and IV, it can be seen that GLUE has higher CNR than our
proposed methods in the tumor part of patient 1. However,
GLUE has lower CNR than the fine-tuned network for the
experimental phantom data and data of patient 2. Another in-
teresting conclusion is that RFMPWC-Net outperforms GLUE
and fine-tuned network by a large margin for the vein (19.88
compared to 11.52 and 12.54). The reason for outperforming
the fine-tuned network can be explained by the fact that we
performed transfer learning using simulation data that only has
hard inclusions.

In terms of SR, our proposed methods are the best among
compared methods. MPWC-Net has the best SR but moderate
CNR. In contrast, RFMPWC-Net and the fine-tuned variant of
the network have higher CNR and slightly worse SR compared
to MPWC-Net. The proposed methods perform similar to
recent elastography methods without any need for parameter
tuning, and have very small memory footprints and can be
implemented on inexpensive GPUs.

V. CONCLUSION

This paper presents a deep learning approach for dis-
placement estimation of the USE. The structure of PWC-
Net is modified for our application. Visual and quantitative
assessments of simulated phantoms, experimental phantom
and in vivo data confirm that the proposed methods are

suitable for USE and can compete with current state-of-the-art
elastography methods.
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